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Quantum circuit model:
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Causal order
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Quantum circuit model:

 Typically assumes a definite causal order

 …but does it have to be the case?

|alive> + |dead>

“|A causes B> + |B causes A>”?

Is that something that can be seen/verified in the lab?

New phenomena, new resource for new applications?



Outline

• Superposing causal orders: the “Quantum Switch”

• The framework of “locally quantum” processes

– Causally separable vs causally nonseparable processes

– Violation of causal inequalities

– Analogy with entanglement and Bell nonlocality

• Definition of characterisation of “noncausal resources”

in multipartite scenarios
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• Superposing causal orders: the “Quantum Switch”

• The framework of “locally quantum” processes

– Causally separable vs causally nonseparable processes

– Violation of causal inequalities

– Analogy with entanglement and Bell nonlocality

• Definition of characterisation of “noncausal resources”

in multipartite scenarios
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Superposing causal orders
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Classical switch:  
- If c = 0, apply f then g: y = g∘f(x)
- If c = 1, apply g then f: y = f∘g(x)

PBS PBS
H + V( ) Ä y

B

A

+

The “Quantum Switch”
[ Theory: Chiribella et al., PRA 2013; Araújo et al., PRL 2014;
Experiments: Procopio et al., Nat. Commun. 2015;

Rubino et al., Sci. Adv. 2017 ]



Superposing causal orders
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The “Quantum Switch”
[ Theory: Chiribella et al., PRA 2013; Araújo et al., PRL 2014;
Experiments: Procopio et al., Nat. Commun. 2015;

Rubino et al., Sci. Adv. 2017 ]
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 A new resource!
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Superposing causal orders

The “Quantum Switch” does not fit in the standard
framework of (causally ordered) quantum circuits



The Quantum Switch: a new resource

Task: Given         and         (a single copy),

determine whether they commute or anti-commute

A B

A

B
H + V( ) Ä y

A B A

Causal order

 Can be done in a single shot

using the quantum switch

(by measuring the photon polarization 

at the output in the ±45° basis)

 Cannot be done in a standard 

causally ordered quantum circuit

[Chiribella, PRA 2012; Procopio et al., Nat. Commun. 2015] 8



The Quantum Switch: a new resource
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• New tasks made possible: e.g. classification problem (commuting vs anti-commuting)

• Generalization to an N-partite classification problem: polynomial advantage

• Advantage in communication complexity; can be exponential!

• Enhanced communication

• …?

[Chiribella, PRA 2012]

[Araújo et al., PRL 2014]

[Feix et al., PRA 2015; Allard Guerin et al., PRL 2016]

[Ebler et al., arXiv:1711.10165]
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 A new resource!

 We need a new framework,
need to change our viewpoint
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Superposing causal orders

The “Quantum Switch” does not fit in the standard
framework of (causally ordered) quantum circuits



Outline

• Superposing causal orders: the “Quantum Switch”

• The framework of “locally quantum” processes

– Causally separable vs causally nonseparable processes

– Violation of causal inequalities

– Analogy with entanglement and Bell nonlocality

• Definition of characterisation of “noncausal resources”

in multipartite scenarios
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[Oreshkov, Costa, Brukner,
Nat. Commun. 2012]



Locally quantum processes
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b

[Oreshkov, Costa, Brukner, Nat. Commun. 2012]

P(a,b|x,y) = Tr[ (Ma|x⊗Mb|y)  W ]

• Assuming “local quantum mechanics” only: CP maps Ma|x , Mb|y

 Correlations are bilinear functions of Alice and Bob’s CP maps

the “process matrix”

W

Ma|x

CP map

Mb|y

CP map

For a quantum state r:

P(a,b|x,y) = Tr[ (Ea|x⊗ Eb|y)  r ]

r

For a quantum channel CA→B:

P(a,b|x,y) = Tr[ (rx⊗ Eb|y)  CA→B

]

rx

CA→B

P(a,b|x,y)
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x

a B
y

b

[Oreshkov, Costa, Brukner, Nat. Commun. 2012]

• Some processes are compatible with a definite causal order

 E.g. channel A  B : 

W

[Gutoski & Watrous, STOC 2006; Chiribella, D’Ariano, Perinotti, PRA 2009]

Ma|x

CP map

Mb|y

CP map

Locally quantum processes

• “Causally separable processes”:
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A
x

a B
y

b

[Oreshkov, Costa, Brukner, Nat. Commun. 2012]

W

• “Causally separable processes”:

Ma|x

CP map

Mb|y

CP map

Locally quantum processes

• “Causally nonseparable processes”:

 Processes that are incompatible with a definite causal order

 May generate correlations P(a,b|x,y) with no definite causal order,

which violate “causal inequalities”

P(a,b|x,y)



A “causal game”

15[CB et al., NJP 2016]

A
x

a B
y

b

P(a,b|x,y)

x,y,a,b = 0,1

“Guess you neighbour’s input” game: we want a = y, b = x

Assuming a definite causal order, e.g. A < B:

 Alice can only make a random guess for Bob’s input: P(a=y) = ½

(while Bob can correctly guess Alice’s input:  P(b=x) ≤ 1)

 psucc = P(a=y,b=x)  ≤  ½
a “causal inequality”

Satisfied by all “causal correlations”,
of the form P = q PA<B + (1-q) PB<A



A “causal game”

16[CB et al., NJP 2016]

A
x

a B
y

b

P(a,b|x,y)

x,y,a,b = 0,1

“Guess you neighbour’s input” game: we want a = y, b = x

psucc = P(a=y,b=x)  ≤  ½

 Can be violated by process matrix correlations

P(a,b|x,y) = Tr[ (Ma|x⊗Mb|y)  W ]

“Noncausal correlations”



Entanglement
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Bell nonlocality
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Analogy with entanglement and Bell nonlocality



Analogy with entanglement and Bell nonlocality

Quantum states
(density matrices r)

Quantum processes
(process matrices W)

Entanglement Causal Nonseparability

Nonlocal correlations
violating Bell inequalities

“Noncausal” correlations
violating “causal inequalities”
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Analogy with entanglement and Bell nonlocality

Quantum states
(density matrices r)

Quantum processes
(process matrices W)

Entanglement Causal Nonseparability

Nonlocal correlations
violating Bell inequalities

“Noncausal” correlations
violating “causal inequalities”
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Tr[ S . rent.] < 0    and   Tr[ S . rsep.] ≥ 0 for all rsep.

rent.

rsep.

Can be detected by an entanglement witness S :

S



Analogy with entanglement and Bell nonlocality

Quantum states
(density matrices r)

Quantum processes
(process matrices W)

Entanglement Causal Nonseparability

Nonlocal correlations
violating Bell inequalities

“Noncausal” correlations
violating “causal inequalities”
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Tr[ S . Wc.-nonsep.] < 0    and   Tr[ S . Wc.-sep.] ≥ 0 for all Wc.-sep.

Wc.-nonsep.

Wc.-sep.

Can be detected by a causal witness S :

S

[Araújo, CB et al., NJP 2015; CB, Sci. Rep. 2016]



Analogy with entanglement and Bell nonlocality

Quantum states
(density matrices r)

Quantum processes
(process matrices W)

Entanglement Causal Nonseparability

Nonlocal correlations
violating Bell inequalities

“Noncausal” correlations
violating “causal inequalities”

21

Can be characterized geometrically:
local correlations form a convex polytope, the “local polytope”

Bell
Inequality



Analogy with entanglement and Bell nonlocality

Quantum states
(density matrices r)

Quantum processes
(process matrices W)

Entanglement Causal Nonseparability

Nonlocal correlations
violating Bell inequalities

“Noncausal” correlations
violating “causal inequalities”
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Can be characterized geometrically:
causal correlations form a convex polytope, the “causal polytope”

Causal
Inequality

[CB et al., NJP 2016]

Polytope of
correlations PA<B

Polytope of
correlations PB<A

Pcausal = q PA<B + (1-q) PB<A



The “Quantum Switch” as a quantum process

A

B
H + V( ) Ä y
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• Tracing out the control qubit makes the process an (uninteresting) 

random mixture of 2 causally ordered processes

We should keep it! And give it to a 3rd party, C

C



The “Quantum Switch” as a quantum process

A

B
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• For the order A<B:

[M. Araújo, CB et al., NJP 2015; O. Oreshkov, C. Giarmatzi, NJP 2016]

C

(identity channel)



The “Quantum Switch” as a quantum process
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• For the order A<B:

C

• For the order B<A:

[M. Araújo, CB et al., NJP 2015; O. Oreshkov, C. Giarmatzi, NJP 2016]



The “Quantum Switch” as a quantum process

A

B
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C

[M. Araújo, CB et al., NJP 2015; O. Oreshkov, C. Giarmatzi, NJP 2016]



The “Quantum Switch” as a quantum process
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 Causally nonseparable

C

[M. Araújo, CB et al., NJP 2015; O. Oreshkov, C. Giarmatzi, NJP 2016]

• Nevertheless, the quantum switch cannot violate any causal inequality

≠

( a causal witness can be constructed and measured experimentally)

[Rubino et al., Sci. Adv. 2017]



Outline

• Superposing causal orders: the “Quantum Switch”
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• ( Recall bipartite case: )

29

Defining multipartite (non)causal correlations

A
x

B C

C B

• Naïve generalisation:

 Not enough: we want to allow for adaptive order
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Defining multipartite (non)causal correlations

• Even allowing for an adaptive order, there will always be a party coming first 
(which party this is could be probabilistic)

 Recursive definition:

• Any single-partite probability distribution is causal

• For N ≥ 2, a correlation P is causal iff

[Oreshkov & Giarmatzi, NJP 2016; Abbott et al., PRA 2016]

(N-1)-partite
causal correlation

• ( Recall bipartite case: )
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Characterizing multipartite causal correlations

• Multipartite causal correlations form a convex polytope

 Fully characterised in the simplest tripartite case [Abbott et al., PRA 2016]

• Vertices correspond to deterministic causal strategies,
possibly with an adaptive causal order

• Facets then define causal inequalities for multipartite causal correlations

[Oreshkov & Giarmatzi, NJP 2016; Abbott et al., PRA 2016]
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Multipartite causally (non)separable processes

• Simultaneously, [Oreshkov & Giarmatzi, NJP 2016] considered the fully general 
multipartite case, and gave another definition for causally (non)separable 
processes, inspired by the previous definition of causal correlations

• In the particular tripartite scenario of the quantum switch,
where one party (C) has no outgoing system:

A

B
C

• ( Recall bipartite case: )

[Araújo et al., NJP 2015]
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Oreshkov & Giarmatzi’s causal (non)separability
[Oreshkov & Giarmatzi, NJP 2016] 

• Recall recursive definition for causal correlations:

– Any single-partite probability distribution is causal

– For N ≥ 2, P causal iff

(N-1)-partite causal correlation

• Oreshkov & Giarmatzi’s causal separability (OG-CS):

– Any single-partite process is causally separable

– For N ≥ 2, W is causally separable iff

Valid process compatible with party Ak first,
such that the (N-1)-partite conditional process

is causally separable for all CP maps Mk
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Oreshkov & Giarmatzi’s causal (non)separability
[Oreshkov & Giarmatzi, NJP 2016] 

• Oreshkov & Giarmatzi’s causal separability (OG-CS):

– Any single-partite process is causally separable

– For N ≥ 2, W is causally separable iff

Valid process compatible with party Ak first,
such that the (N-1)-partite conditional process WMk is c.-sep. for all Mk

• Oreshkov & Giarmatzi’s “extensible causal separability” (OG-ECS):

– W is extensibly causally separable iff W⊗r is causally separable for all r

• OG-CS ≠ OG-ECS: “activation of non-causality”
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2 definitions of causal (non)separability

• In the particular tripartite case where C has no outgoing system:

vs OG-CS  /  OG-ECS
[Oreshkov & Giarmatzi, NJP 2016] [Araújo et al., NJP 2015]

A

B

C

• Are the 2 definitions equivalent?

 Araújo et al.’s definition   ⬄ OG-ECS

OG-CS
[Wechs et al., in prep.] 

Is the most natural definition! 
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Characterising multipartite causal (non)separability

• ( Recall bipartite case: )

• Tripartite case: [Oreshkov & Giarmatzi, NJP 2016; Wechs et al., in prep.] 

Valid process compatible with A first (up to norm.)

Not necessarily a valid process;

But such that for any CP map MA the conditional process

is a valid bipartite process compatible with B first

 Not just a convex combination of processes!

 Allows for adaptive causal order
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• Tripartite case:   [Oreshkov & Giarmatzi, NJP 2016] 

• Generalisation to 4 parties and more?
[O. Oreshkov (private communication); Wechs et al., in prep.]

Characterising multipartite causal (non)separability

Valid process compatible with A first

For any CP map MA, conditional process            is valid, compatible with B first

For any CP maps MA, MB, conditional process                      is valid, compatible with C first

 Sufficient condition:



Conclusion – Outlook

• Quantum theory allows for processes with no definite causal order:
“Causally nonseparable processes”

• The “process matrix formalism” appears to be well suited to analyse such 
situations beyond causally ordered quantum circuits

• Rich analogy with entanglement and Bell nonlocality, to be exploited further

• A concrete example: the quantum switch

– Can be realised experimentally; one can verify its causal nonseparability

– But it does not violate any causal inequality;
still an open question, whether any physical process can

• Extension of the framework to multipartite scenarios

– Also to “genuinely multipartite non-classical correlations”
[Abbott et al., Quantum 1, 39 (2017)]

38



Conclusion – Outlook

• Quantum theory allows for processes with no definite causal order:
“Causally nonseparable processes”

• Need to properly characterise what can and cannot be done with QM

• New applications made possible; new applications to be discovered…

39

 A new resource for QIP

Understanding precisely how quantum processes
defy the classical notion of causality should help us discover new applications



Thank you for your attention
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Example: the simplest tripartite scenario

• 3 parties

• Binary inputs x,y,z = 0,1

• Fixed outputs a,b,c = 0 for inputs x,y,z = 0;
Binary outputs a,b,c = 0,1 for inputs x,y,z = 1

[Abbott et al., PRA 2016]

A
x

a B
y

b

C
z

c

 Correlation space is 19-dimensional

 Causal polytope has 680 vertices
(488 compatible with a fixed order, 192 requiring a dynamical order),

13 074 facets, defining 305 inequivalent families of causal ineqs (incl. 3 trivial ones)

 All nontrivial causal inequalities can be violated by W correlations
(all except 18 by classical processes; algebraic max obtained for 65 families)

[Baumeler &Wolf, ISIT 2014]
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Tripartite (non)causal correlations

noncausal

Consider

 Such a correlation is compatible with the causal order A < (B,C):

there is some “partial”, effectively “bipartite causal” order

 The noncausality of P only concerns A and C,

it is not really a tripartite phenomenon

B

C

A



• “Genuinely N-partite noncausal correlations”:
no subset of parties can have a definite causal relation to any other subset

 Correlations that cannot be decomposed as

• Non-“genuinely N-partite noncausal correlations”
form a convex polytope

 In the simplest (“lazy”) tripartite case:

 Dim. = 19, 1 520 vertices, 21 154 facets,
480 nonequivalent families of inequalities
(incl. 3 trivial ones), only 2 nontrivial ones
common with the “just-causal” polytope
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“Genuinely N-partite noncausal correlations”

[Abbott et al., Quantum 1, 39 (2017)]

2-causal

2-causal inequality

(fully) causal

genuinely N-part ite

 noncausal
⇔

not  2-causal

causal inequality

A1
A4A2

ANA3
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Refining the definition

 Depending on the number
or size of the groups,
defines a hierarchy of correlations,
with e.g. M-causal ⇒M’-causal if M ≥ M’

(fully) causal
⇔

N-causal

3-causal

(N–1)-causal

..
.

2-causal

genuinely N-part ite

 noncausal
⇔

not  2-causal

Partition

[Abbott et al., Quantum 1, 39 (2017)]


