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Pushout diagrams

U(1)-equivariant pushout diagram:

S2n+1

S2n−1 B2n × S1

S2n−1 × S1

A commutative diagram (of sets):

P Y

X Zg

f

is a pushout diagram if

P ' X t Y
f(z) ∼ g(z)

We get P by “gluing” X and Y along Z.

Quotient:

CPn

CPn−1 B2n

S2n−1

For n = 1:

S2

{p}
(north pole)

B2

(closed disk)

S1

(disk’s boundary)
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Pullbacks of function algebras

Dualizing:

C(S2n+1)

C(S2n−1) C(B2n)⊗ C(S1)

C(S2n−1)⊗ C(S1)

with U(1)-invariant subalgebras:

C(CPn)

C(CPn−1) C(B2n)

C(S2n−1)

A commutative diagram of C∗-algebras:

A B

C D

f

g

is a pullback diagram if

A '
{
(b, c) ∈ B× C : f(b) = g(c)

}

=
:

B×D C

Applications? Get K-theory recursively ⇒ Milnor’s connecting homomorphism.
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Interlude: Mayer-Vietoris and pushouts

If {X, Y} is an open cover of a smooth n-manifold P, one has the pushout diagram:

P Y

X Z := X ∩ Y

a short exact sequence of k-forms, and a long exact sequence in cohomology

0 H0
dR(P) H0

dR(X)⊕H0
dR(Y) H0

dR(Z)

H1
dR(P) H1

dR(X)⊕H1
dR(Y) H1

dR(Z)

H2
dR(P) . . . . . . . . . . . . . . . . . . . . . HndR(Z) 0

This holds for more general (co)homology theories (e.g. singular) and one-injective pushout
diagrams (e.g. of CW complexes).
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Interlude: Mayer-Vietoris in K-theory

From a one-surjective pullback diagram of C∗-algebras

A B

C D

i

j f

g

we get a six-term exact sequence

K0(A) K0(B⊕ C) K0(D)

K1(D) K1(B⊕ C) K1(A)

(i∗,j∗) f∗−g∗

d01d10

f∗−g∗ (i∗,j∗)

with d10,d01 the “connecting homomorphisms”.
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Quantum spaces

There is a U(1)-equivariant commutative diagram:

C(S2n+1
q )

C(S2n−1
q )

C(S2n+1
q )⊗ C(S1)

C(B2n
q )⊗ C(S1)

C(S2n−1
q )⊗ C(S1)

π
δ

δ

r⊗id

∂⊗id

δ = C(S1)-coaction

∂ = evaluation at
the boundary

r = restriction to
half equator

π = killing one complex
“coordinate”

By working with graph C∗-algebras one proves that it is a pullback diagram.

The U(1)-invariant part is automatically a (one-surjective) pullback diagram:

C(CPnq)

C(CPn−1
q ) C(B2n

q )

C(S2n−1
q )
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K-theory of q-projective spaces

We know that:

CPnq B2n
q S2n−1

q

K0 Zn+1 Z Z

K1 0 0 Z

The six-term exact sequence:

K0(C(CPnq)) K0(C(CPn−1
q ))⊕ Z Z

Z 0 0

d10

gives:

K0(C(CPnq)) ' K0(C(CPn−1
q ))⊕ d10

(
K1(C(S

2n−1
q ))

)
The extra (n+ 1-th) generator of K0(C(CPnq)) comes from the generator of K1(C(S

2n−1
q )).
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Graph C∗-algebras

A graph G = (G0,G1, s, t) consists of

� a countable set G0 of vertices;

� a countable set G1 of edges;

� source and target maps s, t : G1 ! G0.

G is row-finite
m

s−1(v) is finite ∀ v ∈ G0.

Definition (graph C∗-algebra; G row-finite)

C∗(G) := universal C∗-algebra generated by
mutually orthogonal projections

{
Pv : v ∈ G0

}
and partial isometries

{
Se : e ∈ G1

}
such that:

S∗eSe = Pt(e) ∀ e ∈ G1∑
e∈s−1(v)

SeS
∗
e = Pv ∀ v ∈ G0 : s−1(v) 6= ∅

Examples:

I all Cuntz algebras

I all finite-dim. C∗-algebras (G finite, no cycles)

I C(S1), K, T, Mn(C(S
1)), certain q-algebras

C(S1):

v

e

Up to Morita equivalence, graph C∗-algebras include:

I all AF (approximately finite-dim.) C∗-algebras (C∗(G) AF ⇐⇒ G has no cycles)
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q-spheres

G has n+ 1 vertices and an edge eij : vi ! vj for all i 6 j.

v0 vn = v̄

e00 e11 e22 e33 enn = ē

e01 e12 e23

e02

e03

e13

C(S2n+1
q ) generated by {zi, z

∗
i }
n
i=0 with commutation relations: z1z0 = qz0z1 , etc.

and sphere condition: z0z
∗
0 + z1z

∗
1 + . . . + znz

∗
n = 1

C(S2n+1
q ) ' C(S2n+1

q=0 ) ∀ 0 < q < 1, and C(S2n+1
q=0 ) ' C∗(G) via: zi 7!

n∑
j=i

Seij

K1 generated by U := Sē + (1 − Pv̄)
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Morphisms

v̄

ē

S2n+1
q

v̄

B2n
q

C(S2n+1
q ) C(B2n

q ) C(S2n−1
q )

r

π

∂
r : Sē 7! Pv̄

∂ : t−1(v̄) 7! 0,Pv̄ 7! 0

π : zn 7! 0
9 / 14



Trimmable graphs
ē

subgraph

v̄
A graph with a distinguished vertex v̄ is
called v̄-trimmable if:

1 v̄ emits one loop ē and no other edges;

2 v̄ is target of other edges, besides ē;

3 every vertex of the subgraph emitting an
arrow ending in v̄, also emits (at least)
another arrow not ending in v̄.

Examples:

• Vaksman-Soibelman quantum spheres S2n+1
q ,

• quantum lens spaces L3
q(`; 1, `) (with . /U(1) = WP1

q(1, `) quantum teardrops),

• one loop extensions, . . .
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Example: quantum lens spaces

C(L3
q(`; 1, `)) is the graph C∗-algebra of the graph:

. . .

v0

v1 v2 v`−1 v`

Every vertex is trimmable except v0.
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Pullback structure of trimmable graph C∗-algebras

A U(1)-equivariant (cf. gauge action) commutative diagram:

ē
v̄

subgraph
v̄

subgraph ⊗

subgraph subgraph ⊗

∂◦r

(r⊗id)δ

∂⊗id

δ

Want to prove: it is a pullback diagram.

12 / 14



Sketch of the proof

Consider morphisms of associative algebras (g injective):

B
f
−! D

g
 −↩ C

Fact 1. B×D C isomorphic to the subalgebra P of B given by: P := f−1
(
g(C)

)

Fact 2. Given a one-injective one-surjective diagram:

A B

C D

ϕ

f

g

ϕ always maps A into P: we only have to show that it is a bijection with P.

Fact 3. If Im(ϕ) ⊃ ker(f), then ϕ(A) = P.

In our case, injectivity comes from the “gauge invariant uniqueness theorem”:

ϕ U(1)-equivariant & ϕ(Pv) 6= 0 ∀ v =⇒ ϕ is injective

For surjectivity one uses properties of ideals associated to “saturated hereditary” subsets.
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Forthcoming. . .
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Thank you for your attention.


