Entanglement and coherence in distributed quantum networks

Alexander Streltsov

Gdańsk University of Technology, Poland National Quantum Information Centre of Gdańsk, Poland

Kolkata January 30, 2018

Gdańsk

Outline

1 Quantum state merging and assisted entanglement distillation

2 Multipartite quantum state conversion

3 Assisted coherence distillation and incoherent state merging

Outline

1 Quantum state merging and assisted entanglement distillation

2 Multipartite quantum state conversion

3 Assisted coherence distillation and incoherent state merging

Quantum state merging

M. Horodecki, J. Oppenheim, and A. Winter, Nature (2005).

Setting: Alice, Bob, and a referee share many copies of a pure state $|\psi\rangle^{RAB}$

Quantum state merging

M. Horodecki, J. Oppenheim, and A. Winter, Nature (2005).

- Setting: Alice, Bob, and a referee share many copies of a pure state $|\psi\rangle^{RAB}$
- Aim of quantum state merging: send Alice's system to Bob while preserving the total state, i.e., the final state $|\psi\rangle^{RBB'}$ is the same as $|\psi\rangle^{RAB}$ up to relabeling A and B'

For achieving quantum state merging, Alice and Bob have access to shared singlets and a classical channel

¹ M. Horodecki, J. Oppenheim, and A. Winter, Nature 2005.

- For achieving quantum state merging, Alice and Bob have access to shared singlets and a classical channel
- The minimal number of singlets, asymptotically needed per copy of the state $|\psi\rangle^{RAB}$, is given by the conditional entropy:

$$S(A|B) = S(\rho^{AB}) - S(\rho^{B}) \tag{1}$$

¹M. Horodecki, J. Oppenheim, and A. Winter, Nature 2005.

- For achieving quantum state merging, Alice and Bob have access to shared singlets and a classical channel
- The minimal number of singlets, asymptotically needed per copy of the state $|\psi\rangle^{RAB}$, is given by the conditional entropy:

$$S(A|B) = S(\rho^{AB}) - S(\rho^{B}) \tag{1}$$

Quantum conditional entropy can be positive or negative

¹M. Horodecki, J. Oppenheim, and A. Winter, Nature 2005.

- For achieving quantum state merging, Alice and Bob have access to shared singlets and a classical channel
- The minimal number of singlets, asymptotically needed per copy of the state $|\psi\rangle^{RAB}$, is given by the conditional entropy:

$$S(A|B) = S(\rho^{AB}) - S(\rho^{B}) \tag{1}$$

- Quantum conditional entropy can be positive or negative
- $S(A|B) \ge 0$: merging is possible with singlets at rate S(A|B)

¹M. Horodecki, J. Oppenheim, and A. Winter, Nature 2005.

- For achieving quantum state merging, Alice and Bob have access to shared singlets and a classical channel
- The minimal number of singlets, asymptotically needed per copy of the state $|\psi\rangle^{RAB}$, is given by the conditional entropy:

$$S(A|B) = S(\rho^{AB}) - S(\rho^{B}) \tag{1}$$

- Quantum conditional entropy can be <u>positive</u> or <u>negative</u>
- $S(A|B) \ge 0$: merging is possible with singlets at rate S(A|B)
- S(A|B) < 0: merging is possible without singlets, and Alice and Bob can obtain additional singlets at rate -S(A|B)

¹M. Horodecki, J. Oppenheim, and A. Winter, Nature 2005.

Assisted entanglement distillation¹

■ Setting: Alice, Bob, and Charlie share many copies of a pure state $|\psi\rangle^{ABC}$

¹ D. P. DiVincenzo, C. A. Fuchs, H. Mabuchi, J. A. Smolin, A. Thapliyal, A. Uhlmann, Lecture Notes in Computer Science 1999; J. A. Smolin, F. Verstraete, A. Winter, PRA 2005

Assisted entanglement distillation¹

- Setting: Alice, Bob, and Charlie share many copies of a pure state $|\psi\rangle^{ABC}$
- Aim of the process: asymptotic distillation of singlets between Alice and Bob by applying joint LOCC operations between all three parties

¹ D. P. DiVincenzo, C. A. Fuchs, H. Mabuchi, J. A. Smolin, A. Thapliyal, A. Uhlmann, Lecture Notes in Computer Science 1999; J. A. Smolin, F. Verstraete, A. Winter, PRA 2005

Assisted entanglement distillation¹

- Setting: Alice, Bob, and Charlie share many copies of a pure state $|\psi\rangle^{ABC}$
- Aim of the process: asymptotic distillation of singlets between Alice and Bob by applying joint LOCC operations between all three parties
- <u>Solution</u>: given a pure state $|\psi\rangle^{ABC}$, the optimal entanglement distillation rate between Alice and Bob with assistance of Charlie is equal to the regularized entanglement of assistance

$$E_a^{\infty}\left(\rho^{AB}\right) = \min\left\{S(\rho^A), S(\rho^B)\right\} \tag{2}$$

¹ D. P. DiVincenzo, C. A. Fuchs, H. Mabuchi, J. A. Smolin, A. Thapliyal, A. Uhlmann, Lecture Notes in Computer Science 1999: J. A. Smolin, F. Verstraete, A. Winter, PRA 2005

Outline

1 Quantum state merging and assisted entanglement distillation

2 Multipartite quantum state conversion

3 Assisted coherence distillation and incoherent state merging

 \blacksquare Setting: N parties share many copies of a multipartite state ρ

- lacksquare Setting: N parties share many copies of a multipartite state ho
- Aim of multipartite state conversion: creation of another state σ via N-partite LOCC operations

- **Setting**: *N* parties share many copies of a multipartite state ρ
- Aim of multipartite state conversion: creation of another state σ via N-partite LOCC operations
- For N=2: entanglement distillation if $\sigma=|\Psi^+\rangle\langle\Psi^+|$, entanglement dilution if $\rho=|\Psi^+\rangle\langle\Psi^+|$

Conversion rate:

$$R(\rho \to \sigma) = \sup \left\{ r : \lim_{n \to \infty} \left(\inf_{\Lambda} \left\| \Lambda \left(\rho^{\otimes n} \right) - \sigma^{\otimes \lfloor rn \rfloor} \right\|_{1} \right) = 0 \right\} \quad (3)$$

¹M. B. Plenio and S. Virmani, Quant, Inf. Comp. 2006

²C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, PRA 1996

Conversion rate:

$$R(\rho \to \sigma) = \sup \left\{ r : \lim_{n \to \infty} \left(\inf_{\Lambda} \left\| \Lambda \left(\rho^{\otimes n} \right) - \sigma^{\otimes \lfloor rn \rfloor} \right\|_{1} \right) = 0 \right\} \quad (3)$$

■ N = 2: $R(\rho \to |\Psi^+\rangle\langle\Psi^+|)$ is <u>distillable entanglement</u>¹ of ρ , and $R(|\Psi^+\rangle\langle\Psi^+|\to\sigma)^{-1}$ is <u>entanglement cost</u> of σ

¹ M. B. Plenio and S. Virmani, Quant, Inf. Comp. 2006

²C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, PRA 1996

Conversion rate:

$$R(\rho \to \sigma) = \sup \left\{ r : \lim_{n \to \infty} \left(\inf_{\Lambda} \left\| \Lambda \left(\rho^{\otimes n} \right) - \sigma^{\otimes \lfloor rn \rfloor} \right\|_{1} \right) = 0 \right\} \quad (3)$$

- N = 2: $R(\rho \to |\Psi^+\rangle\langle\Psi^+|)$ is <u>distillable entanglement</u>¹ of ρ , and $R(|\Psi^+\rangle\langle\Psi^+|\to\sigma)^{-1}$ is <u>entanglement cost</u> of σ
- General solution² for N=2:

$$R(\psi^{AB} \to \phi^{AB}) = \frac{S(\psi^A)}{S(\phi^A)}$$
 (4)

¹ M. B. Plenio and S. Virmani, Quant, Inf. Comp. 2006

²C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, PRA 1996

Conversion rate:

$$R(\rho \to \sigma) = \sup \left\{ r : \lim_{n \to \infty} \left(\inf_{\Lambda} \left\| \Lambda \left(\rho^{\otimes n} \right) - \sigma^{\otimes \lfloor rn \rfloor} \right\|_{1} \right) = 0 \right\} \quad (3)$$

- N = 2: $R(\rho \to |\Psi^+\rangle\langle\Psi^+|)$ is <u>distillable entanglement</u>¹ of ρ , and $R(|\Psi^+\rangle\langle\Psi^+|\to\sigma)^{-1}$ is <u>entanglement cost</u> of σ
- General solution² for N=2:

$$R(\psi^{AB} \to \phi^{AB}) = \frac{S(\psi^A)}{S(\phi^A)}$$
 (4)

■ Entanglement theory is <u>reversible</u> for bipartite pure states:

$$R(\psi^{AB} \to \phi^{AB}) = R(\phi^{AB} \to \psi^{AB})^{-1} \tag{5}$$

¹ M. B. Plenio and S. Virmani, Quant. Inf. Comp. 2006

²C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, PRA 1996

■ Surprisingly little was known for N > 2

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

- Surprisingly little was known for N > 2
- Bounds for N = 3:

$$R(\psi^{ABC} \to \phi^{ABC}) \le \min \left\{ \frac{S(\psi^A)}{S(\phi^A)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)} \right\}$$

$$R(\psi^{ABC} \to \phi^{ABC}) \ge \min \left\{ \frac{S(\psi^A)}{S(\phi^B)}, \frac{S(\psi^B)}{S(\phi^C)}, \frac{S(\psi^C)}{S(\phi^C)} \right\}$$

$$(7)$$

¹A. S., C. Meignant, J. Eisert, arXiv 2017

- Surprisingly little was known for N > 2
- Bounds for N = 3:

$$R(\psi^{ABC} \to \phi^{ABC}) \le \min \left\{ \frac{S(\psi^A)}{S(\phi^A)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)} \right\}$$
(6)
$$R(\psi^{ABC} \to \phi^{ABC}) \ge \min \left\{ \frac{S(\psi^A)}{S(\phi^B) + S(\phi^C)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)} \right\}$$
(7)

■ The bound can be further improved by interchanging the parties *A*, *B*, *C*

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

■ The bounds coincide whenever min $\left\{\frac{S(\psi^A)}{S(\phi^B)+S(\phi^C)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)}\right\}$ is equal to $\frac{S(\psi^B)}{S(\phi^B)}$ or $\frac{S(\psi^C)}{S(\phi^C)}$

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

- The bounds coincide whenever $\min\left\{\frac{S(\psi^A)}{S(\phi^B)+S(\phi^C)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)}\right\}$ is equal to $\frac{S(\psi^B)}{S(\phi^B)}$ or $\frac{S(\psi^C)}{S(\phi^C)}$
- In these cases we get the <u>exact rate</u> for tripartite quantum state conversion:

$$R(\psi^{ABC} \to \phi^{ABC}) = \min \left\{ \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)} \right\}$$
(8)

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

- The bounds coincide whenever $\min\left\{\frac{S(\psi^A)}{S(\phi^B)+S(\phi^C)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)}\right\}$ is equal to $\frac{S(\psi^B)}{S(\phi^B)}$ or $\frac{S(\psi^C)}{S(\phi^C)}$
- In these cases we get the <u>exact rate</u> for tripartite quantum state conversion:

$$R(\psi^{ABC} \to \phi^{ABC}) = \min\left\{\frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)}\right\}$$
 (8)

■ These results apply to a <u>large fraction of pure states</u> (having nonzero measure in the set of all states)

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

- The bounds coincide whenever min $\left\{\frac{S(\psi^A)}{S(\phi^B)+S(\phi^C)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)}\right\}$ is equal to $\frac{S(\psi^B)}{S(\phi^B)}$ or $\frac{S(\psi^C)}{S(\phi^C)}$
- In these cases we get the <u>exact rate</u> for tripartite quantum state conversion:

$$R(\psi^{ABC} \to \phi^{ABC}) = \min \left\{ \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)} \right\}$$
(8)

- These results apply to a <u>large fraction of pure states</u> (having nonzero measure in the set of all states)
- Transformations among these states are in general not reversible: resource theory of entanglement is not reversible for N > 2

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

- The bounds coincide whenever $\min\left\{\frac{S(\psi^A)}{S(\phi^B)+S(\phi^C)}, \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)}\right\}$ is equal to $\frac{S(\psi^B)}{S(\phi^B)}$ or $\frac{S(\psi^C)}{S(\phi^C)}$
- In these cases we get the <u>exact rate</u> for tripartite quantum state conversion:

$$R(\psi^{ABC} \to \phi^{ABC}) = \min \left\{ \frac{S(\psi^B)}{S(\phi^B)}, \frac{S(\psi^C)}{S(\phi^C)} \right\}$$
(8)

- These results apply to a <u>large fraction of pure states</u> (having nonzero measure in the set of all states)
- Transformations among these states are in general not reversible: resource theory of entanglement is not reversible for N > 2
- \blacksquare Results can be extended to N > 3

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

Sketch of the proof:

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

Sketch of the proof:

 The parties apply <u>quantum state merging and assisted</u> <u>entanglement distillation</u> to distill singlets between AB and AC

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

Sketch of the proof:

- The parties apply <u>quantum state merging and assisted</u> <u>entanglement distillation</u> to distill singlets between AB and AC
- Alice and Bob use their singlets to create the final state σ , remaining singlets between Alice and Charlie are used to teleport parts of σ to Charlie

¹ A. S., C. Meignant, J. Eisert, arXiv 2017

Outline

1 Quantum state merging and assisted entanglement distillation

2 Multipartite quantum state conversion

3 Assisted coherence distillation and incoherent state merging

Incoherent states and measurements¹

<u>Incoherent states</u>: states which are diagonal in a preferred basis:

$$\sigma = \sum_{i} p_{i} |i\rangle \langle i| \tag{9}$$

¹T. Baumgratz, M. Cramer, and M. B. Plenio, PRL (2014)

Incoherent states and measurements¹

Incoherent states: states which are diagonal in a preferred basis:

$$\sigma = \sum_{i} p_{i} |i\rangle\langle i| \tag{9}$$

Incoherent measurements: quantum measurements which do not create coherence

$$\Lambda[\rho] = \sum_{i} K_{i} \rho K_{i} \tag{10}$$

with incoherent Kraus operators K_i , i.e., $K_i | m \rangle \sim | n \rangle$

¹T. Baumgratz, M. Cramer, and M. B. Plenio, PRL (2014)

■ Maximally incoherent operations (MIO)¹: most general set, contains all operations which cannot create coherence: $\Lambda[\rho_i] \in \mathcal{I}$, where \mathcal{I} is the set of all incoherent states.

¹ J. Åberg, arXiv 2006

²A. Winter and D. Yang, PRL 2016; B. Yadin, J. Ma. D. Girolami, M. Gu, V. Vedral, PRX 2016

³G. Gour and R. W. Spekkens, NJP 2008

⁴B. Regula, M. Piani, M. Cianciaruso, T. R. Bromley, A. S., G. Adesso, arXiv 2017

⁵ M. Ringbauer, T. R. Bromley, M. Cianciaruso, S. Lau, G. Adesso, A. G. White, A. Fedrizzi, M. Piani, arXiv 2017

⁶A. S., G. Adesso, and M. B. Plenio, RMP 2017

- Maximally incoherent operations (MIO)¹: most general set, contains all operations which cannot create coherence: $\Lambda[\rho_i] \in I$, where I is the set of all incoherent states.
- Strictly incoherent operations (SIO)²: Incoherent operations for which also K_i^{\dagger} are incoherent. Correspond to quantum operations which do not use coherence.

¹ J. Åberg, arXiv 2006

² A. Winter and D. Yang, PRL 2016; B. Yadin, J. Ma, D. Girolami, M. Gu, V. Vedral, PRX 2016

³G. Gour and R. W. Spekkens, NJP 2008

⁴B. Regula, M. Piani, M. Cianciaruso, T. R. Bromley, A. S., G. Adesso, arXiv 2017

⁵ M. Ringbauer, T. R. Bromley, M. Cianciaruso, S. Lau, G. Adesso, A. G. White, A. Fedrizzi, M. Piani, arXiv 2017

⁶A. S., G. Adesso, and M. B. Plenio. RMP 2017

- Maximally incoherent operations (MIO)¹: most general set, contains all operations which cannot create coherence: $\Lambda[\rho_i] \in I$, where I is the set of all incoherent states.
- Strictly incoherent operations (SIO)²: Incoherent operations for which also K_i^{\dagger} are incoherent. Correspond to quantum operations which do not use coherence.
- Translationally invariant operations $(TIO)^3$: Quantum operations which commute with time translations, i.e., $e^{-iHt}\Lambda[\rho]e^{iHt} = \Lambda[e^{-iHt}\rho e^{iHt}]$ for a given Hamiltonian H.

¹ J. Åberg, arXiv 2006

²A. Winter and D. Yang, PRL 2016; B. Yadin, J. Ma, D. Girolami, M. Gu, V. Vedral, PRX 2016

³G. Gour and R. W. Spekkens, NJP 2008

⁴B. Regula, M. Piani, M. Cianciaruso, T. R. Bromley, A. S., G. Adesso, arXiv 2017

⁵ M. Ringbauer, T. R. Bromley, M. Cianciaruso, S. Lau, G. Adesso, A. G. White, A. Fedrizzi, M. Piani, arXiv 2017

⁶A. S., G. Adesso, and M. B. Plenio, RMP 2017

- Maximally incoherent operations (MIO)¹: most general set, contains all operations which cannot create coherence: $\Lambda[\rho_i] \in I$, where I is the set of all incoherent states.
- Strictly incoherent operations (SIO)²: Incoherent operations for which also K_i^{\dagger} are incoherent. Correspond to quantum operations which do not use coherence.
- Translationally invariant operations $(TIO)^3$: Quantum operations which commute with time translations, i.e., $e^{-iHt}\Lambda[\rho]e^{iHt} = \Lambda[e^{-iHt}\rho e^{iHt}]$ for a given Hamiltonian H.
- Theory of multilevel coherence: coherence between N > 2 levels of a quantum system⁴⁵

¹ J. Åberg, arXiv 2006

²A. Winter and D. Yang, PRL 2016; B. Yadin, J. Ma, D. Girolami, M. Gu, V. Vedral, PRX 2016

³G. Gour and R. W. Spekkens, NJP 2008

⁴B. Regula, M. Piani, M. Cianciaruso, T. R. Bromley, A. S., G. Adesso, arXiv 2017

⁵ M. Ringbauer, T. R. Bromley, M. Cianciaruso, S. Lau, G. Adesso, A. G. White, A. Fedrizzi, M. Piani, arXiv 2017

⁶A. S., G. Adesso, and M. B. Plenio, RMP 2017

■ <u>Distillable coherence</u>¹: maximal rate for extracting the state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ via incoherent operations

¹ A. Winter and D. Yang, PRL 2016

²B. Regula, K. Fang, X. Wang, G. Adesso, arXiv 2017

³Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, X. Ma, arXiv 2017

- <u>Distillable coherence</u>¹: maximal rate for extracting the state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ via incoherent operations
- $C_d(\rho) = S(\Delta[\rho]) S(\rho)$ with the dephasing operation Δ

¹ A. Winter and D. Yang, PRL 2016

²B. Regula, K. Fang, X. Wang, G. Adesso, arXiv 2017

³Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, X. Ma, arXiv 2017

- <u>Distillable coherence</u>¹: maximal rate for extracting the state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ via incoherent operations
- lacksquare $C_d(
 ho) = S(\Delta[
 ho]) S(
 ho)$ with the dephasing operation Δ
- Coherence cost¹: minimal rate of states $|+\rangle$ required to create ρ via incoherent operations

¹ A. Winter and D. Yang, PRL 2016

²B. Regula, K. Fang, X. Wang, G. Adesso, arXiv 2017

³Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, X. Ma, arXiv 2017

- <u>Distillable coherence</u>¹: maximal rate for extracting the state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ via incoherent operations
- lacksquare $C_d(
 ho) = S(\Delta[
 ho]) S(
 ho)$ with the dephasing operation Δ
- Coherence cost¹: minimal rate of states $|+\rangle$ required to create ρ via incoherent operations
- $lacksquare C_c(
 ho) = C_f(
 ho) = \min \sum_i p_i S(\Delta[\psi_i])$

¹ A. Winter and D. Yang, PRL 2016

²B. Regula, K. Fang, X. Wang, G. Adesso, arXiv 2017

³Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, X. Ma, arXiv 2017

- <u>Distillable coherence</u>¹: maximal rate for extracting the state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ via incoherent operations
- lacksquare $C_d(
 ho) = S(\Delta[
 ho]) S(
 ho)$ with the dephasing operation Δ
- Coherence $cost^1$: minimal rate of states $|+\rangle$ required to create ρ via incoherent operations
- $lacksquare C_c(
 ho) = C_f(
 ho) = \min \sum_i p_i S(\Delta[\psi_i])$
- The quantities differ for different frameworks of coherence

¹ A. Winter and D. Yang, PRL 2016

²B. Regula, K. Fang, X. Wang, G. Adesso, arXiv 2017

³Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, X. Ma, arXiv 2017

- <u>Distillable coherence</u>¹: maximal rate for extracting the state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ via incoherent operations
- $lacksquare C_d(
 ho) = S(\Delta[
 ho]) S(
 ho)$ with the dephasing operation Δ
- Coherence $cost^1$: minimal rate of states $|+\rangle$ required to create ρ via incoherent operations
- $lacksquare C_c(
 ho) = C_f(
 ho) = \min \sum_i p_i S(\Delta[\psi_i])$
- The quantities differ for different frameworks of coherence
- Single-shot coherence distillation² and dilution³ has also been considered

¹ A. Winter and D. Yang, PRL 2016

²B. Regula, K. Fang, X. Wang, G. Adesso, arXiv 2017

³Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, X. Ma, arXiv 2017

Incoherent operations on a single qubit admit a decomposition into 5 Kraus operators:

$$\left(\begin{array}{ccc} a_1 & b_1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 \\ a_2 & b_2 \end{array}\right), \left(\begin{array}{ccc} a_3 & 0 \\ 0 & b_3 \end{array}\right), \left(\begin{array}{ccc} 0 & b_4 \\ a_4 & 0 \end{array}\right), \left(\begin{array}{ccc} a_5 & 0 \\ 0 & 0 \end{array}\right)$$

¹ A. S., S. Rana, P. Boes, J. Eisert, PRL 2017

²E. Chitambar and G. Gour, PRL 2016

³H.-L. Shi, X.-H. Wang, S.-Y. Liu, W.-L. Yang, Z.-Y. Yang, H. Fan, Scientific Reports 2017

Incoherent operations on a single qubit admit a decomposition into <u>5 Kraus operators</u>:

$$\left(\begin{array}{ccc} a_1 & b_1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 \\ a_2 & b_2 \end{array}\right), \left(\begin{array}{ccc} a_3 & 0 \\ 0 & b_3 \end{array}\right), \left(\begin{array}{ccc} 0 & b_4 \\ a_4 & 0 \end{array}\right), \left(\begin{array}{ccc} a_5 & 0 \\ 0 & 0 \end{array}\right)$$

a a_i are real, b_i are complex, $\sum_i a_i^2 = \sum_j |b_j|^2 = 1$, and $a_1b_1 + a_2b_2 = 0$

¹ A. S., S. Rana, P. Boes, J. Eisert, PRL 2017

²E. Chitambar and G. Gour. PRL 2016

³H.-L. Shi, X.-H. Wang, S.-Y. Liu, W.-L. Yang, Z.-Y. Yang, H. Fan, Scientific Reports 2017

Incoherent operations on a single qubit admit a decomposition into <u>5 Kraus operators</u>:

$$\left(\begin{array}{ccc} a_1 & b_1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 \\ a_2 & b_2 \end{array}\right), \left(\begin{array}{ccc} a_3 & 0 \\ 0 & b_3 \end{array}\right), \left(\begin{array}{ccc} 0 & b_4 \\ a_4 & 0 \end{array}\right), \left(\begin{array}{ccc} a_5 & 0 \\ 0 & 0 \end{array}\right)$$

- **a** a_i are real, b_i are complex, $\sum_i a_i^2 = \sum_j |b_j|^2 = 1$, and $a_1b_1 + a_2b_2 = 0$
- This characterization allows for complete solution of the single-qubit state conversion problem

¹ A. S., S. Rana, P. Boes, J. Eisert, PRL 2017

²E. Chitambar and G. Gour, PRL 2016

³H.-L. Shi, X.-H. Wang, S.-Y. Liu, W.-L. Yang, Z.-Y. Yang, H. Fan, Scientific Reports 2017

Incoherent operations on a single qubit admit a decomposition into <u>5 Kraus operators</u>:

$$\left(\begin{array}{ccc} a_1 & b_1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 \\ a_2 & b_2 \end{array}\right), \left(\begin{array}{ccc} a_3 & 0 \\ 0 & b_3 \end{array}\right), \left(\begin{array}{ccc} 0 & b_4 \\ a_4 & 0 \end{array}\right), \left(\begin{array}{ccc} a_5 & 0 \\ 0 & 0 \end{array}\right)$$

- **a** a_i are real, b_i are complex, $\sum_i a_i^2 = \sum_j |b_j|^2 = 1$, and $a_1b_1 + a_2b_2 = 0$
- This characterization allows for complete solution of the single-qubit state conversion problem
- Open question: it is not known if 5 Kraus operators are indeed required, or if the number can be reduced to 4

¹ A. S., S. Rana, P. Boes, J. Eisert, PRL 2017

²E. Chitambar and G. Gour. PRL 2016

³H.-L. Shi, X.-H. Wang, S.-Y. Liu, W.-L. Yang, Z.-Y. Yang, H. Fan, Scientific Reports 2017

Entanglement and coherence in distributed scenarios¹²³⁴

<u>LQICC</u>: Local quantum-incoherent operations and classical communication

¹E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016

²A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017

³J. Ma. B. Yadin, D. Girolami, V. Vedral, M. Gu. PRL 2016

⁴J. M. Matera, D. Egloff, N. Killoran, and M. B. Plenio, Quantum Sci. Technol. 2016

Entanglement and coherence in distributed scenarios¹²³⁴

<u>LQICC</u>: Local quantum-incoherent operations and classical communication

LQICC operations preserve the set of quantum-incoherent states:

$$\rho_{\text{qi}}^{AB} = \sum_{i} p_{i} \sigma_{i}^{A} \otimes |i\rangle \langle i|^{B}$$

¹E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016

²A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017

³J. Ma. B. Yadin, D. Girolami, V. Vedral, M. Gu. PRL 2016

⁴J. M. Matera, D. Egloff, N. Killoran, and M. B. Plenio, Quantum Sci. Technol. 2016

■ <u>Setting</u>: Alice and Bob share many copies a bipartite state ρ^{AB} and can perform bipartite LQICC operations¹²

¹E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016

²A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017

³K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Optica 2017

⁴K.-D. Wu, Z. Hou, Y.-Y. Zhao, G.-Y. Xiang, C.-F. Li, G.-C. Guo, J. Ma, Q.-Y. He, J. Thompson, M. Gu, arXiv 2017

- Setting: Alice and Bob share many copies a bipartite state ρ^{AB} and can perform bipartite LQICC operations¹²
- Aim of the task: asymptotic distillation of maximally coherent states $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ on Bob's side

¹E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016

²A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017

³K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Optica 2017

⁴K.-D. Wu, Z. Hou, Y.-Y. Zhao, G.-Y. Xiang, C.-F. Li, G.-C. Guo, J. Ma, Q.-Y. He, J. Thompson, M. Gu, arXiv 2017

- Setting: Alice and Bob share many copies a bipartite state ρ^{AB} and can perform bipartite LQICC operations¹²
- Aim of the task: asymptotic distillation of maximally coherent states $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ on Bob's side
- For pure states $|\psi\rangle^{AB}$ optimal coherence distillation rate <u>with</u> <u>assistance</u> is $S(\Delta[\rho^B])$

¹E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016

²A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017

³K.-D. Wu. Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Optica 2017

⁴K.-D. Wu, Z. Hou, Y.-Y. Zhao, G.-Y. Xiang, C.-F. Li, G.-C. Guo, J. Ma, Q.-Y. He, J. Thompson, M. Gu, arXiv 2017

- Setting: Alice and Bob share many copies a bipartite state ρ^{AB} and can perform bipartite LQICC operations¹²
- Aim of the task: asymptotic distillation of maximally coherent states $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ on Bob's side
- For pure states $|\psi\rangle^{AB}$ optimal coherence distillation rate <u>with</u> <u>assistance</u> is $S(\Delta[\rho^B])$
- Optimal distillation rate without assistance: $S(\Delta[\rho^B]) S(\rho^B)$

¹ E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016

²A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017

³K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Optica 2017

⁴K.-D. Wu, Z. Hou, Y.-Y. Zhao, G.-Y. Xiang, C.-F. Li, G.-C. Guo, J. Ma, Q.-Y. He, J. Thompson, M. Gu, arXiv 2017

- Setting: Alice and Bob share many copies a bipartite state ρ^{AB} and can perform bipartite LQICC operations¹²
- Aim of the task: asymptotic distillation of maximally coherent states $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ on Bob's side
- For pure states $|\psi\rangle^{AB}$ optimal coherence distillation rate with assistance is $S(\Delta[\rho^B])$
- Optimal distillation rate without assistance: $S(\Delta[\rho^B]) S(\rho^B)$
- Confirmed in two recent experiments³⁴

¹ E. Chitambar, A. S., S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, PRL 2016

²A. S., S. Rana, M. N. Bera, and M. Lewenstein, PRX 2017

³K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Optica 2017

⁴K.-D. Wu, Z. Hou, Y.-Y. Zhao, G.-Y. Xiang, C.-F. Li, G.-C. Guo, J. Ma, Q.-Y. He, J. Thompson, M. Gu, arXiv 2017

Standard quantum state merging: shared entanglement is a resource while local coherence is available at no cost

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

- Standard quantum state merging: shared entanglement is a resource while local coherence is available at no cost
- Incoherent quantum state merging: shared entanglement and Bob's local coherence are considered as resources

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

- Standard quantum state merging: shared entanglement is a resource while local coherence is available at no cost
- Incoherent quantum state merging: shared entanglement and Bob's local coherence are considered as resources
- Optimal entanglement-coherence pairs (E, C): pairs of entanglement and coherence rates for which merging is possible, but neither E nor C can be reduced

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

- Standard quantum state merging: shared entanglement is a resource while local coherence is available at no cost
- Incoherent quantum state merging: shared entanglement and Bob's local coherence are considered as resources
- Optimal entanglement-coherence pairs (E, C): pairs of entanglement and coherence rates for which merging is possible, but neither E nor C can be reduced
- Main problem: determine all optimal pairs (E, C) for a given quantum state

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

Theorem

Given a tripartite quantum state ρ^{RAB} , any achievable pair (E, C) fulfills the following inequality:

$$E + C \ge S(\Delta^{AB}[\rho^{RAB}]) - S(\Delta^{B}[\rho^{RAB}]).$$
 (11)

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

Theorem

Given a tripartite quantum state ρ^{RAB} , any achievable pair (E,C) fulfills the following inequality:

$$E + C \ge S\left(\Delta^{AB}[\rho^{RAB}]\right) - S\left(\Delta^{B}[\rho^{RAB}]\right). \tag{11}$$

S is the von Neumann entropy and Δ^X denotes full decoherence of a (possibly multipartite) subsystem X:

$$\Delta^{X}[\rho] = \sum_{i} |i\rangle \langle i|^{X} \rho |i\rangle \langle i|^{X}.$$
 (12)

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

Theorem

Given a tripartite quantum state ρ^{RAB} , any achievable pair (E, C) fulfills the following inequality:

$$E + C \ge S\left(\Delta^{AB}[\rho^{RAB}]\right) - S\left(\Delta^{B}[\rho^{RAB}]\right). \tag{11}$$

S is the von Neumann entropy and Δ^X denotes full decoherence of a (possibly multipartite) subsystem X:

$$\Delta^{X}[\rho] = \sum_{i} |i\rangle \langle i|^{X} \rho |i\rangle \langle i|^{X}.$$
 (12)

Since the right-hand side of Eq. (11) is nonnegative, the sum E+C is also nonnegative: no merging procedure can gain coherence and entanglement at the same time

¹A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

For pure states $|\psi\rangle^{RAB}$ we have

$$E \ge E_{\min} = S(\rho^{AB}) - S(\rho^{B}) \tag{13}$$

$$E + C \ge S(\Delta^{AB}[\rho^{AB}]) - S(\Delta^{B}[\rho^{B}])$$
 (14)

The bound in Eq. (14) is achievable for all pure states

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

For pure states $|\psi\rangle^{RAB}$ we have

$$E \ge E_{\min} = S(\rho^{AB}) - S(\rho^{B}) \tag{13}$$

$$E + C \ge S(\Delta^{AB}[\rho^{AB}]) - S(\Delta^{B}[\rho^{B}])$$
 (14)

The bound in Eq. (14) is achievable for all pure states

Theorem

Any pure state $|\psi\rangle^{RAB}$ can be merged without local coherence by using singlets at rate

$$E_0 = S(\Delta^{AB}[\rho^{AB}]) - S(\Delta^B[\rho^B]). \tag{15}$$

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

$$E_{\min} = S(\rho^{AB}) - S(\rho^{B}) \tag{16}$$

$$E_0 = S(\Delta^{AB}[\rho^{AB}]) - S(\Delta^B[\rho^B])$$
 (17)

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

■ Conjecture: it is possible to save a large amount of local coherence by using little extra entanglement, i.e., for some states the pairs $(E, C \gg 0)$ and $(E' = E + \varepsilon, C' \ll C)$ are both optimal for small ε

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

- <u>Conjecture</u>: it is possible to save a large amount of local coherence by using little extra entanglement, i.e., for some states the pairs $(E, C \gg 0)$ and $(E' = E + \varepsilon, C' \ll C)$ are both optimal for small ε
- Possible candidate:

$$\rho = \frac{1}{d_B} \sum_{i=0}^{d_B-1} |i\rangle \langle i|^R \otimes |\phi_i\rangle \langle \phi_i|^A \otimes |\psi_i\rangle \langle \psi_i|^B, \qquad (18)$$

where $|\psi_i\rangle$ are mutually orthogonal maximally coherent states of arbitrary dimension d_B , and $|\phi_i\rangle$ are single-qubit states

¹ A. S., E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, PRL 2016.

- We found lower and upper bounds for <u>multipartite state</u> <u>conversion rates</u>
- The bounds are <u>tight</u> for a large fraction of pure states, having nonzero measure in the set of all pure states

- We found lower and upper bounds for <u>multipartite state</u> <u>conversion rates</u>
- The bounds are <u>tight for a large fraction of pure states</u>, having nonzero measure in the set of all pure states
- We introduced the task of <u>assisted coherence distillation</u> and solved it for all pure states
- Assisted distillation of coherence has also been performed in two recent experiments

- We found lower and upper bounds for <u>multipartite state</u> <u>conversion rates</u>
- The bounds are <u>tight for a large fraction of pure states</u>, having nonzero measure in the set of all pure states
- We introduced the task of <u>assisted coherence distillation</u> and solved it for all pure states
- Assisted distillation of coherence has also been performed in two recent experiments
- We introduced the task of incoherent quantum state merging, in which both entanglement and local coherence are considered as a resource

- We found lower and upper bounds for <u>multipartite state</u> <u>conversion rates</u>
- The bounds are tight for a large fraction of pure states, having nonzero measure in the set of all pure states
- We introduced the task of <u>assisted coherence distillation</u> and solved it for all pure states
- Assisted distillation of coherence has also been performed in two recent experiments
- We introduced the task of incoherent quantum state merging, in which both entanglement and local coherence are considered as a resource
- Our results imply an incoherent version of Schumacher compression: $S(\Delta[\rho])$ is the optimal compression rate if the decompression is performed via incoherent operations only

References

- A. Streltsov, E. Chitambar, S. Rana, M. N. Bera, A. Winter, and M. Lewenstein, *Entanglement and Coherence in Quantum State Merging*, Phys. Rev. Lett. **116**, 240405 (2016)
- E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, Assisted Distillation of Quantum Coherence, Phys. Rev. Lett. 116, 070402 (2016)
- A. Streltsov, C. Meignant, and J. Eisert, Rates of multi-partite entanglement transformations and applications in quantum networks, arXiv:1709.09693
- A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource, Rev. Mod. Phys. 89, 041003 (2017)