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Overview

Nonlocal subspace HNS is a subspace within the Hilbert space H of a
multi-particle system s/t every ψ ∈ HNS violates a given Bell
inequality B.

Subspace HNS is maximally nonlocal if each ψ ∈ HNS violates B to
its algebraic maximum.

We propose ways by which states with a stabilizer structure can be
used to construct maximally nonlocal subspaces (MNS’s), essentially
as a degenerate eigenspace HMNS of Bell operators derived from the
stabilizer generators.

Applications to two tasks in quantum cryptography are discussed: (a)
quantum secret sharing; (b) certifying graph states,
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Graph states

Class of highly entangled multi-qubit states representable by a graph.
Given graph G = (V ,E ), a graph state |G 〉 is defined as:

|G 〉 = Π(j ,k)∈E C-Phase
{j ,k}
|+〉⊗V , (1)

Vertices represent spin systems, and edges Ising interactions.

Various graph types with V = 4:

∗ ∗ ∗ ∗

Figure : Graphs LC4 (linear cluster, where underlying graph is connected
subset of a d-dimensional lattice), RC4 (ring cluster), ST4 (star topology,
rooted at vertex ∗), FC4 (fully connected). Last two are related by graph
theoretic operation called “local complementation” about vertex ∗.
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Graph states and stabilizers

For 1 ≤ j ≤ V , define mutually commuting local observables
(stabilizers):

gj = Xj

⊗
k∈N (j)

Zk . (2)

where N (j) denotes the vertex neighborhood of vertex j .

|G 〉 is the unique simultaneous +1 eigenstate of the V stabilizers gj :

gj |G 〉 = |G 〉 . (3)

Any graph state ≡ a stabilizer state, up to local rotations (VDD
2004).

The set of all 2n possible products of the gj ’s forms a group, called
the stabilizer, denoted S. Obviously, the graph state is stabilized by
all elements hj ∈ S.
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Graph basis

A complete basis for the Hilbert space Hn of n qubits can be derived
from |G 〉 by all possible local applications of Pauli Z to the n vertices.

Graph state basis consists of 2n simultaneous eigenstates of stabilizer
generators gj :

|Gx〉 ≡ |Gx1x2···xn〉 =
⊗
j

(Zj)
xj |G000···0〉, (4)

where |G000···0〉 ≡ |G 〉 and jth index xj ∈ {0, 1} of the n operators gj ,
such that

gj |Gx1x2···xn〉 = (−1)xj |Gx1x2···xn〉. (5)

The syndrome of a graph basis state
((−1)x1 , (−1)x2 , · · · , (−1)xn) ∈ {±1}⊗n uniquely fixes the state.
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Applications of graph states

Cluster states in measurement-based quantum computing (MBQC)
(RB 2001; MDF 2017). Verifiable MBQC (HM 2015; MK 2018);

Brickwork states (underlying graph a “brickwork”, requiring only
X ,Y -plane measurements) used in delegated quantum computation,
specifically universal blind quantum computation (BFK 2008).

Quantum secret sharing / information splitting (Markham and
co-workers 2008, 2010, 2012; Sreraman, Panigrahi et al. 2008, 2009;
and various others.

Quantum error correction (SW 2001); quantum metrology (MK
2018);

Studied extensively theoretically, and realized experimentally (Kiesen
et al. 2005; Lu et al. 2007; Bell et al. 2014a,b)

Graph states are robust against decoherence (Hein et al. 2005), which
enhances their practical value.
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Nonlocality of graph states

Graph states show nonlocal correlations (SAS+ 2005, GTH+ 2005,
CGR 2008) through violation of Mermin-type inequalities (Mermin
1990) based on stabilizer measurements generating perfect
correlations of GHZ type (GHZ 1989).

Alternatively, graph states show nonlocal correlations (GC 2008, TGB
2006) through violation of Bell-Ardehali inequalities (Ardehali 1992)
based on non-stabilizer measurements generating probabilistic
correlations (Bell 1966; CHSH 1969).

For nonlocal tests, one may consider various questions: optimal
violation of classical/local-realist bound, all Bell-type inequalities
violated by a graph state, only inequality violated maximally by a
given graph state, etc.

Here, we focus on Mermin inequalities, addressing the question: what
are all graph states violating a given inequality?
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Mermin inequality for graph states

From stabilizer S, we construct (potential) Bell operator:

B ≡
m∑
j=1

hj , (6)

where hj ’s are products of Pauli operators. In view of Eq. (3):

B|G 〉 = m|G 〉. (7)

Let q denote the largest #hj ’s in Eq. (6) that can assume a positive value
(+1) under LR value assignment to the individual Pauli operators. If
q < m, Bell inequality:

〈B〉 ≤ L ≡ 2q −m, (8)

Degree of BI violation is D = m
2q−m (figure of merit that determines

resistence of violation to noise and detection loophole.)
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Mermin inequalities for graph states (contd.)

The sum of all stabilizer elements hj is a Bell operator, though not a
maximal one (GTHB 2008). In fact:

2−n
2n∑
j=1

hj = |G 〉 〈G | , (9)

which is easily verified.

Any graph state violates a BI, which can be shown using an inductive
argument (GTHB 2005).

There are 22V potential Bell operators of type (6). For 3 ≤ V ≤ 6,
they are fully characterized into 14 equivalent classes (up to local
rotations), among them the multiqubit GHZ states (corresponding to
star graph).
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Example of Bell-Mermin inequality

Linear cluster state LC4:

|G 〉 =
1

2
(|+0+0〉+ |+0−1〉+ |−1−0〉+ |−1+1〉) , (10)

stabilized by generators: g1 ≡ X1Z2, g2 ≡ Z1X2Z3, g3 ≡ Z2X3Z4 and
g4 ≡ Z3X4.

One constructs a GHZ-like contradiction:

g1g3 = +X I X Z → +1,
g2g3 = +X I Y Y → +1,
g1g3g4 = +Z Y Y Z → +1,
g2g3g4 = −Z Y X Y → +1,

(11)

Each column of Pauli operators has two copies of Pauli operator ⇒
column product = 1. But, product on RHS = −1.

Therefore, the sum

B = XIXZ + XIYY + ZYYZ − ZYXY . (12)

provides a Bell operator.
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From contradiction to inequality

By design, 〈G |B|G 〉 = 4 for B in Eq. (12), the number of summands
m in the Bell operator.

OTOH, only 3 terms in Eq. (12) can be simultaneously made
positive, so that q = 3. from Eq. (8), L = 2q −m = 2. We thus
have the Bell-type inequality

〈B〉 ≤ 2, (13)

for the Bell operator in (12).

For a large graph state, q can be derived by computer search. Some
useful tips here: (a) LHV may assume Z = +1 (GTHB 2005).
(b) Value of q invariant under local complementation. Thus, B(STn)
= B(FCn) for a given B, etc.

R. Srikanth Poornaprajna Institute of Scientific Research Bengaluru, India. with: Akshata Hejamadi ShenoyMaximally nonlocal subspaces ISNFQC-2018, SNBNCBS, Kolkata Feb 1, 2018 11 / 25



Bell-degeneracy: Basic idea

When acting on graph basis states, on account of Eq. (5), the
maximal violation condition with Bell operator B can be considered,
as a set of m constraints on the graph syndrome, of the form
hj(ĝ1, ĝ2, · · · , ĝn) = 1, where ĝj ∈ {±1} is the jth index of the graph
syndrome.

If these constraints don’t uniquely fix the graph state, then there will
be other graph basis elements |Gj〉 consistent with Eq. (7), i.e., there
are multiple syndrome solutions to eq. B(ĝ1, ĝ2, · · · , ĝn) = m, and
hence with maximal violation of BI (8), thereby making the Bell
operator B degenerate.

By linearity, any normalized state
∑

j αj |Gj〉 also violates BI by
reaching its algebraic maximum.

Thus, the span of these |Gj〉 defines a subspace associated with
maximal violation. Accordingly, this degenerate +1-eigenspace of B is
called a ”maximally nonlocal subspace”, HMNS .

Various ways to produce Bell degeneracy are exemplified below.
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MNS with LC state

For LC4, characterized by Eq. (12), solving
ĝ1ĝ3 = ĝ2ĝ3 = ĝ1ĝ3ĝ4 = ĝ2ĝ3ĝ4 = 1, we find syndromes
(ĝ1, ĝ2, ĝ3, ĝ4)→ (±1,±1,±1, 1).

The first of these syndromes correspond to graph state |G 〉, while the
other state to

|G ′〉 ≡ Z1Z2Z3|G 〉

=
1

2
(|−0−0〉+ |−0+1〉 − |+1+0〉 − |+1−1〉) . (14)
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MNS via Common generators

In a Bell operator B, suppose l (> 1) stabilizer generators
g1, g2, · · · , gl appear in all the summands hj (1 ≤ j ≤ m). Then,
dim(HMNS) ≥ 2l−1 (# value assignments to (ĝ1, ĝ2, · · · , ĝl)
consistent with ĝ1ĝ2 · · · ĝl = 1.)

Example: LC6 (CGR 2008):

B = g2g5(I + g1)(I + g3)(I + g4)(I + g6) ≤ 4, (15)

where g1 = X1Z2, g6 = Z5X6 and gj = Zj−1XjZj+1 for j = 2, 3, 4, 5.

Here l = 2 and the two graph basis states spanning HMNS are
(ĝ1, ĝ2, ĝ3, ĝ4, ĝ5, ĝ6)→ (1,±1, 1, 1,±1, 1), with

|G ′〉 = Z2Z5 |LC6〉 ,

being the second state in addition to |G 〉.
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MNS with QEC codes

Quantum error correcting (QEC) codes have a natural association
with MNS.

A [[n, k]] encodes k qubits in n qubits, s/t code space is stabilized by
n − k commuting syndrome operators gj (G 1997).

Any B formed from these (n − k) generators will obviously have a
2k -fold degeneracy, since all states in the code space will produce
maximal violation, by construction.

Example: |G0〉 and |G1〉 be the 5-qubit 1-bit error correcting code
words introduced by Bennett et al. (1996):

|G0〉 =
1

4
(−|00000〉 − |11000〉 − |01100〉 − |00110〉

− |00011〉 − |10001〉+ |10010〉+ |10100〉+ |01001〉
+ |01010〉+ |00101〉+ |11110〉+ |11101〉+ |11011〉
+ |10111〉+ |01111〉)

|G1〉 = X1X2X3X4X5|G0〉. (16)
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MNS with QEC codes – contd.

The stabilizers are g1 = X1Y2Y3X4, g2 = X2Y3Y4X5, g3 = Z1Y2Y4Z5

and g4 = X1Y2Z3Y4X5, from which we construct Bell operator

B = g1g4(g3 + 1) + g2(g3 + g1) + g1 ≤ 3. (17)

Our previous result entails that any encoded state in this QEC code
will violate BI (17) maximally.

In case of Eq. (17), from ĝ2ĝ3 = ĝ2ĝ1 = 1, we know that gj
(j = 1, 2, 3) have the same sign. Because of the first summand,
ĝ3 = 1 and thus ĝ4 = 1. In other words, the “Bell conditions” fully fix
the code space, and there is no further degeneracy. But this is not
necessary, as we discuss with the Steane code.
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MNS with Steane QEC code

A BI with m = 6 for the 7-qubit Steane QEC code (1996):

B = g1g2(g4 + g4g5 + 1) + g3g5(g2 + g1) + g5 ≤ 4 (18)

where Stabiliziers for the Steane code (Steane 1996) are
g1 = X4X5X6X7, g2 = X2X3X6X7, g3 = X1X3X5X7, g4 =
Z4Z5Z6Z7, g5 = Z2Z3Z6Z7 and g6 = Z1Z3Z5Z7.

Generator g6 doesn’t appear in BI (18) ⇒ ĝ6 is unrestricted.

Solving the “Bell conditions” for ĝj (1 ≤ j ≤ 5) gives two solutions:
(ĝ1, ĝ2, ĝ3, ĝ4, ĝ5)→ (±1,±1,±1, 1, 1).

For BI (18), we thus find

dim(HMNS) = 4× dim(code space) = 8.

Thus, not just states in QEC code space, but other states indicated
by these graph syndromes would violate BI (18) maximally. Some of
these may be correctible (when Hamming weight of corresponding
error vector is at most 1, e.g., Z7) or not (e.g., Z1Z2Z3).
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Applications

MNS can be adapted to various situations where graph states are
used with the key extension that not just a resource state, but a
resource subspace is available: metrology, t-designs (MK 2018),
quantum cryptography, measurement-based quantum computing
(MBQC) (RB 2001; MDF 2017). Verifiable MBQC (HM 2015; MK
2018) and universal blind quantum computation (BFK 2008).

Here: Applications to two tasks in quantum cryptography are
discussed: (a) quantum secret sharing; (b) certifying graph states,
which would be used as a resource for verifiable blind
measurement-based quantum computing, etc.
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QSS with Bennett et al. 5-qubit code

Let Alice (secret dealer) have qubit 1, Bob qubits 2 and 3, Charlie
qubit 4, while Rex (recoverer) have qubit 5. Secret is encoded in code
space α |G 〉+ β |G ′〉.
Step 1:

Alice’s measurement State obtained Bob, Charlie and Rex
|0〉 α(−|0000〉 − |1100〉 − |0110〉 − |0011〉 + |1001〉 + |1010〉 + |0101〉 + |1111〉)

+β(−|0111〉 − |1110〉 + |1101〉 + |1011〉 + |0001〉 + |0010〉 + |0100〉 + |1000〉)
|1〉 α(−|1000〉 − |0001〉 + |0010〉 + |0100〉 + |1110〉 + |1101〉 + |1011〉 + |0111〉)

+β(|0110〉 − |1111〉 − |0011〉 − |1001〉 − |1100〉 + |0101〉 + |1010〉 + |0000〉)

Step 2:

Bob’s measurement State obtained by Charlie and Rex
|00〉 α(−|00〉 − |11〉) + β(|01〉 + |10〉)
|11〉 α(−|00〉 + |11〉) + β(|01〉 − |10〉)
|01〉 α(|01〉 − |10〉) + β(|00〉 − |11〉)
|10〉 α(|01〉 + |10〉) + β(|00〉 + |11〉)

Charlie measures his qubit in the computational basis {|0〉 , |1〉}. Rex
recovers secret based on classical communication from Alice, Bob,
Charlie.
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Security of 5-qubit-QECC-based QSS

Suppose Eve, as part of eavesdropping, attacks 4th qubit of an
encoded state of above 5-qubit QECC via interaction:

U(θ) =
1 + Z

2
⊗ I +

1− Z

2
⊗
(

cos θ sin θ
sin θ − cos θ

)
, (19)

where θ ∈ [0, π/2].

One finds

〈hm〉 =

{
1 (m = 2, 3, 4)

cos(θ) (m = 1, 5),
(20)

so that for BI (17)
〈B〉 = 3 + 2 cos(θ). (21)

Basic idea is that any intervention by Eve diminishes violation from
maximality by virtue of monogamy of entanglement.
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Certification of graph states

Given unknown system and uncharacterized measurement device,
some features (say, system dimension or entanglement of state) may
be inferrable from observed measurement statistics: self-testing.
Makes no assumptions about preparations, channels and
measurements.

Tomographic methods (DPS 2003) or entanglement witnesses (JMG
2011) test states, assuming trusted preparation & measurement
procedures.

Certifying states requires an intermediate trust level, where
measurements are trusted, but sources and channels aren’t.

Because graph basis states form a complete basis, stabilizer tests
which admit a trivial MNS (i.e., dim(HMNS) = 1) can be used to
certify the unique (graph) state that maximally violates B.
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Certification of graph states–contd.

Two security criteria here (MK 2018): (Completeness) test accepts
ideal preparation; (Soundness) acceptance indicates closeness to ideal
preparation.

Suppose |G 〉 uniquely violates BI B maximally, but no other graph
basis state does. Stabilizers gj associated with B obviously accept
|G 〉– completeness. Because of uniqueness, any deviation from |G 〉
will increase chances of rejection– soundness.

In the context of verifiable MBQC, this idea can be extended to fault
tolerance by having client (Alice) ask server (Bob) for resource graph
state to be used;
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Certification of graph states–contd.

CGR (2008) list BI’s for graph states of various families. Three
4-qubit inequalities listed for |LC4〉 are:

B1 = (I + g1)g2(I + g3) ≤ 2

B2 = (I + g1)g2(I + g3g4) ≤ 2

B3 = (I + g1)g2(g3 + g4) ≤ 2 (22)

with the quantum limit being 4 in each case. Here Here
g1 = X1Z2, g4 = Z3X4 and gj = Zj−1XjZj+1 (j = 2, 3).

By quick inspection, dim(H1
MNS) = dim(H2

MNS) = 2, since
(ĝ1, ĝ2, ĝ3, ĝ4)1 → (1, 1, 1,±1) and (ĝ1, ĝ2, ĝ3, ĝ4)2 → (1, 1,±1,±1)
violate BI maximally.

But linear cluster state |LC4〉 is the unique solution to
(1 + ĝ1)ĝ2(ĝ3 + ĝ4) = 4 ⇒ trivial MNS and hence basis for
self-testing (cf. MK 2018).
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Conclusions and discussions
The concept of a nonlocal subspace N , as one where all states violate
a given Bell inequality B, was introduced.
We studied a particular type of nonlocal subspace N , namely the
maximal variety (MNS), where the violation is maximal.
We proposed various ways by which graph states (characterized by
stabilizer structure) can be used to construct MNS’s, essentially as
the degenerate eigenspaces of Bell operators derived from the
stabilizer generators.
Applications to quantum cryptography are discussed: in specific,
DQIS and certification of resource graph states.
A future direction would be: creating nonlocal subspaces for
Bell-Ardehali-type inequalities (i.e., not based on stabilizer
measurements) which may lead to stronger violations of BI (A 1992).
Another direction would be: derive Svetlichny-type inequalities for
graph states leading to absolutely nonlocal subspaces.
Further: design secure protocols for certification for graph states, and
extend this to self-testing.
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Thank you!
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