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Introduction
• Quantum correlations in a system can lead to

counter-intuitive consequences.
• One of this is nonlocality which is one of the most

mysterious features of the quantum mechanics formalism.
• This feature allows us to carry out many tasks which would

not have been otherwise possible.
• Apart from various tasks, the quantum correlations can

also be explored using a set of inequalities (or equalities).
• One set of such inequalities are that of Bell-type.
• In the case of two-qubit pure states, the explorations of

nonlocality using Bell-type inequalities is uneventful. There
is even a relation between the violation of the inequality
and entanglement.

• Beyond this, e.g, two-qudit pure states, mult-qubit/qudit
pure states, or mixed states present their own challenges.
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Introduction
• Our focus will be on three-qubit states, with some

discussion on the generalization to multi-qubit states. So
the title is perhaps too general.

• In 1964, Bell obtained an inequality and demonstrated the
incompatibility between local-realism and quantum
mechanics. It was done for a singlet state.

• After more than 25 years, in 1991, Gisin showed that any
pure entangled state of a bipartite system violates a Bell’s
inequality, more accurately Clauser-Horne-Shimony-Holt
(CHSH) inequality.

• Inequalities can be written in terms of correlations of
observables. Maximum violation of CHSH inequality in
quantum mechanics can be 2

√
2 (Tsirelson’s bound,

1980).
• One can establish a relationship between entanglement

and nonlocality in the case of pure bipartite states.
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Introduction

• The situation about mixed state is not clear. There are
entangled states which don’t violate standard CHSH
inequality. Prototype example is Werner state. There are
local hidden variable models for such entangled states.

• There appears to exist the phenomenon of hidden
nonlocality. In literature, there are attempts to show that all
entangled states are nonlocal. For example, Gisin (1996),
Buscemi (2012), and Masanes et al (2008).

• Case of a multipartite state is more complex because we
don’t know how to characterize its entanglement. There
can be multiple ways to characterize its nonlocality. But
one may be able to discuss some categories of such
states.

• One way to obtain inequalities is find facets of a polytope in
the joint probability space.
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Introduction
• CHSH inequality is a facet inequality. It is violated

maximally by a the maximally entangled two-qubit states,
the Bell states.

• It was then the naive expectation that the same may
happen for other systems.

• It was thus a surprise when CGLMP inequality (D. Collins,
N. Gisin, N. Linden, S. Massar, and S. Popescu, 2002),
which is a facet inequality for a two-qudit sytem was shown
to be violated more by a partially entangled state. It was
termed as “anomaly of nonlocality”. This inequality is
based on (2,2,d) scenario. There are, however, non-facet
inequalities, like SLK (Son-Lee-Kim) inequalities, that are
violated maximally by a maximally entangled two-qudit
state.
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Introduction

• We will consider three-qubit systems, with specific
measurement scenario. We will obtain facet inequalities
and also obtain a set of other inequalities. We will see that
same phenomenon happens. A non-facet inequality is
violated maximally by a maximally-entangled state, while a
facet inequality is not.

• As a illustration, we will first discuss CHSH inequality as a
facet inequality.

• We will first discuss CHSH inequality for two-qubit pure
states and see its relation with a measure of entanglement,
namely concurrence.

• We will then obtain a set of facet inequalities for a
three-qubit system for a specific measurement scenario
and show that they are not maximally violated by
maximally entangled states.
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Introduction

• Next we will introduce a set of Bell inequalities for
three-qubit states. There can be a relation between the
entanglement and nonlocality of a class of states –
generalized GHZ states.

• These inequalities are not facet inequalities, but are
maximally violated by maximally entangled three-qubit
states.

• We will argue that this set of inequalities can separate
states with genuine tripartite entanglement, biseparable
states, and product states.

• We will also generalize these inequalities to n-qubit case.
Because of the nature of construction, these inequalities
will maximally violate n-qubit GHZ states. Also the
entanglement, and nonlocality, as characterized by
violation of these Bell-type inequalities will be linked.



Introduction Bell Polytopes CHSH Inequality and Qubits Maximally Entangled States Multipartite States New Inequalities Conclusions

Outline

Introduction

Bell Polytopes

CHSH Inequality and Qubits

Maximally Entangled States

Multipartite States

New Inequalities

Conclusions



Introduction Bell Polytopes CHSH Inequality and Qubits Maximally Entangled States Multipartite States New Inequalities Conclusions

Bell Polytopes
• In a typical Bell experiment, there can be two or more

spatially separated parties - Alice, Bob, Charlie, ... These
parties possess subsystems of a physical system. They
can measure observables on their subsystems. They can
collect data on joint probability distributions
(p(a,b, c, ...|x , y , z, ...). Here x , y , z are observables
measured by Alice, Bob, and Charlie; a,b, c are
measurement outcomes. These probability distributions
have to satisfy normalization and no-signalling constraints.
This reduces the number of these joint probabilities.

• A convex-hull of these probability distributions defines a
Bell polytope. The probability distributions inside the
polytope are classical distributiion. Alternately, one can
characterize this polytope by facets. Each facet divides the
probability space in two half, and is characterized by an
inequality.

• A large fraction, as we will see in concrete examples, of
these facets inequalities are just positivity conditions. Rest
of the nontrivial inequalities can correspond to Bell-type
inequalities.
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Bell-CHSH Polytope
• Let us now look at the familiar case of CHSH inequality.

The scenario is (2,2,2). There are two parties, two
measurements by each party, and two outcomes for each
measurements.

• For this case there are 16 joint probability distributions
P(a,b|x , y). Taking into account conservation of probability
and no-signalling conditions reduce the number to 8.

• So we have to consider polytope in 8 dimensions that have
16 vertices. As we will see, this consideration will give rise
to 24 facets. The sixteen out of 24 are positivity conditions.
Out of the remaining 8 four gives the upper bound and 4
the lower bound. There is only one independent inequality.
Other follows from permutations.
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Bell-CHSH Polytope
• The whole scenario is characterized by 16 joint

probabilities. They satisfies normalization∑
a,b

p(ab|xy) = 1 ∀ x , y = 0,1.

• No signalling conditions are

p(a|x) ≡
∑

b

p(ab|xy) = 1 ∀ a and x , y = 0,1,

p(b|y) ≡
∑

a

p(ab|xy) = 1 ∀ b and x , y = 0,1.

• There are 4 normalization constraint and 12 no-signaling
constraint. But these constraints are not all independent.
Using normalization constraint we can reduce the
no-signaling condition by 4.Therefore, there will be total 8
independent constraints. These 8 constraints will reduce
the joint probabilities space to 8.
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Bell-CHSH facets
• These probability space can be represented as

p = [p(a1),p(a2),p(b1),p(b2),p(a1b1),p(a1b2),p(a2b1),p(a2b2)],

where p(ax) = p(1|x), p(by ) = p(1|y) and
p(axby ) = p(11|xy).

• As a1,a2,b1 and b2 can take two different diachomatic
values, there will be total 16 different points in the above
said probability space. So, the CHSH-polytope is 8
dimensional and described by 16 vertices. The polytope
described in terms of vertices known as V-representation.
One can find the faces of the polytope from this description
by using a standard algorithm. There will be 24 facets as
follows,

p(aibj) > 0, i = 1,2 and j = 1,2
−p(ai) + p(aibj) 6 0, i = 1,2 and j = 1,2
−p(bj) + p(aibj) 6 0, i = 1,2 and j = 1,2
p(ai) + p(bj)− p(aibj) 6 1, i = 1,2 and j = 1,2
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Bell-CHSH facets
• The nontrivial facets are

p(a1) + p(b2)− p(a1b1)− p(a1b2) + p(a2b1)− p(a2b2) 6 1
p(a1) + p(b1)− p(a1b1)− p(a1b2)− p(a2b1) + p(a2b2) 6 1
p(a2) + p(b2) + p(a1b1)− p(a1b2)− p(a2b1)− p(a2b2) 6 1
p(a2) + p(b1)− p(a1b1) + p(a1b2)− p(a2b1)− p(a2b2) 6 1
−p(a1)− p(b2) + p(a1b1) + p(a1b2)− p(a2b1) + p(a2b2) 6 0
−p(a1)− p(b1) + p(a1b1) + p(a1b2) + p(a2b1)− p(a2b2) 6 0
−p(a2)− p(b2)− p(a1b1) + p(a1b2) + p(a2b1) + p(a2b2) 6 0
−p(a2)− p(b1) + p(a1b1)− p(a1b2) + p(a2b1) + p(a2b2) 6 0.

• The last eight inequalities are the famous CH inequalities
and are equivalent to CHSH inequalities. However, there is
only one independent inequality. Here four give the lower,
and four the upper bound. Out of the four, three can be
obtained by permutations.
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CHSH Inequality

The CHSH inequality (John Clauser, Michael Horne, Abner
Shimony, and Richard Holt, 1969) is given in terms of the
following combination of the observables,

ICHSH = A1 B1 + A1 B2 + A2 B1 − A2 B2

In a local-realistic theory,

〈ICHSH〉 ≤ 2
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CHSH Inequality
• An arbitrary two-qubit state after Schmidt decomposition

can always be written as

|ψn〉 = c0|n̂+n̂+〉+ c1|n̂−n̂−〉.

• We choose the measurement settings in the following way

A1 = m̂1 · ~σ, A2 = m̂2 · ~σ,

B1 = 1√
2
(m̂1 · ~σ + m̂2 · ~σ), B2 =

1√
2
(m̂1 · ~σ − m̂2 · ~σ).

Here n̂, m̂1 and m̂2 are the unit vectors perpendicular to
each other.

• Now we have to obtain the expectation value of the CHSH
operator in the state |ψn〉. We get

〈ψn|IS|ψn〉 = 2
√

2C.
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CHSH Inequality
• Since concurrence is a measure of entanglement, we find

that there is relation between an entanglement measure
and the value of CHSH operator for any pure two-qubit
state. Of course, these measurement settings have a flaw.
Some of the entangled state don’t violate CHSH inequality.

• Advantage of these settings is that the value of operator is
zero for product states, and non-zero for entangled states.

• So, in this setting, CHSH operator can act as a witness to
the entanglement as well as measure it.
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CHSH Inequality
• Let us again consider a general two-qubit state,

|ψn〉 = c0|n̂+n̂+〉+ c1|n̂−n̂−〉.

• We choose the measurement settings in the following way

A1 = n̂ · ~σ, A2 = m̂ · ~σ,

B1 = 1√
2
(n̂ · ~σ + m̂ · ~σ), B2 =

1√
2
(n̂ · ~σ − m̂ · ~σ).

• We again find,

〈ψ0|ICHSH |ψ0〉 =
√

2(1 + C).

Here C is the concurrence of the state.
• We see that we have higher values and some entangled

states do not violate CHSH inequality. But still there is a
relation which can be used to measure entanglement.
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CHSH Inequality
• Again we consider the general two-qubit state.

|ψn〉 = c0|n̂+n̂+〉+ c1|n̂−n̂−〉

• We choose third measurement settings in the following way

A1 = n̂ · ~σ, A2 = m̂ · ~σ,
B1 = n̂ · ~σ cos(η) + m̂ · ~σ sin(η), B2 = n̂ · ~σ cos(η)− m̂ · ~σ sin(η).

Here n̂ and m̂ are the unit vectors perpendicular to each
other. Also cos(η) = 1√

1+4c2
0c2

1
.

• We again get

〈ψn|ICHSH |ψn〉 = 2
√

1 + C2.

• Though these setting give the optimized value and largest
violation, but there is a flaw. You have to know the state in
advance for these settings.

• So if we wish to find how entangled an unknown state is,
we should be using earlier settings.



Introduction Bell Polytopes CHSH Inequality and Qubits Maximally Entangled States Multipartite States New Inequalities Conclusions

CHSH Inequality
• The question may be asked what about the most general

state-independent settings ? One can show that there is a
relation,

〈ψn|ICHSH |ψn〉 = A + B C.

Here A and B would depend on measurement setting
angles.

• Here is a plot to show the value of CHSH operator for the
three different settings:
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Maximally Entangled States
• In the case of bipartite pure entangled states, the notion of

maximally entangled state is unambiguous. For a two-qubit
system, these are well known Bell states. By using LOCC,
any other two-qubit state can be obtained from these
states.

• As we go beyond bipartite case, the situation is not clear.
• For multipartite case, multiple notions exist. Two of these

are concepts of Absolutely Maximally Entangled State
(AMES) and Task-Oriented Maximally Entangled States
(TMES).

• If a system is in AMES, then all its subsystems will have
maximally allowed entropy. For the case of three qubits,
GHZ state is AMES. For a four-qubit system, there are no
AMES. There exist AMES for five and six-qubit systems.
For eight-qubit systems and beyond there are no AMES.
For a seven-qubit also there appears to be no AMES. In all
such cases, one may look for states close to AMES.
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Maximally Entangled States
• From another perspective, i. e., of TMES, in the case of

three-qubit case, the GHZ state is TMES for a number of
tasks, like teleportation, superdense coding, secret
sharing, etc.

• For a three-qubit system, a modified-W state that is
suitable for perfect teleportation and superdense coding
can also be a TMES. But for a given modified-W state, it is
possible in only one specific partition, while one can use
GHZ state in any partition.

• If we consider GHZ state for a three-qubit system to be
maximally entangled, then one may expect it to be
maximally nonlocal also. For a quantum-mechanical
system, entanglement is the source of nonlocality.

• If we use violation of Bell inequality as a measure of
nonlocality, then as we will see, the situation is not straight
forward.
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Multipartite States
• In the case of multipartite states comparing the

entanglement of even two states is not straightforward.
• The nature of entanglement is not very well understood.
• There is a long history of finding inequalities for multipartite

states. We will particularly focus on three-qubit states.
• There are various issues with a number of popular

inequalities. For example, Mermin’s inequality is also
violated by states that don’t have genuine tripartite
entanglement.

• Svetlichny inequality has problems with some states that
have genuine tripartite entanglement.

• Bacal et al. introduced a weaker notion of nonlocality, and
obtained a set of 185 inequalities as facets of no-signalling
polytopes. They conjectured that all entangled staes will
violate at least one of these inequalities.
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Multipartite States

• Zukowski et al. have shown that generalized GHZ states
for odd number of qubits do not violate any correlation
inequalities.

• However Yu et al. have considered Hardy type nonlocality
arguments, and shown that all entangled states violate a
single Bell inequality.

• Without considering Hardy type arguments, for three-qubit
states, we will give a set of inequalities that seem to be
violated by all entangled states. These inequalities can
also distinguish three different classes of states.

• These Bell inequalites have correlations based on
measurements on three subsystems. But one makes only
one messurement on one of the subsystems.
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Introduction
• So in our scenario, there are three parties. Two parties,

Alice and Bob make two measurements of diachomatic
observables, while Charlie makes only one measurement
of a diachomatic observable.

• In this scenario, there are 32 joint probability distributions.
So there are 32 vertices. After taking into account the
normalization and no-signalling, the probability space is 17
dimensional.

• There are 48 facets. 32 are just positivity conditions. There
are 16 nontrivial facets. Let us recall, in the case of CHSH
polytope, there were 8 nontrivial facets.

• Out of 16 nontrivial facets, 8 facets give upper bounds to
inequalities, while the other 8 gives lower bounds.

• Out of 8 nontrivial inequalities, there are only 2
independent. Like CHSH case, there are two sets of 4
inequalities. Each set corresponds to only one inequality.
The other three are just permutations.
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Facets
• Here is the facet list:

p(aibjc1) > 0, i = 1,2 and j = 1,2
−p(aic1) + p(aibjc1) 6 0, i = 1,2 and j = 1,2
−p(bjc1) + p(aibjc1) 6 0, i = 1,2 and j = 1,2
−p(aibj) + p(aibjc1) 6 0, i = 1,2 and j = 1,2

−p(ai) + p(aibj)− p(aibjc1) + p(aic1) 6 0, i = 1,2 and j = 1,2
−p(bj) + p(aibj)− p(aibjc1) + p(bjc1) 6 0, i = 1,2 and j = 1,2
−p(c1) + p(aic1)− p(aibjc1) + p(bjc1) 6 0, i = 1,2 and j = 1,2

p(c1) + p(ai) + p(bj)− p(aic1) + p(aibjc1)− p(aibj)− p(bjc1) 6 0,
i = 1,2 and j = 1,2

• These are 32 positivity conditions. Remaining 16 facets
are non trivial.
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Facet Inequalities
• Here are two independent and nontrivial inequalities.

−6 ≤ (−A2B2 + A2B1 + A1B2 + A1B1) +

(−A2B2 + A2B1 + A1B2 + A1B1)C1 − 2C1 ≤ 2

−6 ≤ (−A2B2 + A2B1 + A1B2 + A1B1) +

(A2B2 − A2B1 − A1B2 − A1B1)C1 + 2C1 ≤ 2

In terms of the well-known CHSH inequality this set can be
written as,

−6 ≤ ICHSH + ICHSHC1 − 2C1 ≤ 2,
−6 ≤ ICHSH − ICHSHC1 + 2C1 ≤ 2.
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Facet Inequalities
• We can now check how these inequalities are violated by

various states. We will maximize over all possible
measurement settings.

• Let us define

I facet
3 = ICHSH + ICHSHC1 − 2C1

• Maximum value of 〈I facet
3 〉 for the GHZ state = 2

√
2 ≈ 2.83.

• Maximum value of 〈I facet
3 〉 for the W state ≈ 3.10.

• As we have discussed, for three qubits case, the GHZ
state can be considered as maximally entangled state. But
as we see, facet inequalities are violated more by W state.

• Actually, there are states that give even larger value.
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Facet Inequalities
• If we consider generalized GHZ states

|GGHZ 〉 = α|000〉+ β|111〉, (1)

then violation of the facet inequalities is always smaller
than that by the GHZ state. Actually, in this case, 〈I facet

3 〉
tracks the entanglement.

• Let us now consider another state in GHZ class:

|ψ1〉 =
√

22/50|000〉+
√

3/50|100〉+
√

2/50|101〉+√
21/50|110〉+

√
2/50|111〉

• Maximum value of 〈I facet
3 〉 for the |ψ1〉 ≈ 3.38.

• Let us now consider some other states in the W-class:

|ψ2〉 =
√

1/6|001〉+
√

3/6|010〉+
√

2/6|001〉
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Facet Inequalities

• Another W class state

|ψ3〉 =
√

1/10|001〉+
√

4/10|010〉+
√

5/10|001〉

• Maximum value of 〈I facet
3 〉 for the |ψ2〉 ≈ 3.33.

• Maximum value of 〈I facet
3 〉 for the |ψ3〉 ≈ 3.48.

• These states seem to be less entangled than the W state,
but give more violation.

• There does not seem to be any specific pattern for the
violation.

• These inequalities are also violated by biseparable states
like

√
1/2(|00〉+ |11〉)|0〉. Here violation is more than that

of GHZ state. The value is about 3.66.
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Multipartite States
• For tripartite states, we have three qubits, A,B, and C. We

will choose to make two measurements on two qubits, say
A and B, and one measurement on the third qubit.

• This is motivated by the structure of Bell operator that gives
maximal violation for the Bell state |ϕ+〉, and GHZ state.

• Here these states are -

|ϕ+〉 =
1√
2
(|00〉+ |11〉)

|GHZ 〉 = 1√
2
(|000〉+ |111〉)

• For the Bell state |ϕ+〉, the operator is proportional to
(σx ⊗ σx + σz ⊗ σz). The state |ϕ+〉 is also eigenstate of
this operator.

• For the GHZ state, the operator is proportional to
(σx ⊗ σx ⊗ σx + σz ⊗ σz ⊗ I). The GHZ state is also
eigenstate of this operator.
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Multipartite States

• For a symmetric state like GHZ-state, only one of the
following inequalities would be enough.

• The set of inequalities that we will discuss are:

A1B1(C1 + C2) + B2(C1 − C2) ≤ 2,
A2B1(C1 + C2) + A1(C1 − C2) ≤ 2,

(B1 + B2)C2 + A1(B1 − B2)C1 ≤ 2,
A1(B1 + B2) + A2(B1 − B2)C1 ≤ 2,

(A1 + A2)B2 + (A1 − A2)B1C1 ≤ 2,
(A1 + A2)C1 + (A1 − A2)B1C2 ≤ 2.
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Multipartite States
• Like facet inequalities, there are two independent

inequalities. In inequalities first and third, Alice makes only
one measurement; while Bob and Charlie make two
measurements each.

• Other 4 inequalities can be obtained by permutation. In the
case of second and sixth inequalities Bob makes only one
measurement. Charlie is making only one measurement in
fourth and fifth inequalities.

• These inequalities have similarities with conventional
CHSH inequality, except that there is only one
measurement on one of the qubits.

• These inequalities can be generalized to arbitrary number
of qubits. One will have to make distinction between states
of odd number and even number of qubits. In the case of
odd number, one will make only one measurement, at least
on one qubit.
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Quantum Bound
• We will obtain the bound for the first inequality and the

analysis will be similar for others. Let us call the
corresponding Bell operator for the first inequality as,

B3 = A1B1(C1 + C2) + B2(C1 − C2)

• If we take the square of this expression we get,

B2
3 = 4I + A1[C1,C2][B1,B2].

• Here, we have used A1
2 = B1

2 = B2
2 = C1

2 = C2
2 = I.

Now, we know that, for two bounded operators X and Y ,

‖ [X ,Y ] ‖≤ 2 ‖ X ‖‖ Y ‖

• Using this relation, we notice that the maximum value will
be obtained when B2

3 is 8I and hence ‖ B3 ‖≤ 2
√

2.
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Generalized GHZ States
• Generalized GHZ states,

|GGHZ 〉 = α|000〉+ β|111〉, (2)

have been a problem for a number of different type of
inequalities.

• All pure states in generalized GHZ class violate our Bell
inequalities. This is not surprising. Our Bell inequalities
were designed for GHZ states.

• We will now show that the violation of the inequalities
depends on the entanglement of these states. For this we
will take α and β to be real.

• This GHZ state is symmetric under the permutation of
qubits. So we can choose any of the inequalities. We
choose the inequality to be,

A1(B1 + B2) + A2(B1 − B2)C1 ≤ 2 (3)
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Generalized GHZ States
• Let us choose following set of measurements -

A1 = σz , A2 = σx ,

B1 = cos θσx + sin θσz , B2 = − cos θσx + sin θσz ,

C1 = σx .

• These measurement settings are inspired by that of
two-qubit Bell state case. On qubit ‘A’, there are two
measurements along orthogonal directions. On qubit ‘C’,
there is only one measurement. We will choose the angle θ
such that the value of the Bell operator is maximum.

• We can now compute the expectation value of the Bell
operator for the generalized GHZ state.

〈GGHZ |(A1(B1 + B2) + A2(B1 − B2)C1)|GGHZ 〉 (4)

• The result is

2[2αβ cos θ + (α2 + β2) sin θ] = 2[2αβ cos θ + sin θ]

.
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Generalized GHZ States
• We can now use,

a sinφ+ b cosφ ≤
√

a2 + b2

.
• This gives

〈GGHZ |(A1(B1+B2)+A2(B1−B2)C1)|GGHZ 〉 ≤ 2
√

1 + 4α2β2

.
• We see that the expectation value of the operator is always

greater than 2 for nonzero values of α and β, i.e., as long
as the state is entangled.

• The maximum value is 2
√

2 for the conventional GHZ
state. RHS can be written in a suggestive way as
2
√

1 + C2, where C = 2αβ.
• We see that for generalized GHZ state, the violation

depends on the amount of entanglement in the state.
• This result can be generalized for n-qubit |GGHZ 〉 state.
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General three-qubit state
• What we have considered is a special class of genuinely

entangled three-qubit states. One would like to show that
any genuinely tripartite entangled state violates one of our
inequalities.

• There is a parametrization of genuinely tripartite entangled
three-qubit states, due to Acin et al. It involves 6
parameters, including one phase.

|ψ〉 = λ0|0〉|0〉|0〉+ λ1 eiφ|1〉|0〉|0〉+ λ2|1〉|0〉|1〉+
λ3|1〉|1〉|0〉+ λ4|1〉|1〉|1〉 (5)

• For genuine tripartite entanglement, these parameters
have to satisfy some conditions. These conditions are:
λi ≥ 0,

∑
i λi

2 = 1, λ0 6= 0, λ2 + λ4 6= 0, λ3 + λ4 6= 0 and
φ ∈ [0, π].

• We can use this parametrization to test our Bell
inequalities.
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General three-qubit state
• We will generate a large number of these states by

choosing the parameter values at random. For each state,
we will check if a Bell inequality is violated.

• Any of these random choice, will almost always have
non-zero values of parameters. To strengthen our tests, we
divided these states in number of classes by choosing
some of the parameters as zero.

• The classes we test for are only λ1 = 0, only λ2 = 0, only
λ3 = 0, only λ4 = 0; Only λ1 and λ2 = 0, only λ1 and
λ3 = 0, only λ1 and λ4 = 0, only λ2 and λ3 = 0; only λ1, λ2,
and λ3 = 0; all λ’s are non-zero. For each class φ is
arbitrary. We have taken 5000 random values of each
parameter for first 9 classes and found violations within the
set of 12 inequalities in each case. For all non-zero
parameters, we have tested for 25000 states (A total of
70000 states). The results are displayed in the plots below.
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Three-qubit states

(i) (ii)

Figure: Maximum value of the Bell operator (i) Inequality 1 (ii)
Inequality 2.

• First inequality is not violated by 297 states. Of these 59
states do not violate second inequality.
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Three-qubit states

(i) (ii)

Figure: Maximum value of the Bell operator (i) Inequality 3 (ii)
Inequality 4.

• Out of 59 states, 3 states do not violate 3rd inequality. Of
these 2 states do not violate 4th inequality.
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Three-qubit states
• We have seen that number of states that are remaining

now is 2 only. Using 5th inequality, we see that now all
states violate one of the inequalities.

• So we see that all the 25,000 randomly generated
genuinely entangled states violate one of the inequalities.
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Three-qubit states
• As we discussed earlier, none of these states have any

vanishing parameter. One may suspect that such cases
might be special and may or may not violate our
inequalities.

• To take of this situation, we have generated 5000 states for
each of the special 9 classes. In each, we find that one of
the inequality is at least violated.

• As our inequalities are similar to CHSH inequality, so they
are not violated by product states. One can show this
explicitly analytically as well as numerically.

• Similarly, we can consider two-way entangled, i.e.,
biseparable, tripartite states. For such cases, each state
violates only four of the twelve inequalities. Furthermore,
the amount of the violation is same in each case.

• So we see that our inequalities can distinguish the three
classes of states, as well as seem to be violated by all
entangled states.
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n-qubit states
• As we discussed earlier, we can generalize above Bell

inequalities to n-qubit case. One has to distinguish
between odd and even number of qubits case.

• For odd number of qubits, there will be a total of 2n(n − 1)
inequalities. The first two inequalities can be written as:

A1A2A3A4A5..(An + A′n)+
A′2A′3A′4A′5..(An − A′n) ≤ 2, (6)

and

A2A3A4A5..(An + A′n)+
A1A′2A′3A′4A′5..(An − A′n) ≤ 2. (7)

• Here, Ai and A′i are two dichotomic observable for i th party.
In these inequalities, one measurement has been made on
first qubit. Similarly one can make single measurement on
(n − 2) other qubits. This will lead to 2(n − 1) inequalities.
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n-qubit states
• We can write n such 2(n − 1) inequalities with (Ai ± A′i) for

i th qubit. This will give a total of 2n(n − 1) inequalities.
• For even number of qubits, there will be a total of n

inequalities.

(A1 + A′1)A2A3A4A5..An+

(A1 − A′1)A
′
2A′3A′4A′5..A

′
n ≤ 2. (8)

• Here, Ai and A′i are two dichotomic observable for i th party.
Similarly, n such inequalities with (Ai ± A′i) can be written.

• These are simplest possible generalizations. More will be
possible.

• In the case of generalized n-qubit GHZ state, again, like
earlier, we will need only one inequality. Irrespective of
number of qubits, the maximal violation would be 2

√
2, for

n-qubit GHZ state.
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Conclusions
• We have seen that CHSH operator can be used to

measure the entanglement of a pure qubit state with
several different settings. A state-dependent setting gives
the largest violation.

• For the two-qubit systems, CHSH is the facet inequality,
and is violated maximally by the maximally entangled
states.

• However, this fact is far from the norm. It is more of a norm
that a facet inequality is violated more by a non-maximally
entangled state.

• For tripartite states, we have introduced a new set of
inequalities. For a special class of states, the generalized
GHZ states, there is a direct relation between the
entanglement and the violation. For more general states,
the nature of entanglement is poorly understood, so its
relationship with amount of nonlocality is not clear.
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Conclusions

• Our inequalities also separate the three classes of the
states of genuine tripartite entangled states, biseparable
states, and product states.

• There was a generalization to n-qubit states. There again
seems to be relation between entanglement and
nonlocality of generalized n-qubit states.
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The effect of these above operators on the state is

m̂1 · ~σ|n̂+〉 = −|n̂−〉, m̂1 · ~σ|n̂−〉 = −|n̂+〉,
m̂2 · ~σ|n̂+〉 = −i |n̂−〉, m̂2 · ~σ|n̂−〉 = +i |n̂+〉.
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CHSH Inequality
• We had written above the CHSH inequality in terms of

correlation functions. It is possible to rewrite this inequality
in terms of joint probabilities:

ICHSH = P(A1 = B1)+P(B1 = A2+1)+P(A2 = B2)+P(B2 = A1).

• In this expression P(A = B + k), more generally, stands for

P(A = B + k) =
d−1∑
j=0

P(A = j + k mod d ,B = j).

For qubits d = 2. P(A=j, B=k) is a joint probability of
obtaining A = j and B = k on measuring A and B.

• This form of CHSH inequality was generalized to qudits
and is known as CGLMP inequality. (D. Collins, N. Gisin,
N. Linden, S. Massar, and S. Popescu, 2002)
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Introduction
• MABK (Mermin, Ardehali, Belinskii and Klyshko) inequality

A1(B1C2 + B2C1) + A2(B1C1 − B2C2) ≤ 2 (9)
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Bell-type Inequalities and Qudits
• It is natural to examine inequalities, where the observables

can take d different values - like 0,1,2, ....,d − 1. One can
also measure more than 2 observables on each qudit.

• Our focus will be on inequalities with two observables with
d values on each side.

• One early development in this direction was the
introduction of CGLMP inequality. (D. Collins, N. Gisin, N.
Linden, S. Massar, and S. Popescu, 2002). This inequality
has its own advantages and disadvantages.

• Subsequently, many more inequalities for two or more
qudit systems have been proposed. We will pick one such
inequality, which was one of many that were proposed by
W. Son, J. Lee and M. S. Kim (2006). It is called SLK
inequality.

• We will obtain a relation between an entanglement
measure and the expectation value of SLK operator in a
particular set of observation settings. For these settings no
such relation exists for CGLMP operator.
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CGLMP Inequality
• The CGLMP inequality is a generalization of CHSH

inequality. It is a specific generalization in terms of joint
probability distributions:

Id =

[ d
2 ]−1∑
k=0

(1− 2k
(d − 1)

)[(P(A1 = B1 + k) + P(B1 = A2 + k + 1)

+P(A2 = B2 + k) + P(B2 = A1 + k))
−(P(A1 = B1 − k − 1) + P(B1 = A2 − k)
+P(A2 = B2 − k − 1) + P(B2 = A1 − k − 1))] (10)

• This generalization was obtained by first trying to find an
optimum expression for d = 3 and d = 4.

• There are other ways to write it, as we will see later.
• The maximum local-realistic value for this is 2 and

maximum possible value is 4.
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CGLMP Inequality
• This has been more popular qudit inequality. It has been

tested experimentally also. (Dada et al, 2011)
• However this inequality has one drawback. A

nonmaximally entangled state violates it more than a
maximally entangled state. Following table from Acin, Durt,
Gisin, and Latorre (2002) illustrates this.

• Given this, it would appear unlikely that a relation where a
relation like that for CHSH inequality may exist for CGLMP
inequality.
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