ISNFQC18

Efficient measurement of high-dimensional quantum states

Anand Kumar Jha Department of Physics, IIT Kanpur

31-Jan-2018

Efficient measurement of states of light

- in the orbital angular momentum (OAM) basis.
- in the transverse momentum basis.

Orbital angular momentum (OAM) of light

$$\psi(\phi) = \frac{1}{\sqrt{2\pi}} \sum_{l=-\infty}^{\infty} \alpha_l e^{-il\phi} ,$$

$$\alpha_l = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \psi(\phi) e^{il\phi} \, d\phi \, ,$$

Barnett and Pegg, PRA 41, 3427 (1990) Franke-Arnold et al., New J. Phys. 6, 103 (2004) Forbes, Alonso, and Siegman J. Phys. A 36, 707 (2003)

Laguerre-Gaussian modes are solutions to paraxial Helmholtz Equation

$$\psi_{pl}(\rho,\phi,z) = \frac{C}{(1+z^2/z_R^2)^{1/2}} \exp\left[i(2p+l+1)\tan^{-1}\left(\frac{z}{z_R}\right)\right] \left[\frac{\rho/2}{w(z)}\right]^{l} L_p^l \left[\frac{2\rho^2}{w^2(z)}\right] \\ \times \exp\left[-\frac{\rho^2}{w^2(z)}\right] \exp\left[-\frac{ik^2\rho^2 z}{2(z^2+z_R^2)}\right] e^{-il\phi} \\ \frac{J_z}{W} = \frac{\int\int\rho d\rho d\phi \langle \mathbf{\rho} \times \langle \mathbf{E} \times \mathbf{B} \rangle_z}{c\int\int\rho d\rho d\phi \langle \mathbf{E} \times \mathbf{B} \rangle_z} = \frac{\hbar l}{\hbar\omega}$$

Orbital angular momentum per photon: $\hbar l$

Allen et al., PRA 45, 8185 (1992)

l=2

Orbital angular momentum (OAM) of light

OAM provides an infinite dimensional discrete basis

Benefits:(i) higher allowed error rate in cryptographyPhys. Rev. Lett. 88, 127902 (2002).(ii) higher transmission bandwidthPhys. Rev. Lett. 90, 167906 (2003).(iii) Supersensitive angle measurementsPhys. Rev. A 83, 053829 (2011).(iv) Fundamental tests of quantum mechanicsPhys. Rev. Lett. 85, 4418–4421 (2000).

States in OAM basis : $\langle \boldsymbol{\phi} | \boldsymbol{l} \rangle = e^{-il\phi}$

When different OAM eigenmodes are uncorrelated. $\langle \alpha_{l_1} \alpha_{l_2}^* \rangle_e = S_{l_1} \delta_{l_1, l_2}$

$$W(\phi_1,\phi_2) = \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} S_l e^{-il(\phi_1 - \phi_2)} \iff \rho = \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} S_l |l\rangle \langle l|$$

Diagonal **Mixed States**

 $W(\Delta \phi) = \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} S_l e^{-il\Delta \phi} \implies S_l e^{-il\Delta \phi} \implies S_l = \int_{-\pi}^{\pi} W(\Delta \phi) e^{il\Delta \phi} d\phi \qquad \text{Khintchine theorem}$ Angular $A \times Jha, G \times Jha, Jha, G \times Jha, Jha, G \times Jha, J \times Jha$

Angular correlation spectrum function

Aim: Measure the angular correlation function $W(\phi_1, \phi_2)$ For diagonal states it yields the OAM spectrum

Existing methods for measuring OAM spectrum of Light

Existing methods for measuring OAM spectrum of Light

State in the OAM basis \sim

$$\psi_{\rm in}(\phi) = \frac{1}{\sqrt{2\pi}} \sum_{l=-\infty}^{\infty} \alpha_l e^{-il\phi}$$

Uncorrelated eigenmodes:
$$\langle \alpha_{l_1} \alpha_{l_2}^* \rangle_e = S_{l_1} \delta_{l_1, l_2}$$

 $W(\Delta \phi) = \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} S_l e^{-il\Delta \phi} \Longrightarrow S_l = \int_{-\pi}^{\pi} W(\Delta \phi) e^{il\Delta \phi} d\phi$

H D L Pires *et al.*, Opt. Lett., **35**, 889 (2010) H D L Pires *et al.*, Phys Rev Lett **104**, 020505 (2010)

Visibility:
$$V = \frac{[I_{out}(\phi)]_{max} - [I_{out}(\phi)]_{min}}{[I_{out}(\phi)]_{max} + [I_{out}(\phi)]_{min}}$$
$$= \frac{4\pi\sqrt{k_1k_2}}{k_1 + k_2} W(\Delta\phi) \propto W(\Delta\phi)$$

$$\begin{split} \psi_{\text{out}} (\phi) &= \sqrt{k_1} \frac{1}{\sqrt{2\pi}} \sum_{l=-\infty}^{\infty} \alpha_l e^{-il(\phi + \phi_1) + i\omega t_1} \\ &+ \sqrt{k_2} \frac{1}{\sqrt{2\pi}} \sum_{l=-\infty}^{\infty} \alpha_l e^{-il(\phi + \phi_2) + i\omega t_2} \end{split}$$

$$I_{\text{out}}(\phi) = \langle \psi_{\text{out}}(\phi) \psi^*_{\text{out}}(\phi) \rangle_e$$
$$= \frac{k_1 + k_2}{2\pi} + 2\sqrt{k_1 k_2} W(\Delta \phi) \cos \delta$$
$$\delta \equiv \omega(t_1 - t_2)$$

- By measuring V, $W(\Delta \phi)$ can be measured
- From $W(\Delta \phi)$, S_l can be computed

Existing methods for measuring OAM spectrum of Light

$$\mathbf{V} = \frac{4\pi\sqrt{k_1k_2}}{k_1 + k_2} W(\Delta\phi)$$

Limitations:

- Efficiency/purity issues
- Too much loss
- Stringent alignment requirements
- Sensitive to background noise and other experimental parameters

Measuring Orbital Angular Momentum of Light (A new scheme)

Measuring Orbital Angular Momentum of Light (A new scheme)

- W(2φ) gets encoded in the interferogram.
 So, a single-shot measurement of I_{out}(φ) yields W(2φ)
- From $W(\Delta \phi)$, S_l can be computed, in a single shot manner.
- Still sensitive to background noise and other experimental parameters

Measuring OAM spectrum of Light (in a noise-insensitive manner)

Then: $\Delta I_{\text{out}}(\phi) = 2\sqrt{k_1 k_2} (\cos \delta_c - \cos \delta_d) W(2\phi) \propto W(2\phi)$

11

- $\Delta I_{out}(\phi)$ has the same functional form as $W(2\phi)$.
- So by measuring $\Delta I_{out}(\phi)$ the spectrum S_l can be obtained in a single-shot as well as in a noise-insensitive manner

G. Kulkarni, R. Sahu, O. S. Magana-Loaiza, R. W. Boyd, and A. K. Jha; Nature Communications, 8, 1054 (2017)

Experimental measurement of OAM spectrum of Light (classical)

G. Kulkarni, R. Sahu, O. S. Magana-Loaiza, R. W. Boyd, and A. K. Jha; Nature Communications, 8, 1054 (2017)

Measuring Orbital Angular Momentum of Light (Quantum)

- S_l is called the angular Schmidt spectrum
- Very important to have an accurate measurement of S_l
- The current methods involve coincidence measurements, which is very difficult.

Nature 412 **313** (2001) Phys Rev A **76**, 042302 (2007) Phys Rev Lett **104**, 020505 (2010) New J Phys **14**, 073046 (2012)

Angular coherence function of the signal photon is

$$W_s(\phi_1,\phi_2) \rightarrow W_s(\Delta\phi) = \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} S_l e^{-il\Delta\phi}$$

• The OAM spectrum of signal photon is same as the angular Schmidt spectrum of the entangled state

A K Jha, G S Agarwal, R W Boyd, PRA **84**, 063847 (2011)

Measuring Orbital Angular Momentum of Light (Quantum)

G. Kulkarni, R. Sahu, O. S. Magana-Loaiza, R. W. Boyd, and A. K. Jha; Nature Communications, 8, 1054 (2017)

Measuring Orbital Angular Momentum of Light (Quantum)

States in transverse momentum basis: $\langle \rho | q \rangle = e^{i q \cdot \rho}$

State in the transverse momentum basis

$$V(\boldsymbol{\rho}, z) = \int_{-\infty}^{\infty} a(\boldsymbol{q}) e^{i \, \boldsymbol{q} \cdot \boldsymbol{\rho}} \, e^{-\frac{i q^2 z}{2k_0 z}} d\boldsymbol{q}$$

When the eigenmodes are uncorrelated. $\langle a^*(\boldsymbol{q}_1)a(\boldsymbol{q}_2)\rangle_e = I(\boldsymbol{q}_1)\delta(\boldsymbol{q}_1 - \boldsymbol{q}_2)$ Diagonal

$$W(\rho_{1}, \rho_{2}, z) = \langle V^{*}(\rho_{1}, z)V(\rho_{2}, z)\rangle_{e}$$

$$\rightarrow W(\Delta \rho) = \int_{-\infty}^{\infty} I(q)e^{-iq\cdot\Delta\rho} dq$$
Spatial correlation
function
Spectral
Intensity

- Such partially coherent fields have propagation-invariant spatial correlation function
- The correlation function is the Fourier transform of the spectral intensity
- Partially coherence fields are extremely important for imaging through scattering, etc. B. Redding, M. A. Choma, and H. Cao, Nature Photonics 6, 355 (2012).

Aim: Measure the spatial correlation function $W(\phi_1, \phi_2)$ For diagonal states it yields the spectral intensity

Mined States

Efficient generation of spatially partially coherent field

How to produce partially coherent field?

- Most light sources (sunlight, light bulbs, etc.)
- Take a spatially coherent field and introduce randomness to it.

Phys. Rev. A **43**, 7079 (1991). Opt. Express **13**, 9629 (2005). Opt. Lett. **38**, 3452 (2013). Opt. Lett **39**, 769 (2014)

• Start from a planar incoherent source

S. Aarav, A. Bhattacharjee, H. Wanare, and A. K. Jha, PRA 96, 033815 (2017)

Efficient generation of spatially partially coherent field

S. Aarav, A. Bhattacharjee, H. Wanare, and A. K. Jha, PRA 96, 033815 (2017)

Efficient generation of spatially partially coherent field

S. Aarav, A. Bhattacharjee, H. Wanare, and A. K. Jha, PRA 96, 033815 (2017)

This is not a very efficient method for measuring spatial correlation functions.

How do we measure the spatial correlation function?

Single-shot technique for measuring the spatial correlation function

A reflection flips the wave-front along the reflection axis

A converging lens flips the wavefront in both xand y-directions.

A. Bhattacharjee, S. Aarav, and A. K. Jha, Arxiv:1712.04517

Single-shot technique for measuring the spatial correlation function

Theory

A converging lens flips the wavefront in both xand y-directions.

A. Bhattacharjee, S. Aarav, and A. K. Jha, Arxiv:1712.04517

Single-shot technique for measuring the spatial correlation function

A. Bhattacharjee, S. Aarav, and A. K. Jha, Arxiv:1712.04517

Conclusions

- Demonstrated a single-shot technique for measuring the angular correlation function.
- For diagonal mixed states, the angular correlation function yields the OAM spectrum through a Fourier transform.
- The technique can be used for measuring the angular Schmidt spectrum of OAM-entangled states in a single-shot manner without requiring coincidence detection.
- Extended the technique for measuring the spatial correlation function in a single-shot manner.

- Initiation grant from IIT Kanpur
- Research grant from SERB, DST

Thank you for your attention

Experimental measurement of OAM spectrum of Light (classical)

G. Kulkarni, R. Sahu, O. S. Magana-Loaiza, R. W. Boyd, and A. K. Jha; Nature Communications, 8, 1054 (2017)