Lorentzian spectral triples, causality and distance

Luca Tomassini Università di Chieti-Pescara

November 27, 2018

- ▶ Lorentzian (spin) geometry: commutative
- ► Lorentzian Spectral Triples (à la Franco-Eckstein)
- Unbounded Multipliers
- ▶ Regular Lorentzian Spectral Triples
- ► Causal Order Revisited
- A General Distance Formula
- ► The Moyal (Regular) Lorentzian Spectral Triple
- ► Causality and Distance for (Smooth) Translated States

Lorentzian (Spin) Geometry: Commutative

The motivating example: complete globally hyperbolic spacetimes M. By an improved version of a classical result of Geroch, there exist smooth functions $T: M \to \mathbb{R}$ (called causal functions) such that:

- It is increasing along future directed timelike curves;
- Its level sets are global (smooth) Cauchy surfaces;
- They can be used to define global coordinates such that the metric takes the form $g = -N^2 dT^2 + g_S$ with bounded N > 0.
- As a consequence they satisfy $g(\nabla T, \nabla T) < 0$.
- We have $p_1 \leq p_2$ iff $T(p_2) T(p_1) \leq 0$ for all causal T.

Later strengthened result:

▶ automatic existence of steep functions T' satisfying $g(\nabla T', \nabla T') \leq -c_{T'}^2$ for some fixed $c_{T'} > 0$. They are necessarily unbounded.

The splitting of the metric naturally gives a reflection $r : M \to M$ sending g to its "Wick-rotated" riemannian counterpart g^r . Our assumption means that M is complete with respect to it.

To the metric g there correspond:

- ► A spin bundle with space of sections $\Gamma(M, S)$, a Clifford action c such that $c(u)c(v) + c(v)c(u) = 2g(u, v)1_S$ $(u, v \in T^*M)$.
- ► For any local basis $x = (x^0, \dots, x^{n-1})$ one defines curved gamma matrices $\gamma^{\mu} = c(dx^{\mu})$: γ^0 is anti-hermitian, the γ^i 's are hermitian, $[\gamma^{\mu}, \gamma^{\nu}]_+ = 2g^{\mu\nu}$.

The natural inner product on $\Gamma(M, S)$ comes from an indefinite non-degenerate bilinear form $< \cdot, \cdot >_S$ on S:

$$< f_1, f_2 >= \int_M < f_1(p), f_2(p) >_S \sqrt{|g|} d^n x.$$

To the reflection *r* there corresponds the fundamental symmetry $J = iN^{-1}c(dT)$ and the scalar product

$$(f_1, f_2) = < f_1, Jf_2 > = \int_M < f_1(p), j_S f_2(p) >_S \sqrt{|g|} d^n x,$$

and one sets $\mathcal{H} = L^2(M, S)$.

- $D = -ic \circ \nabla^S$ is such that iD is essentially Krein-selfadjoint on the smooth functions on $C_0^{\infty}(M) = \mathcal{A}$ (and on an appropriate unital $\widetilde{\mathcal{A}} \subset C_b^{\infty}(M)$).
- Since ic(dT) = [D, T], we see that $J = \gamma_0^{flat} = -N^{-1}[D, T]$.
- This construction actually works for any signature of the metric g.

Franco, Eckstein:

- If (M', g') is a complete pseudo-riemannian manifold and J' is such that N' = -J'[D', T'] for some smooth functions N', T', then J' has lorentzian signature and the metric admits a global splitting so that M' is globally hyperbolic;
- Given J, a smooth function $T: M \to \mathbb{R}$ is causal if and only if there is N > 0 such that N = -J[D, T].
- Given J, a smooth function $T: M \to \mathbb{R}$ is steep if and only if there is N > 0such that $N = -J([D, T] + i\gamma)$ with the parity operator $\gamma = -i^{1+n/2}\gamma_0 \cdots \gamma_n$.

Letting $\mathcal{L} = \{ \text{Cas. future orient. paths } \mathcal{P} : p_1 \rightarrow p_2 \}$, a lorentzian "distance" can be defined on M by the formula:

$$d(p_1, p_2) = \begin{cases} \sup_{\mathcal{L}} \int_{\mathcal{P}} ds, & \text{for } p_1 \leq p_2, \\ 0, & \text{for } p_1 \leq p_2. \end{cases}$$

For $p_1 \leqslant p_2 \leqslant p_2$ and (v, w) timelike vectors, we have

- ▶ If $d(p_1, p_2), d(p_2, p_1) \ge 0$ then $d(p_1, p_2) = 0$, (antisymmetry);
- $d(p_1, p_3) \ge d(p_1, p_2) + d(p_2, p_3)$, (reverse triangle inequality);
- ► $|g(v, w)| \ge \sqrt{-g(v, v)} \sqrt{-g(w, w)}$, (reverse Cauchy-Schwartz).

The "Gelfand-dualised" version of the distance reads,

$$d(p,q) = \inf_{T\in\mathcal{F}} \left\{ \left[T(p) - T(q) \right]^+ \right\},\,$$

where $[c]^+ = \max\{0, c\}$ and \mathcal{F} is the set of all smooth steep functions. Since these are unbounded, this makes sense only for pure states. However (forget about antisymmetry and the reverse triangle inequality), we may define

$$d(\omega_1, \omega_2) = \begin{cases} \inf_{\mathcal{F} \cap \mathcal{D}(\omega_1, \omega_2)} \{ [\omega_2(f) - \omega_1(f)]^+ \}, & \text{for } \mathcal{D}(\omega_1, \omega_2) \neq \emptyset, \\ +\infty, & \text{for } \mathcal{D}(\omega_1, \omega_2) = \emptyset. \end{cases}$$

with $\mathcal{D}(\omega_1, \omega_2) = \mathcal{F} \cap L^1(M, d\mu_{\omega_1}) \cap L^1(M, d\mu_{\omega_2}).$

Lorentzian Spectral Triples

A Lorentzian spectral triple is given by $(\mathcal{A}, \widetilde{\mathcal{A}}, \pi, \mathcal{H}, D, J)$ with:

- A Hilbert space \mathcal{H} with scalar product (\cdot, \cdot) .
- A non unital pre-C*-algebra \mathcal{A} with a faithful *-representation π on $\mathcal{B}(\mathcal{H})$.
- A preferred unitization Ã of A, which is also a pre-C*-algebra, with a compatible faithful *-representation π on B(H) and such that A is an ideal of Ã.
- An unbounded operator D, densely defined on \mathcal{H} , such that:
 - $\forall a \in \widetilde{\mathcal{A}}$ the operator $[D, \pi(a)]$ extends to a bounded operator on \mathcal{H} ,
 - ▶ with $\langle D \rangle^2 := \frac{1}{2} (DD^* + D^*D)$, $\forall a \in A$ the operator $\pi(a)(1 + \langle D \rangle^2)^{-\frac{1}{2}}$ is compact, .
- A bounded operator J on \mathcal{H} with $J^2 = 1$, $J^* = J$, $[J, \pi(a)] = 0$, $\forall a \in \widetilde{\mathcal{A}}$ and such that:

• $D^* = -JDJ$ on $Dom(D) = JDom(D^*) \subset \mathcal{H}$;

Then: $(J\gamma)^* = -J\gamma \Rightarrow iJ\gamma$ is selfadjoint. Moreover, $(iJ\gamma)^2 = -J\gamma J\gamma = 1$. The operator J is a fundamental symmetry which turns the Hilbert space \mathcal{H} into a Krein space with (indefinite) inner product $\langle \cdot, \cdot \rangle = (\cdot, J \cdot)$. The condition $D^* = -JDJ \doteq -D^{\dagger}$ means that *iD* is Krein-selfadjoint. • There is a distinguished selfadjoint operator T such that: $Dom(T) \cap Dom(D)$ is dense in \mathcal{H} , it holds $(1 + T^2)^{-\frac{1}{2}} \in \widetilde{\mathcal{A}}$ and there exist an operator $N \in \widetilde{\mathcal{A}}$ such that $N \ge 0$ and N = -J[D, T] holds.

A Lorentzian spectral triple is even if there exists a \mathbb{Z}_2 -grading γ of \mathcal{H} such that $\gamma^* = \gamma$, $\gamma^2 = 1$, $[\gamma, \pi(a)] = 0 \ \forall a \in \widetilde{\mathcal{A}}$, $\gamma J = -J\gamma$ and $\gamma D = -D\gamma$.

Casual Structure for LST's

Let C be the convex cone of all selfadjoint elements $T \in \widetilde{\mathcal{A}}$ such that

$$\forall \phi \in \mathcal{H}, \qquad (\phi, J[D, \pi(a)]\phi) \leq 0,$$

If $\overline{\text{Span}_{\mathbb{C}}(\mathcal{C})} = \overline{\widetilde{\mathcal{A}}}$ then \mathcal{C} is called a causal cone. It induces a partial order relation on $\mathfrak{S}(\mathcal{A})$ by

 $\forall \omega_1, \omega_2 \in \mathfrak{S}(\mathcal{A}), \qquad \omega \leqslant \omega_2 \qquad \text{iff} \qquad \forall T \in \mathcal{C}, \quad \omega_1(T) \leqslant \omega_2(T).$

► In the commutative case the unitisation *A* has to be carefully chosen so that the set of causal functions is really a causal cone.

Unbounded Multipliers

An unbounded multiplier of a C^* -albebra \mathcal{B} (or an unbounded element affiliated to \mathcal{B}) is a closed \mathcal{B} -linear map $R : \mathcal{J} \to \mathcal{B}$, where \mathcal{J} is a dense left ideal in \mathcal{B} , with a densely defined R^* and such that $(1 + R^*R)$ has dense range. We write $R\eta \mathcal{B}$ and $UM(\mathcal{B})$.

• $R\eta \mathcal{B}$ iff there exists $z \in M(\mathcal{B})$ (the multiplier of \mathcal{B}) with $||z|| \leq 1$ and

$$x \in D(R), \ y = Rx) \Leftrightarrow (\text{there is } b \in \mathcal{B} \ : \ x = (1 - z^*z)^{1/2}b \text{ and } y = zb),$$

- If such a z exists, it is unique and called the z-transform of R (we write z_R).
- An element $z \in M(\mathcal{B})$ is the z-transform of some $R\eta \mathcal{B}$ if and only if $||z|| \leq 1$ and $\overline{(1-z^*z)\mathcal{B}} = \mathcal{B}$.
- ► $z_R^* = z_{R^*}$, $(1 + R^*R)^{-1} = (1 z_R z_R^*)^{-1}$ and $R = z_R (1 z_R z_R^*)^{-1/2}$ on $(1 z_R z_R^*)^{-1/2} \mathcal{B}$, which is a core for R.
- $M(\mathcal{B}) \subset UM(\mathcal{B})$ but the two sets coincide if \mathcal{B} is unital.
- Any representation π of B on K extends to a map π̂ from UM(B) to the closed (unbounded) operators on K.
- *R* is $\widetilde{\mathcal{A}}$ -affiliated to \mathcal{A} if $R\eta \mathcal{A}$ and $z_R \in \widetilde{\mathcal{A}}$.

Regular LST's

A LST (A, Ã, π, H, D, J) is said to be regular (RLST) whenever there exists a preferred Ã-affiliated selfadjoint operator T and a positive N ∈ Ã such that N = −J[D, T].

Suppose that $0 < N \in \widetilde{\mathcal{A}}$ commutes with the preferred T. This includes Franco's Temporal LST, where $N \in \mathcal{C}(\widetilde{\mathcal{A}})$. If N is invertible, $JN^{-1/2}DN^{-1/2}$ is selfadjoint and $[JN^{-1/2}DN^{-1/2}, T] = -i1$. But $T\eta\mathcal{A}$ is bounded if \mathcal{A} is unital, and boundedness of T is incompatible with exponentiability to the corresponding Weyl relations. This would rule out compact noncomm. lorentzian manifolds. We are thus led to

▶ A selfadjoint $T \ \widetilde{\mathcal{A}}$ -affiliated to \mathcal{A} is temporal if $\mathsf{Dom}(T) \cap \mathsf{Dom}(D)$ is dense in \mathcal{H} , and there exists $0 \leq N \in \widetilde{\mathcal{A}}$ (so [N, J] = 0) such that N = -J[D, T]on $\mathsf{Dom}([D, T])$. We indicate the set of all such operators by \mathcal{T}_D^J .

This can be seen as the analog of the causal cone C. Notice that $\mathcal{T}_D^J \neq \emptyset$.

When are we are entitled to call \mathcal{T}_D^J a casual cone? Ideally, we should ask that $\overline{\widetilde{\mathcal{A}}} \subset C^*(\mathcal{T}_D^J)$. However, due to the presence of unbounded elements it is highly problematic to give a precise meaning to such a requirement. Woronowicz gave a notion of C^* -algebras generated by unbounded affiliated elements which appears to perfectly suit this context and in particular the lorentzian Moyal. The second difficulty concerns the need to evaluate states of the C^* -algebra on unbounded elements. Our solution rests on the following definition:

• Let ω be a state on the C^* -algebra \mathcal{A} , $(\pi_\omega, \phi_\omega)$ the corresponding GNS representation and vector and T $\widetilde{\mathcal{A}}$ -affiliated to \mathcal{A} . We say $\omega \in \text{Dom}(T)$ if $\phi_\omega \in \text{Dom}(|\widehat{\pi_\omega}(T)|)$, where $\widehat{\pi}_\omega$ is the canonical extension of π_ω to $UM(\mathcal{A})$. In this case we set $\omega(\widehat{\pi}_\omega) = (\phi_\omega, \widehat{\pi_\omega}(T)\phi_\omega)$.

If a state ω is a vector state in the representation π defining the spectral triple with corresponding vector ψ and $T \in \mathcal{T}_D^J$ is in the domain of ω , we have that $\psi \in \text{Dom}(|\hat{\pi}(T)|)$ and $(\psi, \hat{\pi}(T)\psi) = (\phi_{\omega}, \hat{\pi}_{\omega}(T)\phi_{\omega}) = \omega(T)$.

Causal Order Revisited

For $\omega_1, \omega_2 \in \mathfrak{S}(\mathcal{A})$, we are now ready to introduce

- ► $D(\omega_1, \omega_2) = \{T \in \mathcal{T}_J^D : \omega_1(|T|), \omega_2(|T|) < \infty\},\$
- ▶ ω_1, ω_2 are Causally Related whenever for all $T \in D(\omega_1, \omega_2)$ there holds $\omega_1(T) \leq \omega_2(T)$.

Since for a (R)LST $C \subset D(\omega_1, \omega_2)$ for all ω_1, ω_2 , it is clear that if two states are casually related then they are comparable according to the partial order previously introduced. Still, the two notions need not be equivalent.

A General Distance Formula

A selfadjoint *T* Â-affiliated to A is steep whenever Dom(*T*) ∩ Dom(*D*) dense in H and there exist an operator N > 0 such that [J, N] = 0 and N = -J([D, T] + iγ). We denote by T̃^D_J the set of all such operators.
D̃(ω₁, ω₂) = D(ω₁, ω₂) ∩ T̃^D_J.

The set $\widetilde{\mathcal{T}}_{J}^{D}$ is not empty in typical cases, precisely because we include unbounded operators. It is not difficult to prove that $\widetilde{\mathcal{T}}_{J}^{D} \subset \mathcal{T}_{J}^{D}$. Next, we set:

• Given two states ω_1, ω_2 on \mathcal{A} , their distance is given by:

$$d(\omega_1, \omega_2) = \begin{cases} \inf_{\widetilde{D}(\omega_1, \omega_2)} \{ [\omega_2(f) - \omega_1(f)]^+ \}, & \text{for } \widetilde{D}(\omega_1, \omega_2) \neq \emptyset, \\ +\infty, & \text{for } \widetilde{D}(\omega_1, \omega_2) = \emptyset. \end{cases}$$

This formula reduces to the ordinary one for (sufficiently regular) commutative lorentzian manifolds.

The Moyal Lorentzian (R)LST

- $\mathcal{H}_0 := L^2(\mathbb{R}^{1,1}) \otimes \mathbb{C}^2$ with the usual positive definite inner product $\langle \psi, \phi \rangle = \int d^2 x \ (\psi_1^* \phi_1 + \psi_2^* \phi_2)$ with $\psi = (\psi_1, \psi_2), \ \phi = (\phi_1, \phi_2).$
- ▶ \mathcal{A} is the space of Schwartz functions $S(\mathbb{R}^{1,1})$ with the Moyal \star product

$$(f \star g)(x) := \frac{1}{\pi^2} \int_{\mathbb{R}^4} d^2 s \ d^2 t \ f(x+s) \ g(x+t) \ e^{-2i\sigma(s,t)}, \quad f,g \in S(\mathbb{R}^2).$$

where $\sigma(\cdot, \cdot)$ denotes the standard symplectic form. $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H}_0)$ is defined by the left multiplication:

$$\pi(f) = L(f) \otimes 1, \qquad \pi(f)\psi = (L(f)\psi_1, L(f)\psi_2) = (f \star \psi_1, f \star \psi_2),$$

is faithful and $\overline{\mathcal{A}} = \mathbb{K}(\mathcal{H}_0)$. We will identify states on \mathcal{A} and $\pi(\mathcal{A})$. Any pure state $\omega \in S(\mathcal{A})$ is a vector state: there is a vector $\psi \in \mathcal{H}_0$ such that $\omega(f) = \langle \psi, \pi(f)\psi \rangle$ for all $f \in \mathcal{A}$.

• $D := -i\partial_{\mu} \otimes \gamma^{\mu}$ (with $\mu = 0, 1$) is the flat Dirac operator on $\mathbb{R}^{1,1}$ where:

$$\gamma^0 = i\sigma^1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \qquad \gamma^1 = \sigma^2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

• $J := i\gamma^0$ and $\gamma = -\gamma_0\gamma_1 = \text{diag}(1, -1)$.

Consider light-cone coordinates and derivatives

$$x_{+} := rac{x_{0} + x_{1}}{\sqrt{2}}, \quad x_{-} := rac{x_{0} - x_{1}}{\sqrt{2}}, \qquad \partial_{+} := rac{\partial_{0} + \partial_{1}}{\sqrt{2}}, \quad \partial_{-} := rac{\partial_{0} - \partial_{1}}{\sqrt{2}}.$$

The lorentzian inner product then looks $x \cdot y = -x_+y_- - x_-y_+$ and

$$D = \sqrt{2} \begin{pmatrix} 0 & \partial_+ \\ \partial_- & 0 \end{pmatrix}, \quad [D, \pi(f)] \psi = \sqrt{2} \begin{pmatrix} \partial_+ f \star \psi_2 \\ \partial_- f \star \psi_1 \end{pmatrix}.$$

The operator $J[D, \pi(a)]$ of the causal constraint is

$$J[D,\pi(f)] = -\sqrt{2} \begin{pmatrix} L(\partial_- f) & 0\\ 0 & L(\partial_+ f) \end{pmatrix},$$

and \mathcal{T}_D^J is the set of all $f \in C^1(M)$ such that

$$\forall \psi_1 \in L^2(\mathbb{R}^{1,1}), \int d^2 x \ \psi_1^*((\partial_- f) \star \psi_1) = \int d^2 x \ \psi_1^* \star (\partial_- f) \star \psi_1 \ge 0,$$

and

$$\forall \psi_2 \in L^2(\mathbb{R}^{1,1}), \int d^2 x \ \psi_2^*((\partial_+ f) \star \psi_2) = \int d^2 x \ \psi_2^* \star (\partial_+ f) \star \psi_2 \ge 0.$$

Coordinate Operators and Translations

Set $z = \frac{x_0 + ix_1}{\sqrt{2}}, \bar{z} = \frac{x_0 - ix_1}{\sqrt{2}}$ and consider Wigner's transition eigenfunctions

$$h_{mn} := \frac{1}{\sqrt{m! \, n!}} \bar{z}^{\star m} \star h_{00} \star z^{\star n}, \quad m, n \in \mathbb{N}, \ h_{00} = \sqrt{\frac{2}{\pi}} e^{-(x_0^2 + x_1^2)}$$

They form an orthonormal basis of $L^2(\mathbb{R}^{1,1})$ and their linear span \mathcal{L} of the h_{mn} 's constitutes an invariant dense domain of analytic vectors for the symmetric operators $L(x_+), L(x_-)$ (or $L(x_0), L(x_1)$) which are then essentially self-adjoint on $S(\mathbb{R}^{1,1})$. Since $UM(\mathbb{K}) = B(\mathcal{H})$, their closure is trivially affiliated to \mathcal{A} . One obtains a representation of the Heisenberg algebra:

$$[L(x_0), L(x_1)] = iI, \qquad [L(x_-), L(x_+)] = iI.$$

and the useful relations

$$\begin{aligned} x_+ \star f &= x_+ f - \frac{i\partial_-}{2}f, \qquad x_- \star f = x_- f - \frac{i\partial_+}{2}f, \\ f \star x_+ &= fx_+ + \frac{i\partial_-}{2}f, \qquad f \star x_- &= fx_- + \frac{i\partial_+}{2}f, \end{aligned}$$

Translations $(\alpha_{\kappa}f)(x) := f(x + \kappa)$ with $f \in S(\mathbb{R}^{1,1})$ and $\kappa \in \mathbb{R}^{1,1}$ define a *-automorphism of the algebra \mathcal{A} implemented by

$$L(\alpha_{\kappa}f) = \operatorname{Ad} U_{\kappa} L(f), \qquad U_{\kappa}(x) := L(e^{i(-\kappa_{1}x_{0}+\kappa_{0}x_{1})}) = L(e^{i(\kappa_{-}x_{+}-\kappa_{+}x_{-})}),$$

Moreover, one has

L

$$\begin{aligned} \frac{d}{dt}L\left(\alpha_{t\kappa}(f)\right)_{|_{0}} &= L\left(\frac{d}{dt}f(x+t\kappa)_{|_{0}}\right) = L(\kappa_{-}\partial_{-}f + \kappa_{+}\partial_{+}f)\\ (\alpha_{\kappa}(x_{\pm})) &= L\left(x_{\pm} + \kappa_{\pm}\right), \qquad \frac{d}{dt}L(\alpha_{t\kappa}(x_{\pm}))_{|_{t}} = L\left(\frac{d}{dt}\alpha_{t\kappa}(x_{\pm})_{|_{t}}\right) = \kappa_{\pm}I. \end{aligned}$$

as operators on $S(\mathbb{R}^{1,1})$. From this one gets

$$\pm L(\partial_{\pm}f) = i[L(x_{\pm}), L(f)], \qquad \forall f \in \mathcal{A}.$$

- For $\kappa \in \mathbb{R}^{1,1}$, the κ -translated of a state ω is $\omega_{\kappa} := \omega \circ \alpha_{\kappa}$;
- We say a state ω is smooth whenever $|\omega(x_+^m x_-^n)|, |\omega(x_-^m x_+^n)| < +\infty$ for any $m, n \in \mathbb{N}$.

Any smooth state can be decomposed into a convex combination of pure states which will again be smooth. Moreover, pure smooth states are given by $\psi = (\psi_1, \psi_2) \in \mathcal{H}_0$ such that $\psi_1, \psi_2 \in S(\mathbb{R}^{1,1})$.

Causal Relations between Translated States

Proposition Suppose ω is a any smooth state and let ω_{κ} be its translated by $\kappa \in \mathbb{R}^{1,1}$. Then these states are casually related with $\omega \leq \omega_k$ if and only if $\kappa \in V_+ = \{\kappa_+, \kappa_- \ge 0\}$, the closed forward light-cone.

Sketch of Proof (for pure states, easily generalised) We start by showing that under the stated assumptions for each $f \in D(\omega_{\kappa}, \omega)$ we have $\omega_{\kappa}(f) - \omega(f) \ge 0$. Suppose first that ω is pure. From the Fundamental Theorem of Calculus we get

$$\omega_{\kappa}(f) - \omega(f) = \int_0^1 dt \, (k_+ \omega_{t\kappa}(\partial_+ f) + k_- \omega_{t\kappa}(\partial_- f)),$$

and the result follows immediately from the characterisation of the convex cone \mathcal{T}_D^J and the fact that all pure states are vector states.

Conversely, for $\kappa \notin V_+$ at least one of κ_+, κ_- is stricly negative, say $\kappa_+ < 0$. Observe that $f = x_+ \in D(\omega_{\kappa}, \omega)$ and

$$\omega_{\kappa}(f)-\omega(f)=\frac{1}{2}\int_0^1 dt\,k_+\,\omega_{t\kappa}(\partial_+f_+)=\kappa_+.$$

Distance between Translated States

Proposition Suppose ω and ω_{κ} are as above. Then $d(\omega, \omega_k) = \sqrt{2\kappa_+\kappa_-}$.

Sketch of Proof (for pure states, easily generalised).

$$J([D,\pi(f)] + i\gamma) = -\begin{pmatrix} \sqrt{2} L(\partial_{-}f) & i \\ -i & \sqrt{2} L(\partial_{+}f) \end{pmatrix},$$

and from the condition that the bilinear form it defines is negative definite we infer that the hermitian bilinear form on \mathbb{C}^2 defined by

$$\begin{pmatrix} \sqrt{2} \left(\psi_1, \left(\partial_- f \right) \star \psi_1 \right) & -i(\psi_1, \psi_2) \\ i(\psi_2, \psi_1) & \sqrt{2} \left(\psi_2, \left(\partial_+ f \right) \star \psi_2 \right) \end{pmatrix},$$

is positive definite. This is equivalent to

 $(\psi_1, (\partial_- f) \star \psi_1) \ge 0, \quad 2(\psi_1, (\partial_- f) \star \psi_1)(\psi_2, (\partial_+ f) \star \psi_2) - |(\psi_1, \psi_2)|^2 \ge 0,$

from which we easily deduce that

$$(\psi, (\partial_+ f) \star \psi) \ge 0, \quad (\psi, (\partial_+ f) \star \psi_i)(\psi, (\partial_- f) \star \psi) \ge \frac{1}{2}.$$

are also valid for any $\psi \in L^2(\mathbb{R}^{1,1})$ with unit norm.

Moreover, with $\psi_{t\kappa} = U_{t\kappa} \star \psi \in L^2(\mathbb{R}^{1,1})$ and $\omega_{t\kappa} = \omega \circ \alpha_{t\kappa} = (\psi_{t\kappa}, \cdot \psi_{t\kappa})$ with $k \in V_+, t \in [0, 1]$ and $||\psi_{t\kappa}|| = 1$, we have

$$[\omega_{\kappa}(f) - \omega(f)]^{+} = \omega_{\kappa}(f) - \omega(f) = \int_{0}^{1} dt \left(\psi_{t\kappa}^{*}, (\kappa_{+}\partial_{+} + \kappa_{-}\partial_{-})f \star \psi_{t\kappa}\right).$$

However, it follows from the inequalities above that for each $t \in [0,1]$ the vector $(\omega_{t\kappa}(\partial_+ f), \omega_{t\kappa}(\partial_- f))$ is timelike. By assumption so is κ , thus we can use the reverse Schwartz inequality to obtain

$$\omega_{\kappa}(f) - \omega(f) \ge \sqrt{2\kappa_{+}\kappa_{-}} \int_{0}^{1} dt \sqrt{2\,\omega_{t\kappa}(\partial_{+}f)\,\omega_{t\kappa}(\partial_{-}f)} \ge \sqrt{2\kappa_{+}\kappa_{-}},$$

and thus deduce the fundamental inequality

$$d(\omega,\omega_{\kappa}) \geqslant \sqrt{2\kappa_{+}\kappa_{-}}.$$

Finally, we see that the inf is attained if we choose

$$f = \frac{\kappa_-}{\sqrt{2\kappa_+\kappa_-}} x_+ + \frac{\kappa_+}{\sqrt{2\kappa_+\kappa_-}} x_- \in \widetilde{D}(\omega, \omega_{\kappa}),$$

which obviously satisfies the required condition.

Short bibliography

- N. Franco, Temporal Lorentzian Spectral Triples, Rev. Math. Phys. 26 8 (2014), 1430007.
- ▶ N. Franco, The Lorentzian distance formula in noncommutative geometry, Journal of Physics: Conference Series **968** (2018).
- N. Franco and M. Eckstein, An algebraic formulation of causality for noncommutative geometry, Classical and Quantum Gravity 30 13 (2013), 135007.
- N. Franco, J.-C. Wallet, Metrics and causality on moyal planes, in Noncommutative Geometry and Optimal Transport, Contemporary Mathematics, American Mathematical Society, P. Martinetti and J.-C. Wallet Eds., 676 (2016), 147.
- P. Martinetti, L. Tomassini, Noncommutative geometry of the Moyal plane: translation isometries, Connes's spectral distance between coherent states, Pythagoras equality, Commun. Math. Phys., **323** 1 (2013), 187.
- O. Müller and M. Sánchez, Lorentzian manifolds isometrically embeddable in L^N, Trans. Am. Math. Soc. 363 (2011), 5367–5379.