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Xuy
f(z) ~ g(2)

We get P by “gluing” X and Y along Z.

P~

Forn =1:

{p} / ) \

(north pole) (closed disk)

L

(disk’s boundary)



Pullbacks of function algebras

Dualizing: A commutative diagram of C*-algebras:
/C(Sz"“)\ A——B
f
c(sx 1) C(B*™) ® C(Sh) g — 1%
\si‘n b C/ is a pullback diagram if

A~ {(b,c)eBxC:f(b)=g(c)}
I
(C]P’n) B xp C

<N

C((C]P)n 1) an)

St

5211 1

with U(1)-invariant subalgebras:

Applications? Get K-theory recursively = Milnor’s connecting homomorphism.



Interlude: Mayer-Vietoris and pushouts

If {X, Y} is an open cover of a smooth n-manifold P, one has the pushout diagram:
P+——Y
X +— Z:=XnNY

a short exact sequence of k-forms, and a long exact sequence in cohomology

0 —— Hgg(P) —— HZz(X) @ HER(Y) —— HR(Z) U

& Hir(P) —— Hi(X) & Hig(Y) —— Hig(2) j

[a H3z(P) —— o — Hir(Z) — 0

This holds for more general (co)homology theories (e.g. singular) and one-injective pushout
diagrams (e.g. of CW complexes).



Interlude: Mayer-Vietoris in K-theory

From a one-surjective pullback diagram of C*-algebras

B
lr
D

4.1)

0+—— >

9

we get a six-term exact sequence

Ko(A) —7)s Ko(B @ C) -9, K, (D)

A~
do1

|

1

|

1

1
g

Ki(D) <229 k(B C) <=L K (A)

o

10

with djo, do; the “connecting homomorphisms”.



Quantum spaces

There is a U(1)-equivariant commutative diagram:

c(sgm ) & = C(S')-coaction
/ 0 = evaluation at
the boundary
c(sh C(BZ") ® C(Sh)
\ y
7t = killing one complex
C(SvH e C(sh) “coordinate”



Quantum spaces

There is a U(1)-equivariant commutative diagram:
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Quantum spaces

There is a U(1)-equivariant commutative diagram:
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Quantum spaces

There is a U (1)-equivariant commutative diagram:

c(sit ) 5 = C(S!)-coaction
lré 0 = evaluation at
" + the boundary
TR®id
CSF)  CS @ ClSH) - CBF @ CIS) 1 — restrition to
5 o®id half equator
7t = killing one complex
C(s2 1) @ C(sY) “coordinate”

By working with graph C*-algebras one proves that it is a pullback diagram.
The U(1)-invariant part is automatically a (one-surjective) pullback diagram:
C(CPy)
« N
c(cry) C(B2M)
~ «

c(s2r1)



K-theory of g-projective spaces
We know that:

2 2n—1
|cry By sy

KO A +1 7 7
Ky 0 0 Z

The six-term exact sequence:

Ko(C(CP})) — Ko(C(CPy )@ Z — Z

] |

Z 0 0

gives:
Ko(C(CPY)) = Ko(C(CPE™)) @ dio (K1 (C(S2 1))
The extra (n + 1-th) generator of KO(C((CIP’;‘)) comes from the generator of KI(C(Sﬁ“*)).

6/14



Graph C*-algebras

A graph G = (G°, G, s, t) consists of
B a countable set G° of vertices;

® 3 countable set G! of edges;

® source and target maps s, t : G — GO,

G is row-finite

i)

s71(v) is finite Vv € G°.
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> all AF (approximately finite-dim.) C*-algebras (C*(G) AF <= G has no cycles)
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Graph C*-algebras

A graph G = (G°, G, s, t) consists of
B a countable set G° of vertices;

® 3 countable set G! of edges;

® source and target maps s, t : G — GO,

G is row-finite

i)

s71(v) is finite Vv € G°.
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and partial isometries {S. : e € G'} such that:

S:Se =Piey VeeG
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ecs—1(v)

Examples:
» all Cuntz algebras :
» all finite-dim. C*-algebras (G finite, no cycles) C(s"): @
> C(SY), K, T, M, (C(S1)), certain g-algebras Y

Up to Morita equivalence, graph C*-algebras include:

> all AF (approximately finite-dim.) C*-algebras (C*(G) AF <= G has no cycles)
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g-spheres

G has n + 1 vertices and an edge ey; : vi — vj forall i <j.

€00 €11 €22 €33 €nn =e
Qem Oeuoemo O
° . . @ - — - - - - - - > e _
Vo / RN ’//Zﬂ Vn =V
€02 €13 T,
€03 -—-" ////
p

C(Si““) generated by {z;, z{}I , with commutation relations:  z;zg = qzez; | , etc.

and sphere condition: ‘ zozy +z1zi + ...+ znzh =1

C(S21) = C(S2M1) V0 < q < 1, and C(S2M51) = C*(G) via: i — 3 Sey,

K; generatedby U :=S;+ (1 —P;)




Morphisms

2n+1
Sq

2n
Bq
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Trimmable graphs

e Q
A graph with a distinguished vertex v is

RY called v-trimmable if:
2y v emits one loop € and no other edges;

subgraph R K ¥ is target of other edges, besides €;

/ every vertex of the subgraph emitting an
, arrow ending in v, also emits (at least)
/ another arrow not ending in v.

i
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Trimmable graphs

G

subgraph

N

Examples:

A graph with a distinguished vertex v is
called v-trimmable if:

v emits one loop € and no other edges;
¥ is target of other edges, besides €;

every vertex of the subgraph emitting an
arrow ending in v, also emits (at least)
another arrow not ending in v.

e Vaksman-Soibelman quantum spheres S3**1,

e quantum lens spaces Lz (¢;1,€) (with . /U(1) = WPg(l, {) quantum teardrops),

e one loop extensions, .

10/14



Example: quantum lens spaces

C(L3 (¢ 1,0)) is the graph C*-algebra of the graph:

QR QG
N

Every vertex is trimmable except vy.

11/14



Pullback structure of trimmable graph C*-algebras

A U(1)-equivariant (cf. gauge action) commutative diagram:

----- - *\; €
subgraph |- ----- ;oQ
Laor

subgraph

(r®id)s
E—

----- - *\;
subgraph |------ 2o ® oQ

la®id

Want to prove: it is a pullback diagram.

subgraph | ® .O

12/14



Sketch of the proof
Consider morphisms of associative algebras (g injective):
B-LDLC

Fact 1. B xp C isomorphic to the subalgebra P of B given by: P := f~*(g(C))
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Sketch of the proof

Consider morphisms of associative algebras (g injective):
B-LDLC
Fact 1. B xp C isomorphic to the subalgebra P of B given by: P := f~*(g(C))
Fact 2. Given a one-injective one-surjective diagram:
A—2+B
Ll
C — D

@ always maps A into P: we only have to show that it is a bijection with P.
Fact 3. If Im(¢) D ker(f), then @(A) = P.
In our case, injectivity comes from the “gauge invariant uniqueness theorem”:
@ U(1)-equivariant & @(P,) #20Vv = ¢ isinjective

For surjectivity one uses properties of ideals associated to “saturated hereditary” subsets.
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Forthcoming. . .




Thank you for your attention.



