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Creating Atom-Atom Bound State in Continuum by Interference 
of Magneto-Optical Feshbach Resonances

Bimalendu Deb
Indian Association for the Cultivation of Science,

Jadavpur, Kolkata 700032. INDIA.

● First introduced by von Neumann and Wigner in 1929
J von Neumann and E Wigner, Phys. Z. 30, 465 (1929)
● Counter-intuitive concept
● Square-integrable discreet state in continuum
● It occurs due to destructive interference of out-going waves

● First experimental realization: 
➢ C. W. Hsu et al., Nature 499, 188 (2013)

An “unusual” trap for an electron: A. G. Smart, Phys.Today 66, 14 (2013)

125th birth anniversary of S. N. Bose 
International Workshop on Bose-Einstein Condensation and 

related phenomena (IWBECRP)
SNBNCBS, Kolkata, 26-28 March 2018 
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Experimental realizations 
Realization in photonic crystal
C. W. Hsu et al., Nature 499, 188 (2013) [MIT, J D Joannopoulos]
Light trapped in the radiation continuum
BIC of light by “destructive interference” of plane waves

Realization in wave guides by “symmetry incompatibility”
Y. Plotnik et al., PRL 107, 183901 (2011)
[Technion (Israel) and Friedrich-Schiller-Universität Jena (Germany)] 
Using optical waveguide array: BIC is the guided mode
 
Realization of BIC laser: A. Kodigala et al, Nature, 12 Jan 2017
Using BIC cavity made of cylindrical nanoresonators 
[University of California San Diego]

Neuman-Wigner BIC is a wave phenomenon: Should occur in all classical & 
quantum interference domains with appropriate tuning of the system 
parameters 

Review: Hsu et al, Nat. Rev. Mater., 1, 16048 (2016) 
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Our proposal to realize two-atom (diatom) BIC in cold collisions
B Deb & G S Agarwal, PRA 90, 063417 (2014)

Using quantum inference in photo- & magneto-associations 
Purpose of this work: 
● To demonstrate BIC of cold atoms by quantum interference 
● To enhance the efficiency of formation of Feshbach molecules
● Coherent control of atomic and molecular processes with BIC

Early theoretical works (connections with resonances & reactions)

BIC of two particles in the continuum of scattering states
F H Stillinger & D R Herrick, PRA 11, 446 (1975)
➢ Gave an exposition of the work by Neumann & Wigner
➢ Importance of two-electron BIC in atomic and molecular physics

BIC by interference resonances in multichannel scattering 
F Friedrich & D Wintgen, PRA 32, 3231 (1985)

Resonance reactions (three-channel meson-baryon scattering)
L Fonda & R G Newton, Annal of Physics 10, 490 (1960)
(Probably not aware of the work by Neumann & Wigner)
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Plan of the Talk

✔ Preliminaries: 
➢ Fano resonance or Fano effect (U Fano, Phys. Rev. 1961)
➢ Magneto-optical Feshbach resonance
➢ Feshbach method (H Feshbach, 1958)    

✔ Model
➢   Two excited molecular bound states coupled to the continuum of two-atom 

scattering states with two PA lasers in the presence of a magnetic Feshbach 
resonance 

➢    Effective Hamiltonian using projection operator & resolvent methods
✔ Solution    
➢ BIC: Analytical and numerical results 
➢   Conditions for the occurrence of BIC

✔ How to detect: Proposal for experimental realizations 

✔ Applications 
➢  Controlling FR and efficient formation of Feshbach molecules 
➢    Coherent spectroscopy using BIC 



  

Fano effect: QI in continuum-bound coupled system

Continuum-bound interacting system

V

bound

Bare continuum

E'
 ϕ

∣E 〉=aE∣ϕ 〉+∫d E' C E' (E)∣E ' 〉

Dressed continuum

Asymmetry in absorption spectra
results from quantum interference

Fano asymmetry parameter q



  

Model 
MFR is described with a 
two-channel model
(open and closed) 
Quasi-bound state in CC
Continuum in open channel

Photoassociation (PA)
b-1 & b-2: excited bound states
Coupled to the continuum & 
the quasi-bound state with 
two PA lasers ( L-1 & L-2 )  
 
Amplitudes of several transition
pathways interfere 

Two interfering 
Fano resonances 

 



  

Effective Hamiltonian  

Use projection operators

P=∑n=1

3
|bn ><bn |    and   Q=∫d E | E >< E | =  1−P

The resolvent operator G (z)=(z−H )−1  can be projected onto 

P G P=( z−H eff )
−1   where   H eff=

ℏΓf

2
[A−i B ]

A  =   δ1           0                q1√g1

            0            δ2              q2√g2

          q1√g1      q2√g2       −(k as)
−1

B  =    g1      g12      √g1

            g21      g2      √g2

         √g1      √g2       1

B  =    g1      g12      √g1

            g21      g2      √g2

         √g1      √g2       1

g12=g21=√g1 g2

H eff  is non-hermitian

Point to be noted: 
B has two zero eigenvalues 
and one nonzero  eigenvalue 



  

Solution 
The two real eigenvalues of effective Hamiltonian are 

      λ=
1
2
(δ2−q1 )  ±  

1
2 [ (δ2+q1)

2
−4 g2 q2 (q1−q2 ) ]

1 /2

Subject to the condition

                                 g1=
(δ1−λ ) (δ2−λ−g2 q2 )

q1 (δ2−λ )
Special case: When A  and B  commute, and assuming q1≃q2=q ,
the two real eigenvalues and eigenvectors are

                        E A=
ℏΓf

2
q (g1+g2−1 )    EB=−

ℏΓf

2
q

             | A >BIC=
1

√g1+g2

[√g2 |b1 >−√g1 |b2 > ]

|B >BIC=
1

√ (g1+g2 ) (g1+g2+1 )
[√g1 |b1 >+√g2 |b2 >+(g1+g2 ) |bc > ]

Dark state 



  

● BIC will influence scattering and PA spectral properties. These can 
be calculated using Moller operators

● PA probability per unit collision energy     

● Scattering T-matrix is 

Ω±(E)=1+G(E±i ϵ)V | E >dressed=Ω+ | E >bare

Sn(E)=|< bn | E >dressed |2∝ (E−H eff )
−1

Bound-bound Spectrum
No singularity

T= bare < E |V | E >dressed∝ (E−H eff )
−1

For a real eigenvalue, 
singularity appears in 
scattering cross section 



  

 

BIC implies scattering resonance with zero width 

B Deb & G. S. Agarwal, PRA  90, 063417 ( 2014) [Editors' suggestion]

g1 = 0.25 (solid), 
g1 = 0.5 (dashed) 
g1 = 0.75 (dashed dotted)

g2 = 2.0, δ1 = 1.5, δ2 = −0.5 
q1  = − 0.5,   q2 = −1.0,     

     E1= 1.096 − 0.001i
     E2 = 1.499 − 0.099i
     E3 = −1.595 − 3.150i
 
g1 = 0.1803        E1=1.1180
                           BIC 

g1=0.5    E1=1.024 - 0.016i
g1=0.75  E1=0.958 - 0.042i

Close to a real eigenvalue, BIC will show up as an ultra-narrow 
resonance with asymmetric shape 



  

The effects of spontaneous emission on BIC 

EM continuum 
(vacuum)

Atomic continuum 
(collision)

Eliminating all continuua, we have  H eff=
ℏΓf

2
[A−i B ]

A  =    δ1           0                q1√g1

            0            δ2              q2√g2

          q1√g1      q2√g2       −(k as)
−1

B  =    g1+γ1      g12+γ12      √g1

            g21+γ21      g2+γ2      √g2

            √g1            √g2             1

γ12   →  Vacuum-induced coherence

Non-orthogonal Vs.  
Orthogonal EDM
VIC Vs. non-VIC  

Two cases



  

B  has one zero eigenvalue if

γ1=γ2=γ=10  (say)

Case-I
Non-orthogonal EDM

η=10.01η=10.001 η=10.1

γ12=γ21=√γ1γ2=η

Case-II: Orthogonal EDM
γ12=γ21=η=0

B  has no zero eigenvalue if 
γi≠0

There is no BIC  in presence of 
spontaneous  emission. 

γ=0.001         γ=0.01         γ=0.1

Somnath Naskar, Dibyendu Sardar & B. Deb
(To be submitted)  

Laser phase may be another 
control parameter



  

How to realize BIC of cold atoms? Some experimental aspects

➔ Magnetically tunable narrow Feshbach resonance are of advantage. 
➔ Choose two excited molecular bound states that can be populated by 
two PA lasers. These bound states should have comparable or stronger 
PA coupling with the ground-state quasi-bound state, compared to free-
bound couplings. 
➔ Spontaneous emission from the excited bound states will be the 
biggest hindrance towards realization of the proposed BIC. This may be 
mitigated by choosing long-lived (such as PLR, meta-stable) states or 
vacuum-induced coherence [S Das, A Rakshit and B Deb, PRA (2012)]. 

➔ The system parameters should be tuned appropriately so that the BIC 
condition is nearly satisfied. The eigenvalue of a state near BIC should 
be much different from all other eigenvalues, so that BIC signal can be 
distinguished clearly. Otherwise, BIC signal can be missed out, instead 
an Autler-Townes like spectral structure will appear as in the 
experiment by Bauer et al, Nat. Phys. 5, 339 (2009).



  

Application-I
Efficient production of Feshbach molecules 

● What is a Feshbach molecule ?

● Loss in production process (FR): Bosonic and Fermionic atoms

To mitigate loss and thereby to enhance the efficiency of 
production, one can make use of B-type BIC 

Recall: B-type BIC

By using  radio frequency pulse, this BIC can be converted into 

a Feshbach molecule. 

|B >BIC=
1

√ (g1+g2 ) (g1+g2+1 )
[√g1 |b1 >+√g2 |b2 >+(g1+g2 ) |bc > ]

For g1≫1  and g2≫1 we have | B>BIC≃|bc >



  

Application-II
Controlling Feshbach resonance or cold collision

✔ Complex eigenvalue with small imaginary part and the real part 
being almost equal to the energy of BIC implies leakage of the 
probability amplitude into  the continuum. Using Moller operator, 
the scattering T-matrix can be calculated.    

✔ Our analytical and numerical results show that BIC leads to a 
Fano-type asymmetric resonant structure in scattering cross 
section Vs. energy plots. This is unlike usual scattering 
resonances. Thus BIC can be used to control the structure and the 
width of magneto-optical Feshbach resonances. 

MOFR: B. Deb, J. Phys. B (2010): Importance of q-parameter

Shifts and width: B. Deb and A. Rakshit, JPB (2009)
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Summary
✔ It is possible to generate BIC in cold collisions of atoms by magneto-optical 
Feshbach resonances
✔  BIC can be applied to make OFR more efficient by suppressing atom loss. 
✔ BIC can be used for efficient production of Feshbach molecules.
✔ BIC will serve as an important tool for exploring coherent spectroscopy (such 
as EIT) and coherent control in a variety of physical systems involving a 
continuum of states. 

 

Thanks for your attention

Further studies

How to include the effects of spontaneous emission ?
➢ Inclusion of the continuum of vacuum EM modes 

What is the relation of BIC with vacuum-induced coherence (VIC) ?

The role of quantum statistics on BIC in many-particle system ? 
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