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Motivations and goals

A Lorentzian spectral triple can be (loosely) de�ned as (A,K,D),
where:

A is a (dense ∗-subalgebra of a) C∗-algebra with a preferred
unitisation Ã,
K is a Krein space endowed with an (inde�nite) inner product (. , .)
together with a faithful representation of A,
D is an unbounded operator on K such that (φ,Dψ) = −(Dφ, ψ) for
all φ, ψ ∈ domD and such that [D, a] extends to a bounded operator
on K for any a ∈ Ã.

Example constructed uponM � glob. hyp. spacetime

A := C∞c (M), K := L2(M,S), D := −iγµ∇Sµ

Tomasz Miller (CC) Causal evolution of N-particle systems 27 November 2018 2 / 1



Motivations and goals

A Lorentzian spectral triple can be (loosely) de�ned as (A,K,D),
where:

A is a (dense ∗-subalgebra of a) C∗-algebra with a preferred
unitisation Ã,
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Motivations and goals

De�nition (N. Franco, M. Eckstein, 2013)

Let C be the cone of all Hermitian a ∈ Ã such that (φ, [D, a]φ) ≤ 0 for all
φ ∈ K. For any two states ξ, η on A we de�ne the causal relation

ξ � η def⇐⇒ ∀ a ∈ C ξ(a) ≤ η(a).

In the case of A = C∞c (M)

C is the set of smooth bounded causal functions.

The space of states becomes P(M) � the space of Borel prob.
measures onM. Pure states are the Dirac deltas δp, p ∈M.

For any µ, ν ∈P(M):

µ � ν ⇐⇒ ∀f ∈ C
∫
M
fdµ ≤

∫
M
fdν
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φ ∈ K. For any two states ξ, η on A we de�ne the causal relation

ξ � η def⇐⇒ ∀ a ∈ C ξ(a) ≤ η(a).

In the case of A = C∞c (M)

C is the set of smooth bounded causal functions.

The space of states becomes P(M) � the space of Borel prob.
measures onM. Pure states are the Dirac deltas δp, p ∈M.

For any µ, ν ∈P(M):

µ � ν ⇐⇒ ∀f ∈ C
∫
M
fdµ ≤

∫
M
fdν

Tomasz Miller (CC) Causal evolution of N-particle systems 27 November 2018 3 / 1



Motivations and goals

De�nition (N. Franco, M. Eckstein, 2013)

Let C be the cone of all Hermitian a ∈ Ã such that (φ, [D, a]φ) ≤ 0 for all
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Motivations and goals

Causal precedence relation � (J+) between events

p � q if ∃ a piecewise smooth fut-dir causal curve from p to q (or p = q).

On the other hand: δp � δq ⇐⇒ ∀f ∈ C f(p) ≤ f(q)

Question 1: Can one extend � onto P(M) without explicity employing
causal functions?

Here the measures can be spread also in the timelike direction.
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Causality for probability measures

What does it mean that µ � ν? [M. Eckstein, TM '17]

LetM be a spacetime. Then for any µ, ν ∈P(M)

µ � ν def⇐⇒ ∃ω ∈P(M2) such that:

• ∀B � Borel ω(B ×M) = µ(B), ω(M×B) = ν(B),

• ω(J+) = 1,

where J+ := {(p, q) ∈M2 | p � q}.

ω can be called a causal coupling or a causal transference plan.

For µ = δp, ν = δq, the only coupling is ω = δ(p,q) and so δp � δq i�
p � q.
� is re�exive and transitive. It is antisymmetric forM past/future
distinguishing.
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Causality for probability measures

Each in�nitesimal part of the probability measure should travel
along a future-directed causal curve.
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Causality for probability measures

ForM causally simple (� antisymmetric + topologically closed):

µ � ν ⇐⇒ for any compact K ⊂ supp µ µ(K) ≤ ν(J+(K))
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Causality for probability measures

ForM globally hyperbolic:

µ � ν ⇐⇒ for any Cauchy hypersurface Σ µ(J+(Σ )) ≤ ν(J+(Σ ))
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Causality for probability measures

De�nition (M. Eckstein, TM 2017)

Let s ∈ (0, 1]. For any µ, ν ∈P(M) their sth Lorentz�Wasserstein
distance is de�ned via

LWs(µ, ν) :=

 sup
ω � c.c. of µ and ν

[∫
M2

d(p, q)sdω(p, q)

]1/s
if µ � ν

0 if µ 6� ν

This notion has already been picked by:

R. McCann in his study of the relation between the Hawking�Penrose
strong energy condition and the geodesic concavity of the
Boltzmann�Shannon entropy.

A. Mondino and S. Suhr in their optimal-transport-theoretic
formulation of the Einstein equations.
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Causal time-evolution of measures (M � Minkowski)

Causal time-evolution of a pointlike particle

A curve γ : I →M with γ(t) = (t, x(t)) is a worldline of a physical
particle if

∀s, t ∈ I s ≤ t ⇒ γ(s) � γ(t).

Causal time-evolution of a probability measure

A map µ : I →P(M), t 7→ µt such that suppµt ⊂ {t} × R3 for all t ∈ I
is a causal evolution of a measure if

∀s, t ∈ I s ≤ t ⇒ µs � µt.
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Causal time-evolution of measures (M � glob. hyperbolic)

Fix a Cauchy temporal function T .

Causal time-evolution of a pointlike particle

A curve γ : I →M such that T (γ(t)) = t is a worldline of a physical
particle if

∀s, t ∈ I s ≤ t ⇒ γ(s) � γ(t).

Causal time-evolution of a probability measure

A map µ : I →P(M), t 7→ µt such that suppµt ⊂ T −1(t) for all t ∈ I is
a causal evolution of a measure if

∀s, t ∈ I s ≤ t ⇒ µs � µt.
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Causal time-evolution of measures (M � glob. hyperbolic)
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Causal time-evolution of measures (M � glob. hyperbolic)

Theorem [TM '17]

Fix a Cauchy temporal function T .
Consider a map t 7→ µt ∈P(M)
satisfying supp µt ⊂ T −1(t) for all t ∈ I.
TFAE:

The map t 7→ µt is causal, i.e.
∀s, t ∈ I s ≤ t ⇒ µs � µt.

There exists a probability measure
on the space of worldlines, from
which one can recover µt for all t ∈ I.

The �space of worldlines� is suitably
topologized so as to ensure Polishness. Adapted from Penrose's �Road to Reality�
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Causality for N -particle systems (work in progress)

Choose a Cauchy temporal function T .
This �xes a Geroch�Bernal�Sànchez splittingM∼= R× S.
Call R× SN an �N -particle glob. hyp. spacetime�.

Causal relation:
(s, x1, . . . , xN ) � (t, y1, . . . , yN ) ⇔ ∀i (s, xi) � (t, yi).

Extend � onto P(R× SN ) employing the notion of a coupling.

Causal time-evolution of an N -particle probability measure

A map µ : I →P(R× SN ), t 7→ µt such that suppµt ⊆ {t} × SN for all
t ∈ I is a causal evolution of an N-particle measure if

∀s, t ∈ I s ≤ t ⇒ µs � µt.
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Causality for N -particle systems (work in progress)

We retain most of the characterisations of �!
Fix s, t ∈ I. TFAE:

µs � µt
For any compact K ⊆ supp µs µs(K) ≤ µt(J+(K))

For any Cauchy hypersurface Σ ⊂ R×SN µs(J
+(Σ )) ≤ µt(J+(Σ ))

For any time function f ,
∫
R×SN fdµs ≤

∫
R×SN fdµt

where f being time means that f ∈ C(R× SN ) and the condition that
∀i (s, xi) � (t, yi) implies that f(s, x1, . . . , xN ) < f(t, y1, . . . , yN ).

We also retain the equivalence between the evolution being causal and the
existence of a single probability measure on the (space of worldlines)N .
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Conclusions and take-home messages

The causal relation J+ can be naturally extended onto P(M) � the
space of Borel probability measures onM.

One can use thus extended relations to describe the causal evolution
of probability measures in glob. hyperbolic spacetimes.

Time-evolution of a pointlike particle ! single worldline.
Time-evolution of a nonlocal object ! prob. measure on the space
of worldlines.

One can generalize the above formalism to an N -particle setting,
constructing the �N -particle glob. hyp. spacetime� R× SN upon the
Geroch�Bernal�Sànchez splittingM∼= R× S.
The causality theory for the Lorentzian spectral triples can greatly
enrich our understanding even in the commutative case!
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A1: Relationship with the continuity equation (M � Minkowski)

Theorem [M. Eckstein, TM '17]

Suppose ρ(t, x) satis�es the continuity equation ∂tρ+∇ · ρv = 0 with
a velocity �eld such that ‖v(t, x)‖ ≤ 1. Then µt de�ned via

dµt = δt ⊗ ρ(t, x) d3x

evolves causally.

More generally, suppose µt satis�es:

∀Φ ∈ C∞c (I × Rn)

∫
I

∫
M

(∂t + v · ∇) Φ dµtdt = 0

with v as above. Then µt evolves causally.
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A1: Relationship with the continuity equation (M � glob. hyperbolic)

Conjecture

Fix a Cauchy temporal function T . Suppose µt (such that
supp µt ⊆ T −1(t)) satis�es:

∀Φ ∈ C∞c (T −1(I))

∫
I

∫
M
XΦ dµtdt = 0 (?)

with a certain causal vector �eld X. Then µt evolves causally.

Converse result (preliminary!)

Fix a Cauchy temporal function T . Suppose µt evolves causally. Then
there exists a causal vector �eld X such that (?) holds.

X is generally rather low-regular. Namely, L2(T −1(I),
∫
I µtdt)-regular.
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A2: Polish spaces of causal curves

Q: How to topologize sets of (fut-dir) causal curves?
A (naïve): Induce topology from C(I,M) (the compact-open
top.)

Too large a space! Various parameterizations of an unparameterized
curve treated as distinct elements!

Two ways out:

Take a quotient modulo (continuous strictly increasing)
reparameterizations ⇔ focus on unparameterized curves, and use the
C0-topology.
Choose the �canonical� parameterization of each curve � e.g. the
arc-length parameterization � and use the compact-open topology.
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A2: Polish spaces of causal curves

Spaces of causal curves parameterized �in accordance with T �
M � stably causal spacetime, T � time function, I � interval.
CIT := the space of all fut-dir causal curves γ ∈ C(I,M) such that

∃ cγ > 0 ∀s, t ∈ I T (γ(t))− T (γ(s)) = cγ(t− s),

endowed with the compact-open topology induced from C(I,M).

CIT is separable and completely metrizable (i.e. Polish).

C := the space of all compact unparameterized causal curves with the

C0-topology. Theorem: C
[a,b]
T
∼= C and hence:

C is Polish!

C
[a,b]
T1

∼= C
[c,d]
T2

.

M � glob. hyperbolic, T1, T2 � Cauchy temporal functions.
Theorem: CR

T1
∼= CR

T2 .
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Causal time-evolution of measures (full statement of the theorem)

Theorem [TM '17]

Fix a Cauchy temporal function T .
Consider a map t 7→ µt ∈P(M)
satisfying supp µt ⊆ T −1(t) for all t ∈ I.
TFAE:

The map t 7→ µt is causal, i.e.

∀s, t ∈ I s ≤ t ⇒ µs � µt.

∃σ ∈P(CIT ) such that

(evt)#σ = µt,

where evt : CIT →M, γ 7→ γ(t). Adapted from R. Penrose's �Road to Reality�
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