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Introduction

§ Lorentzian (spin) geometry: commutative

§ Lorentzian Spectral Triples (à la Franco-Eckstein)

§ Unbounded Multipliers

§ Regular Lorentzian Spectral Triples

§ Causal Order Revisited

§ A General Distance Formula

§ The Moyal (Regular) Lorentzian Spectral Triple

§ Causality and Distance for (Smooth) Translated States



Lorentzian (Spin) Geometry: Commutative

The motivating example: complete globally hyperbolic spacetimes M.
By an improved version of a classical result of Geroch, there exist smooth
functions T : M Ñ R (called causal functions) such that:

§ It is increasing along future directed timelike curves;

§ Its level sets are global (smooth) Cauchy surfaces;

§ They can be used to define global coordinates such that the metric takes the
form g “ ´N2dT 2 ` gS with bounded N ą 0.

§ As a consequence they satisfy gp∇T ,∇T q ă 0.

§ We have p1 ď p2 iff T pp2q ´ T pp1q ď 0 for all causal T .

Later strengthened result:

§ automatic existence of steep functions T 1 satisfying gp∇T 1,∇T 1q ď ´c2T 1
for some fixed cT 1 ą 0. They are necessarily unbounded.

The splitting of the metric naturally gives a reflection r : M Ñ M sending g to
its “Wick-rotated” riemannian counterpart g r . Our assumption means that M is
complete with respect to it.



To the metric g there correspond:

§ A spin bundle with space of sections ΓpM,Sq, a Clifford action c such that
cpuqcpvq ` cpvqcpuq “ 2gpu, vq1S (u, v P T˚M).

§ For any local basis x “ px0, ¨ ¨ ¨ , xn´1q one defines curved gamma matrices
γµ “ cpdxµq: γ0 is anti-hermitian, the γ i ’s are hermitian, rγµ, γνs` “ 2gµν .

The natural inner product on ΓpM,Sq comes from an indefinite non-degenerate
bilinear form ă ¨, ¨ ąS on S :

ă f1, f2 ą“

ż

M

ă f1ppq, f2ppq ąS

a

|g |dnx .

To the reflection r there corresponds the fundamental symmetry J “ iN´1cpdT q
and the scalar product

pf1, f2q “ă f1, Jf2 ą“

ż

M

ă f1ppq, jS f2ppq ąS

a

|g |dnx ,

and one sets H “ L2pM,Sq.

§ D “ ´ic ˝∇S is such that iD is essentially Krein-selfadjoint on the smooth
functions on C80 pMq “ A (and on an appropriate unital rA Ă C8b pMq).

§ Since icpdT q “ rD,T s, we see that J “ γflat
0 “ ´N´1rD,T s.

§ This construction actually works for any signature of the metric g .



Franco, Eckstein:

§ If pM 1, g 1q is a complete pseudo-riemannian manifold and J 1 is such that
N 1 “ ´J 1rD 1,T 1s for some smooth functions N 1,T 1, then J 1 has lorentzian
signature and the metric admits a global splitting so that M 1 is globally
hyperbolic;

§ Given J, a smooth function T : M Ñ R is causal if and only if there is
N ą 0 such that N “ ´JrD,T s.

§ Given J, a smooth function T : M Ñ R is steep if and only if there is N ą 0
such that N “ ´JprD,T s ` iγq with the parity operator
γ “ ´i1`n{2γ0 ¨ ¨ ¨ γn.



Letting L “ tCas. future orient. paths P : p1 Ñ p2u, a lorentzian “distance” can
be defined on M by the formula:

dpp1, p2q “

#

supL
ş

P ds, for p1 ď p2,

0, for p1 ę p2.

For p1 ď p2 ď p2 and pv ,wq timelike vectors, we have

§ If dpp1, p2q, dpp2, p1q ě 0 then dpp1, p2q “ 0, (antisymmetry);

§ dpp1, p3q ě dpp1, p2q ` dpp2, p3q, (reverse triangle inequality);

§ |gpv ,wq| ě
a

´gpv , vq
a

´gpw ,wq, (reverse Cauchy-Schwartz).

The “Gelfand-dualised” version of the distance reads,

dpp, qq “ inf
TPF

 

rT ppq ´ T pqqs`
(

,

where rcs` “ maxt0, cu and F is the set of all smooth steep functions. Since
these are unbounded, this makes sense only for pure states. However (forget
about antisymmetry and the reverse triangle inequality), we may define

dpω1, ω2q “

#

infFXDpω1,ω2qtrω2pf q ´ ω1pf qs
`u, for Dpω1, ω2q ‰ H,

`8, for Dpω1, ω2q “ H.

with Dpω1, ω2q “ F X L1pM, dµω1q X L1pM, dµω2q.



Lorentzian Spectral Triples

A Lorentzian spectral triple is given by pA, rA, π,H,D, Jq with:

§ A Hilbert space H with scalar product p¨, ¨q.

§ A non unital pre-C*-algebra A with a faithful *-representation π on BpHq.
§ A preferred unitization rA of A, which is also a pre-C*-algebra, with a

compatible faithful *-representation π on BpHq and such that A is an ideal

of rA.

§ An unbounded operator D, densely defined on H, such that:
§ @a P rA the operator rD, πpaqs extends to a bounded operator on H,
§ with 〈D〉2 :“ 1

2
pDD˚

` D˚Dq, @a P A the operator πpaqp1` 〈D〉2q´
1
2 is

compact, .

§ A bounded operator J on H with J2 “ 1, J˚ “ J, rJ, πpaqs “ 0, @a P rA and
such that:

§ D˚
“ ´JDJ on DompDq “ JDompD˚

q Ă H;

Then: pJγq˚ “ ´Jγ ñ iJγ is selfadjoint. Moreover, piJγq2 “ ´JγJγ “ 1.
The operator J is a fundamental symmetry which turns the Hilbert space H into
a Krein space with (indefinite) inner product ă ¨, ¨ ą“ p¨, J¨q.
The condition D˚ “ ´JDJ

.
“ ´D: means that iD is Krein-selfadjoint.



§ There is a distinguished selfadjoint operator T such that:

DompT q X DompDq is dense in H, it holds
`

1` T 2
˘´ 1

2 P rA and there exist

an operator N P rA such that N ě 0 and N “ ´JrD,T s holds.

A Lorentzian spectral triple is even if there exists a Z2-grading γ of H such that
γ˚ “ γ, γ2 “ 1, rγ, πpaqs “ 0 @a P rA, γJ “ ´Jγ and γD “ ´Dγ.



Casual Structure for LST’s

Let C be the convex cone of all selfadjoint elements T P rA such that

@ φ P H, pφ, JrD, πpaqsφq ď 0,

If SpanCpCq “ rA then C is called a causal cone.
It induces a partial order relation on SpAq by

@ω1, ω2 P SpAq, ω ď ω2 iff @T P C, ω1pT q ď ω2pT q.

§ In the commutative case the unitisation rA has to be carefully chosen so that
the set of causal functions is really a causal cone.



Unbounded Multipliers

An unbounded multiplier of a C˚-albebra B (or an unbounded element affiliated
to B) is a closed B-linear map R : J Ñ B, where J is a dense left ideal in B,
with a densely defined R˚ and such that p1` R˚Rq has dense range. We write
RηB and UMpBq.

§ RηB iff there exists z P MpBq (the multiplier of B) with ||z || ď 1 and

px P DpRq, y “ Rxq ô pthere is b P B : x “ p1´ z˚zq1{2b and y “ zbq,

§ If such a z exists, it is unique and called the z-transform of R (we write zR ).

§ An element z P MpBq is the z-transform of some RηB if and only if ||z || ď 1
and p1´ z˚zqB “ B.

§ z˚R “ zR˚ , p1` R˚Rq´1 “ p1´ zRz
˚
R q
´1 and R “ zRp1´ zRz

˚
R q
´1{2 on

p1´ zRz
˚
R q
´1{2B, which is a core for R.

§ MpBq Ă UMpBq but the two sets coincide if B is unital.

§ Any representation π of B on K extends to a map π̂ from UMpBq to the
closed (unbounded) operators on K.

R is rA-affiliated to A if RηA and zR P rA.



Regular LST’s

§ A LST pA, rA, π,H,D, Jq is said to be regular (RLST) whenever there exists

a preferred rA-affiliated selfadjoint operator T and a positive N P rA such
that N “ ´JrD,T s.

Suppose that 0 ă N P rA commutes with the preferred T . This includes Franco’s
Temporal LST, where N P Cp rAq. If N is invertible, JN´1{2DN´1{2 is selfadjoint
and rJN´1{2DN´1{2,T s “ ´i1. But TηA is bounded if A is unital, and
boundedness of T is incompatible with exponentiability to the corresponding
Weyl relations. This would rule out compact noncomm. lorentzian manifolds.
We are thus led to

§ A selfadjoint T rA-affiliated to A is temporal if DompT q X DompDq is dense

in H, and there exists 0 ď N P rA (so rN, Js “ 0) such that N “ ´JrD,T s
on DomprD,T sq. We indicate the set of all such operators by T J

D .

This can be seen as the analog of the causal cone C. Notice that T J
D ‰ H.



When are we are entitled to call T J
D a casual cone? Ideally, we should ask that

rA Ă C˚pT J
D q. However, due to the presence of unbounded elements it is highly

problematic to give a precise meaning to such a requirement. Woronowicz gave a
notion of C˚-algebras generated by unbounded affiliated elements which appears
to perfectly suit this context and in particular the lorentzian Moyal.
The second difficulty concerns the need to evaluate states of the C˚-algebra on
unbounded elements. Our solution rests on the following definition:

§ Let ω be a state on the C˚-algebra A, pπω, φωq the corresponding GNS

representation and vector and T rA-affiliated to A. We say ω P DompT q if
φω P Domp|xπωpT q|q, where pπω is the canonical extension of πω to UMpAq.
In this case we set ωppπωq “ pφω,xπωpT qφωq.

If a state ω is a vector state in the representation π defining the spectral triple
with corresponding vector ψ and T P T J

D is in the domain of ω, we have that
ψ P Domp|pπpT q|q and pψ, pπpT qψq “ pφω, pπωpT qφωq “ ωpT q.



Causal Order Revisited

For ω1, ω2 P SpAq, we are now ready to introduce

§ Dpω1, ω2q “ tT P T D
J : ω1p|T |q, ω2p|T |q ă 8u,

§ ω1, ω2 are Causally Related whenever for all T P Dpω1, ω2q there holds
ω1pT q ď ω2pT q.

Since for a (R)LST C Ă Dpω1, ω2q for all ω1, ω2, it is clear that if two states are
casually related then they are comparable according to the partial order previously
introduced. Still, the two notions need not be equivalent.



A General Distance Formula

§ A selfadjoint T rA-affiliated to A is steep whenever DompT q X DompDq
dense in H and there exist an operator N ą 0 such that rJ,Ns “ 0 and

N “ ´JprD,T s ` iγq. We denote by rT D
J the set of all such operators.

§ rDpω1, ω2q “ Dpω1, ω2q X rT D
J .

The set rT D
J is not empty in typical cases, precisely because we include unbounded

operators. It is not difficult to prove that rT D
J Ă T D

J . Next, we set:

§ Given two states ω1, ω2 on A, their distance is given by:

dpω1, ω2q “

#

inf
rDpω1,ω2q

trω2pf q ´ ω1pf qs
`u, for rDpω1, ω2q ‰ H,

`8, for rDpω1, ω2q “ H.

This formula reduces to the ordinary one for (sufficiently regular) commutative
lorentzian manifolds.



The Moyal Lorentzian (R)LST

§ H0 :“ L2pR1,1q b C2 with the usual positive definite inner product
xψ, φy “

ş

d2x pψ˚1 φ1 ` ψ
˚
2 φ2q with ψ “ pψ1, ψ2q, φ “ pφ1, φ2q.

§ A is the space of Schwartz functions SpR1,1q with the Moyal ‹ product

pf ‹ gqpxq :“
1

π2

ż

R4

d2s d2t f px ` sq gpx ` tq e´2iσps,tq, f , g P SpR2q.

where σp¨, ¨q denotes the standard symplectic form. π : AÑ BpH0q is
defined by the left multiplication:

πpf q “ Lpf q b 1, πpf qψ “ pLpf qψ1, Lpf qψ2q “ pf ‹ ψ1, f ‹ ψ2q,

is faithful and A “ KpH0q. We will identify states on A and πpAq. Any
pure state ω P SpAq is a vector state: there is a vector ψ P H0 such that
ωpf q “ă ψ, πpf qψ ą for all f P A.

§ D :“ ´iBµ b γ
µ (with µ “ 0, 1) is the flat Dirac operator on R1,1 where:

γ0 “ iσ1 “

ˆ

0 i
i 0

˙

, γ1 “ σ2 “

ˆ

0 i
´i 0

˙

§ J :“ iγ0 and γ “ ´γ0γ1 “ diagp1,´1q.



Consider light-cone coordinates and derivatives

x` :“
x0 ` x1
?

2
, x´ :“

x0 ´ x1
?

2
, B` :“

B0 ` B1
?

2
, B´ :“

B0 ´ B1
?

2
.

The lorentzian inner product then looks x ¨ y “ ´x`y´ ´ x´y` and

D “
?

2

ˆ

0 B`

B´ 0

˙

, rD, πpf qsψ “
?

2

ˆ

B`f ‹ ψ2

B´f ‹ ψ1

˙

.

The operator JrD, πpaqs of the causal constraint is

JrD, πpf qs “ ´
?

2

ˆ

LpB´f q 0
0 LpB`f q

˙

,

and T J
D is the set of all f P C 1pMq such that

@ψ1 P L
2pR1,1q,

ż

d2x ψ˚1 ppB´f q ‹ ψ1q “

ż

d2x ψ˚1 ‹ pB´f q ‹ ψ1 ě 0,

and

@ψ2 P L
2pR1,1q,

ż

d2x ψ˚2 ppB`f q ‹ ψ2q “

ż

d2x ψ˚2 ‹ pB`f q ‹ ψ2 ě 0.



Coordinate Operators and Translations

Set z “ x0`ix1?
2
, z̄ “ x0´ix1?

2
and consider Wigner’s transition eigenfunctions

hmn :“
1

?
m! n!

z̄‹m ‹ h00 ‹ z
‹n, m, n P N, h00 “

c

2

π
e´px

2
0`x2

1 q.

They form an orthonormal basis of L2pR1,1q and their linear span L of the hmn’s
constitutes an invariant dense domain of analytic vectors for the symmetric
operators Lpx`q, Lpx´q (or Lpx0q, Lpx1q) which are then essentially self-adjoint on
SpR1,1q. Since UMpKq “ BpHq, their closure is trivially affiliated to A. One
obtains a representation of the Heisenberg algebra:

rLpx0q, Lpx1qs “ iI , rLpx´q, Lpx`qs “ iI .

and the useful relations

x` ‹ f “ x`f ´
iB´

2
f , x´ ‹ f “ x´f ´

iB`
2

f ,

f ‹ x` “ fx` `
iB´

2
f , f ‹ x´ “ fx´ `

iB`
2

f ,



Translations pακf qpxq :“ f px ` κq with f P SpR1,1q and κ P R1,1 define a
˚-automorphism of the algebra A implemented by

Lpακf q “ AdUκ Lpf q, Uκpxq :“ Lpe ip´κ1x0`κ0x1qq “ Lpe ipκ´x`´κ`x´qq,

Moreover, one has

d

dt
L pαtκpf qq|0 “ L

ˆ

d

dt
f px ` tκq|0

˙

“ Lpκ´B´f ` κ`B`f q

L pακpx˘qq “ L px˘ ` κ˘q ,
d

dt
Lpαtκpx˘qq|t “ Lp

d

dt
αtκpx˘q|t q “ κ˘I .

as operators on SpR1,1q. From this one gets

˘LpB˘f q “ irLpx˘q, Lpf qs, @f P A.

§ For κ P R1,1, the κ-translated of a state ω is ωκ :“ ω ˝ ακ;

§ We say a state ω is smooth whenever |ωpxm
`x

n
´q|, |ωpx

m
´x

n
`q| ă `8 for any

m, n P N.

Any smooth state can be decomposed into a convex combination of pure states
which will again be smooth. Moreover, pure smooth states are given by
ψ “ pψ1, ψ2q P H0 such that ψ1, ψ2 P SpR1,1q.



Causal Relations between Translated States

Proposition Suppose ω is a any smooth state and let ωκ be its translated by
κ P R1,1. Then these states are casually related with ω ď ωk if and only if
κ P V` “ tκ`, κ´ ě 0u, the closed forward light-cone.

Sketch of Proof (for pure states, easily generalised) We start by showing that
under the stated assumptions for each f P Dpωκ, ωq we have ωκpf q ´ ωpf q ě 0.
Suppose first that ω is pure. From the Fundamental Theorem of Calculus we get

ωκpf q ´ ωpf q “

ż 1

0

dt pk`ωtκpB`f q ` k´ωtκpB´f qq,

and the result follows immediately from the characterisation of the convex cone
T J

D and the fact that all pure states are vector states.
Conversely, for κ R V` at least one of κ`, κ´ is stricly negative, say κ` ă 0.
Observe that f “ x` P Dpωκ, ωq and

ωκpf q ´ ωpf q “
1

2

ż 1

0

dt k` ωtκpB`f`q “ κ`.



Distance between Translated States

Proposition Suppose ω and ωκ are as above. Then dpω, ωkq “
?

2κ`κ´.

Sketch of Proof (for pure states, easily generalised).

JprD, πpf qs ` iγq “ ´

ˆ?
2 LpB´f q i
´i

?
2 LpB`f q

˙

,

and from the condition that the bilinear form it defines is negative definite we
infer that the hermitian bilinear form on C2 defined by

ˆ?
2 pψ1, pB´f q ‹ ψ1q ´ipψ1, ψ2q

ipψ2, ψ1q
?

2 pψ2, pB`f q ‹ ψ2q

˙

,

is positive definite. This is equivalent to

pψ1, pB´f q ‹ ψ1q ě 0, 2pψ1, pB´f q ‹ ψ1qpψ2, pB`f q ‹ ψ2q ´ |pψ1, ψ2q|2 ě 0,

from which we easily deduce that

pψ, pB`f q ‹ ψq ě 0, pψ, pB`f q ‹ ψi qpψ, pB´f q ‹ ψq ě
1

2
.

are also valid for any ψ P L2pR1,1q with unit norm.



Moreover, with ψtκ “ Utκ ‹ ψ P L
2pR1,1q and ωtκ “ ω ˝ αtκ “ pψtκ, ¨ψtκq with

k P V`, t P r0, 1s and ||ψtκ|| “ 1, we have

rωκpf q ´ ωpf qs
` “ ωκpf q ´ ωpf q “

ż 1

0

dt pψ˚tκ, pκ`B` ` κ´B´qf ‹ ψtκq .

However, it follows from the inequalities above that for each t P r0, 1s the vector
pωtκpB`f q, ωtκpB´f qq is timelike. By assumption so is κ, thus we can use the
reverse Schwartz inequality to obtain

ωκpf q ´ ωpf q ě
a

2κ`κ´

ż 1

0

dt
a

2ωtκpB`f qωtκpB´f q ě
a

2κ`κ´,

and thus deduce the fundamental inequality

dpω, ωκq ě
a

2κ`κ´.

Finally, we see that the inf is attained if we choose

f “
κ´

?
2κ`κ´

x` `
κ`

?
2κ`κ´

x´ P rDpω, ωκq,

which obviously satisfies the required condition.



Short bibliography

§ N. Franco, Temporal Lorentzian Spectral Triples, Rev. Math. Phys. 26 8
(2014), 1430007.

§ N. Franco, The Lorentzian distance formula in noncommutative geometry,
Journal of Physics: Conference Series 968 (2018).

§ N. Franco and M. Eckstein, An algebraic formulation of causality for
noncommutative geometry, Classical and Quantum Gravity 30 13 (2013),
135007.

§ N. Franco, J.-C. Wallet, Metrics and causality on moyal planes, in
Noncommutative Geometry and Optimal Transport, Contemporary
Mathematics, American Mathematical Society, P. Martinetti and J.-C.
Wallet Eds., 676 (2016), 147.

§ P. Martinetti, L. Tomassini, Noncommutative geometry of the Moyal plane:
translation isometries, Connes’s spectral distance between coherent states,
Pythagoras equality, Commun. Math. Phys., 323 1 (2013), 187.

§ O. Müller and M. Sánchez, Lorentzian manifolds isometrically embeddable in
LN , Trans. Am. Math. Soc. 363 (2011), 5367–5379.


