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• Entanglement-based quantum key distribution (QKD)

• Generalisation to many users (conference key agreement)

• Advantage of multipartite entanglement in quantum networks

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)
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Quantum key distribution (QKD)
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Vernam cipher ≡ “one-time pad” (1917):
Encoding with secret random key (only known to Alice and Bob,
not to Eve). Proven to be secure.

How to establish secret random key?
→֒ quantum cryptography ≡ quantum key distribution (QKD)
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Entanglement-based QKD (between two parties)

A. Ekert, Phys. Rev. Lett. 67, 661 (1991)

Aim: secret random key for Alice and Bob

|φ+>

classical channel

1) A sends half of a Bell state to Bob: |φ+〉AB = 1√
2
(|00〉AB + |11〉AB)

A and B measure, use 2 bases randomly: ↑→ or տր

2) A and B exchange class. info about basis,
keep matching cases: 1 r 0 0 1 r 0 r

→֒ Alice and Bob have established secret random key!
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Aim: secret random key for Alice and Bob

|φ+>

classical channel

1) A sends half of a Bell state to Bob: |φ+〉AB = 1√
2
(|00〉AB + |11〉AB)

A and B measure, use 2 bases randomly: ↑→ or տր

2) A and B exchange class. info about basis,
keep matching cases: 1 r 0 0 1 r 0 r

→֒ Alice and Bob have established secret random key!

Security: monogamy of entanglement
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Monogamy of entanglement

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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Impossible! Possible

E(B|A) + E(B|C) ≤ E(B|AC)

QKD in reality: noisy entangled state, ρ = p|φ+〉〈φ+| + (1 − p)1
41l,

assume Eve to have purifying state (is partially correlated with A/B)
→֒ security analysis
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Quantum Key Distribution (QKD)

Eve

Classical channel

Quantum channel

Alice Bob

• Scenario: Alice und Bob have quantum channel (controlled by Eve)
and classical channel (authenticated)

• Secure communication ⇔ Creation of a secret random key pair
between Alice and Bob

• No restrictions on Eve
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QKD: General description of a QKD protocol

Generic QKD Protocol

Distribution

Measurement
Sifting

Parameter
Estimation
(PE)

Error 
Correction
(EC)

Privacy 
Amplification
(PA)

and 

Quantum Part Classical Postprocessing
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QKD: General description of a QKD protocol

Generic QKD Protocol

Distribution

Measurement
Sifting

Parameter
Estimation
(PE)

Error 
Correction
(EC)

Privacy 
Amplification
(PA)

and 

Quantum Part Classical Postprocessing

Equivalence of prepare+measure QKD with entanglement-based QKD
→֒ In the following: use entanglement-based scheme
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Generalisation of QKD to more than two parties

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Aim: establish joint secret random key between N parties,
i.e. “conference key”

...

B

B

B
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class. channel

qu. channel
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Establishing a conference key: Two possibilities

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Using bipartite entanglement (2QKD):
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Establishing a conference key: Two possibilities

M. Epping, H. Kampermann, C. Macchiavello, and DB, New J. Phys. 19, 093012 (2017)

Using bipartite entanglement (2QKD):

... or using multipartite entanglement (NQKD):
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Multipartite entanglement
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Multipartite entanglement

Multipartite entanglement of composite (pure) states of N parties:

|ψ〉= |a〉1,...,k ⊗ |b〉k+1,...,N →֒ separable across bipartite split

|ψ〉 6= |a〉1,...,k ⊗ |b〉k+1,...,N →֒ multipartite entangled
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Multipartite entanglement

Multipartite entanglement of composite (pure) states of N parties:

|ψ〉= |a〉1,...,k ⊗ |b〉k+1,...,N →֒ separable across bipartite split

|ψ〉 6= |a〉1,...,k ⊗ |b〉k+1,...,N →֒ multipartite entangled

Example (separable): |ψ〉 = |0〉|0〉...|0〉

Example (entangled): GHZ states of N qubits

|ψ±j 〉 =
1√
2
(|0〉|j〉 ± |1〉|j̄〉)

where j takes values 0, ..., 2N−1 − 1 in binary notation;
j̄ is negation of j, e.g. if j = 010 then j̄ = 101
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Multipartite entanglement for QKD

Which types of multipartite entanglement can be used for QKD?
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Multipartite entanglement for QKD

Which types of multipartite entanglement can be used for QKD?

Theorem (Perfect resource state for multipartite QKD)

For N qubits, with N ≥ 3, the state
|φcorr〉 = a0,...,0|0, ..., 0〉 + a1,...,1|1, ..., 1〉 with | a0,...,0 |2 + | a1,...,1 |2 = 1
leads to perfect classical correlations between any number of parties,
if and only if each of them measures in the z-basis.
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Multipartite entanglement for QKD

Which types of multipartite entanglement can be used for QKD?

Theorem (Perfect resource state for multipartite QKD)

For N qubits, with N ≥ 3, the state
|φcorr〉 = a0,...,0|0, ..., 0〉 + a1,...,1|1, ..., 1〉 with | a0,...,0 |2 + | a1,...,1 |2 = 1
leads to perfect classical correlations between any number of parties,
if and only if each of them measures in the z-basis.

Proof: “⇐” clear;
“⇒”: observable Mij of two parties i and j:

Mij = ( ~Mi · ~σ) ⊗ ( ~Mj · ~σ) =
∑

α,β∈{x,y,z}
Mα

i M
β
j σ

α
i ⊗ σ

β
j ,

〈φcorr|σα
i ⊗ σ

β
j |φcorr〉 = 0 unless α = β = z,

also 〈φcorr|σα
i ⊗ σ

β
j |φcorr〉 = 2[pα

i (+)pβ
j (+) + pα

i (−)pβ
j (−)] − 1,

thus pα
i (+)pβ

j (+) + pα
i (−)pβ

j (−) 6= 1, unless α = β = z.
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Multipartite QKD protocol

If one requires perfect correlations and uniformity of key,
the only possible resource state is |GHZ〉 = 1√

2
(|0, ..., 0〉 + |1, ..., 1〉).
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If one requires perfect correlations and uniformity of key,
the only possible resource state is |GHZ〉 = 1√

2
(|0, ..., 0〉 + |1, ..., 1〉).

Protocol for N -party quantum conference key distribution (NQKD):

1) State preparation: Parties A and Bi, i = 1, 2, ..., N − 1

share |GHZ〉 = 1√
2

(

|0〉⊗N + |1〉⊗N
)

.
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2) Measurement: First type of measurement: All parties measure their
respective qubits in z-basis. Second type: parties measure randomly,
with equal probability, in x- or y-basis (much less frequent).
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3) Parameter estimation: Parties use equal number of randomly chosen
rounds of first and second type to estimate the error rates.
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Multipartite QKD protocol

If one requires perfect correlations and uniformity of key,
the only possible resource state is |GHZ〉 = 1√

2
(|0, ..., 0〉 + |1, ..., 1〉).

Protocol for N -party quantum conference key distribution (NQKD):

1) State preparation: Parties A and Bi, i = 1, 2, ..., N − 1

share |GHZ〉 = 1√
2

(

|0〉⊗N + |1〉⊗N
)

.

2) Measurement: First type of measurement: All parties measure their
respective qubits in z-basis. Second type: parties measure randomly,
with equal probability, in x- or y-basis (much less frequent).

3) Parameter estimation: Parties use equal number of randomly chosen
rounds of first and second type to estimate the error rates.

4) Classical post-processing: As in the bipartite protocol, error correction
and privacy amplification is performed.
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Secret key rate for NQKD

Security analysis:

• Analogous to bipartite case, with modifications in worst-case error
correction and depolarisation
R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332 (2005)
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Secret key rate for NQKD

Security analysis:

• Analogous to bipartite case, with modifications in worst-case error
correction and depolarisation
R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332 (2005)

• Figure of merit: secret fraction,
i.e. ratio of secret bits and number of shared states r∞:

r∞ = sup
U←K

inf
σA{Bi}

∈Γ
[S(U |E) − max

i∈{1,...N−1}
H(U |Ki)],

with U ← K: bitwise preprocessing channel on A’s raw key bit K,
S(U |E): conditional von-Neumann entropy of (class.) key variable and E,
H(U |Ki): conditional Shannon entropy of U and Bi’s guess of it,

Γ: set of all density matrices σA{Bi}
of A and Bi consistent with parameter estimation

Secret key rate: R = r∞Rrep with repetition rate Rrep
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Secret key rate for NQKD

Introduce (extended) depolarisation procedure, →֒ GHZ-diagonal state
→֒ calculate secret fraction r∞:
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Secret key rate for NQKD

Introduce (extended) depolarisation procedure, →֒ GHZ-diagonal state
→֒ calculate secret fraction r∞:

r∞ =

(

1 − QZ

2
−QX

)

log2

(

1 − QZ

2
−QX

)

+

(

QX − QZ

2

)

log2

(

QX − QZ

2

)

+ (1 −QZ)(1 − log2(1 −QZ)) − h( max
1≤i≤N−1

QABi
)

with QZ : probability that at least one Bi obtains different result than A in z-measurement,
with QX : probability that at least one Bi obtains in x-measurement a result that is

incompatible with noiseless state,
binary entropy: h(p) = −p log

2
p− (1− p) log

2
(1 − p),

QABi
: probability that z-measurements of A and Bi disagree.
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Example for explicit key rates

Noise model: mixture of GHZ-state and white noise (then Q = Qz)

r∞(Q,N) =1 + h(Q) − h

(

Q
2N − 1

2N − 2

)

− h

(

Q
2N−1

2N − 2

)

+

(

log2(2
N−1 − 1) − 2N − 1

2N − 2
log2(2

N − 1)

)

Q,
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Example for explicit key rates

Noise model: mixture of GHZ-state and white noise (then Q = Qz)

r∞(Q,N) =1 + h(Q) − h

(

Q
2N − 1

2N − 2

)

− h

(

Q
2N−1

2N − 2

)

+

(

log2(2
N−1 − 1) − 2N − 1

2N − 2
log2(2

N − 1)

)

Q,

Key rates for N = 2, 3, ...,8,

from left to right.
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Secret key rate as function of gate failure probability

Consider imperfect state preparation (depolarising noise): experimental
creation of GHZ-state is more demanding with higher N !
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Secret key rate as function of gate failure probability

Consider imperfect state preparation (depolarising noise): experimental
creation of GHZ-state is more demanding with higher N !

Key rates for N = 2, 3, ...,8,

from right to left.
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Advantage of NQKD in quantum networks

Consider quantum networks with routers (can produce and entangle
qubits), fixed channel capacity:
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Advantage of NQKD in quantum networks

Consider quantum networks with routers (can produce and entangle
qubits), fixed channel capacity:

For small gate failure probability: NQKD is better than 2QKD!
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Connection to quantum network coding

Processing of data at intermediate network nodes can improve throughput
and increase robustness of quantum network with bottleneck.
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Connection to quantum network coding

Processing of data at intermediate network nodes can improve throughput
and increase robustness of quantum network with bottleneck.

Famous example - the butterfly network:

Classical network coding:

Quantum network coding:

M. Epping, H. Kampermann, and DB, New J. Phys. 18, 103052 (2016)
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Connection to quantum network coding

Distribution of GHZ-state in above
network, with quantum operations at
node C (router), and fixed channel
capacities for all links:

Multi-partite entanglement can speed upquantum key distribution in networks, p. 19



Connection to quantum network coding

Distribution of GHZ-state in above
network, with quantum operations at
node C (router), and fixed channel
capacities for all links:

• A produces Bell state and sends only one qubit C to router:
| 〉CA = 1√

2
(|0+〉 + |1−〉)CA

• C produces (N − 1) qubits and entangles them with C via Cz gates:
|ψtotal〉 = 1√

2
(|+〉C |GHZ ′〉ABi

+ |−〉CXB1
|GHZ ′〉ABi

)

where |GHZ ′〉 is GHZ-state in X-basis.

• Router measures qubit C in X-basis and distributes qubits to Bi.

• Impossible to create (N − 1) Bell pairs by sending single qubit from
A to router; need (N − 1) network uses.

M. Epping, H. Kampermann, and DB, New J. Phys. 18, 103052 (2016)
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Summary and open questions

• Monogamy of entanglement →֒ security in entanglement-based QKD
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Quantum Information Theory in Düsseldorf

Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, Germany
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