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GEOMETRY IS MORE THAN TOPOLOGY
Classical differential geometry:

an orientable manifold M, smooth functions, C∞(M),
differential algebra Ω(M), metric gµν , Laplace operator ∆,
spinc structure(s), real spin structure, Dirac operator

Definitions and properties are known:
existence of spin structure, classification,
properties of the Dirac operator (ellipticity...)

Problems are to calculate:
the eigenvalues of the Dirac operator
the invariants of the manifolds/structures
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GEOMETRY AND THE HILBERT SPACES.

THE SIGNIFICANCE OF DIFFERENTIAL OPERATORS

Much of classical geometry can be encoded in terms of
operators on a separable Hilbert space.

HOW DO WE RECONSTRUCT GEOMETRY ?

1 differential calculus: da = [D,a]

2 The FODC: a projective module Ω1(M)

3 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
4 additional connection (if spinors twisted by a vector bundle)
5 dimension (growth of eigeinvalues: N(Λ) ∼ Λd ),
6 integral (exotic traces) and other beasts...
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THE GEOMETRY ACCORDING TO CONNES
THE SPECTRAL TRIPLE

Algebra A, its faithful representation π on a Hilbert space H, a
selfadjoint unbounded operator D, satisfying several conditions:

1 ∀a ∈ A [D, π(a)] ∈ B(H), D−1 is compact

2 even ST: ∃γ ∈ A′ : γ2 = 1, γ = γ†, γD + Dγ = 0,
3 ∃J, antilinear J2 = ε1, JJ† = 1

Jγ = ε′′γJ, JD = ε′DJ, [Jπ(a)J, π(b)] = 0,
4 [[D,a], Jπ(b)J] = 0 (D: first order differential operator)
5 ...+ conditions of „analysis” type

THEOREM [CONNES]

If A = C∞(M), M a spin Riemannian compact manifold,
H = L2(S) (sections of spinor bundle) and D the Dirac operator
on M then to (A,H,D) is a spectral triple (with a real structure).
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COMMUTATIVE AND NONCOMMUTATIVE

REAL SPECTRAL TRIPLES

were proposed in order to describe Standard Model and have a
good description of real spin geometries.

A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36,
6194, (1995)

COMMUTATIVE GEOMETRIES

which satisfy Connes’ axioms are in 1:1 correspondence with
Riemannian spin manifolds with a given spin structure and
metric.
A. Connes, On the spectral characterization of manifolds, J. Noncom.
Geom. 7, 1–82 (2013)

REMARK

Classical (real) spectral triples are slightly richer than spin
geometries – as they describe (for example) geometries with
torsion.
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GENUINE NONCOMMUTATIVE REAL SPECTRAL TRIPLES

EXAMPLES OF REAL SPECTRAL GEOMETRIES

The Noncommutative Torus: UV = e2πiθVU
Usual Dirac operator the same as on the torus [Connes]

Finite matrix algebras (Mn(C)⊕Mk (C)⊕ · · ·
Dirac operator is a finite matrix [Paschke & AS, Krajewski]
Isospectral deformations (θ-deformations of manifolds)
Usual Dirac operators [Connes, Landi, Dubois-Violette, AS,
Varilly]
Moyal deformation [xµ, xν ] = θµν

The usual isospectral Dirac
q-deformations: Standard Podleś sphere [Dabrowski, AS]
Dirac with exponential growth

HOW TO CONSTRUCT THEM?
There is so far no general method. Only examples.
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REDISCOVERING THE SPIN STRUCTURE.

The question: What is the spin structure in NCG ?

THEOREM (PASCHKE & SITARZ, LMP, 77, 3,(2006))

There are four inequivalent equivariant spin structures on the
2-dimensional noncommutative torus, with a unique choice of
equivariant Dirac operator for each spin structure:

d+
µ,ν = τµµ+ τνν,

which satisfies the Hochschild cycle condition, provided that
τµτ
∗
ν 6= τ∗µτν . The spectrum of the equivariant Dirac operator

depends on the spin structure.

More results followed (J-J. Venselaar).
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REDISCOVERING THE SPIN STRUCTURE.

NONCOMMUTATIVE TORUS AND MORE

The choice of each of the spin structures corresponds to
the choice of the equivariant real structure J
The results were extended by J-J Venselaar to higher
dimensional NC tori.
Similar results were obtained by P.Olczykowski and AS for
three-dimensional noncommutative Bieberbach manifolds.
Similar results for lens spaces (J-J.Venselaar and AS).

Problem: Why only flat or round geometries ?
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ARE THERE ANY INTERESTING NC GEOMETRIES ?
A SOFTER VERSION OF geometry?

The facts:
1 for the examples of q-deformed algebras (Podleś spheres,

SUq(2)) - there are no spectral geometries in the exact
sense – but – there are geometries in which some of the
commutation relations are satisfied up to compact
operators:

[
Jπ(a)J−1, π(b)

]
∈ Kq,[

Jπ(a)J−1, [D, π(b)]
]
∈ Kq,

2 the soft version of the commutant and order one axiom is
perfectly acceptable for the purpose of index or spectral
action calculations

Remark: Leads to nontrivial classical "triples".
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RECENT EXAMPLES OF NEW NC GEOMETRIES

GEOMETRIES FROM NC CIRCLE BUNDLES

Take M a compact Riemannian spin manifold, on which S1 acts
freely and isometrically. Assume that the lenght of fibre is
constant. Aim: express the Dirac operator on the total space
using the Dirac on the base space and the U(1) connection ω.
Amman & Bär (1998); LD+AS (Comm.Math.Phys, 318, 1,
111-130 (2013))

CONFORMAL DEFORMATIONS OF NC TORI AND TORIC
MANIFOLD

A family of conformally rescaled Dirac operators on the
noncommutative 2-torus for which the Gauss-Bonnet formula
holds:

Dh = hDh, h2D2h2,

where h ∈ JC∞(T2
Θ)J, so it is in the commutant, h > 0, was

introduced by Connes and Tretkoff, by M.Khalkhali et al, LD,AS.
All good properties (Hochschild cocycle etc) hold.
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RECENT EXAMPLES OF NEW NC GEOMETRIES

PARTIAL CONFORMAL DEFORMATIONS

If you take a torus with the metric dx2 + k−2(x , y)dy2 (that is,
for instance the usual „round" torus embedded in R3) the Dirac
operator is:

D = −iσ1∂x − iσ2 (k ∂y + 1
2∂y (k)

)
,

Same is possible with NC torus and the Gauss-Bonnet holds
(LD+AS, Asymmetric noncommutative torus, SIGMA 11 (2015)
075-086).

These are examples of new spectral geometries that do not
satisfy (or at least not in the obvious sense) the axioms of
first-order condition.



NEW: REALITY TWISTED BY AN AUTOMORPHISM

Let A be a complex ∗-algebra and let (H, π) be a (left)
representation of A on a complex vector space H. A linear
automorphism ν of H defines an algebra automorphism

ν̄ : End(H)→ End(H), φ 7→ ν ◦ φ ◦ ν−1.

The inverse of ν̄ is φ 7→ ν−1 ◦ φ ◦ ν. Since ν̄ is an algebra map,
the composite

πν : A π // End(H)
ν̄ // End(H)

is an algebra map too, and hence it defines a new
representation (H, πν) of A. The map ν is an isomorphism that
intertwines (H, π) with (H, πν).
We could also require that πν(a) ∈ π(A) so for faithful π the
map ν̄ defines an (algebra) automorphism of A
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TWISTED REALITY

DEFINITION (TWISTED REAL SPECTRAL TRIPLE)

Let A be a ∗-algebra, (H, π) a representation of A, D a linear
operator on H, and let ν be a linear automorphism of H. We
say that the triple (A,H,D) admits a ν-twisted real structure if
there exists an anti-linear map J : H → H such that J2 = ε id,
and, for all a,b ∈ A,

[π(a), Jπ(b)J−1] = 0,

[D, π(a)]J ν̄2(π(b))J−1 = Jπ(b)J−1[D, π(a)],

DJν = ε′νJD,

where ε, ε′ ∈ {+,−}.
νJν = J,
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TWISTED REALITY

If (A,H,D) admits a grading operator γ : H → H:

γ2 = id, [γ, π(a)] = 0, γD = −Dγ, ν2γ = γν2,

then the twisted real structure J is also required to satisfy

γJ = ε′′Jγ,

where ε′′ is another sign.

This purely algebraic definition of twisted reality is motivated by
and aimed at being applicable to spectral triples.

In case of H being a Hilbert space the automorphism ν is also
assumed to be densely defined and selfadjoint, with the
requirement that ν̄ maps π(A) into bounded operators.

The signs ε, ε′, ε′′ determine the KO-dimension modulo 8 in the
usual way and the operator J is antiunitary.
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TWISTED REAL SPECTRAL TRIPLES

We shall say that a spectral triple admits a ν-twisted real
structure, or simply that is a ν-twisted real spectral triple.

The commutant condition is called the order-zero condition and
the one with the Dirac operator is called the twisted order-one
condition. We shall call the modified condition the the twisted
ε′-condition.

REMARK

This is an extension not a replacement. In the case of ν = id
we get the usual, well known, spectral triples.
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THE FLUCTUATIONS OF THE DIRAC OPERATOR

Let Ω1
D be a bimodule of one forms:

Ω1
D := {

∑
i

π(ai)[D, π(bi)] |ai ,bi ∈ A}.

The standard fluctuaction (= gauge transform) of a spectral
triple (A,H,D) consist of

D  D + α, α = α∗ ∈ Ω1
D.

In case of a real spectral triple the fluctuated D is
D + α + ε′JαJ−1, where α + ε′JαJ−1 is selfadjoint.

For our case of ν-twisted real spectral triple we set the
fluctuated Dirac operator Dα to be:

Dα := D + α + ε′νJαJ−1ν,

with the requirement that α + ε′νJαJ−1ν is selfadjoint.
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FLUCTUATIONS

PROPOSITION

If (A,H,D) with J ∈ End(H) is a ν-twisted real spectral triple,
then (A,H,Dα) with (the same) J is also a ν-twisted real
spectral triple.
If (A,H,D) is even with grading γ, then (A,H,Dα) is even with

(the same) grading γ.
The composition of twisted fluctuations is a twisted fluctuation.

PROOF

As a perturbation of D by a bounded selfadjoint operator, the
fluctuated Dirac operator Dα is selfadjoint, has bounded
commutators with π(a) ∈ A and has compact resolvent.
We show that a fluctuation of the fluctuated Dirac operator is
also a fluctuation. In other words, that

Ω1
Dα

= Ω1
D, α ∈ Ω1

D.
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PROOF (CONTINUED)

We compute:

[νJαJ−1ν, π(a)] = νJαJ−1νπ(a)− π(a)νJαJ−1ν

= νJαJ−1νπ(a)− νπ(ν̂−1(a))JαJ−1ν

= νJαJ−1νπ(a)− νJαJ−1π(ν̂(a))ν

= νJαJ−1νπ(a)− νJαJ−1νπ((a))ν = 0.

Therefore for any α ∈ Ω1
D and a ∈ A we have:

[Dα, π(a)] = [D, π(a)] + [α, π(a)] ∈ Ω1
D.
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PROOF (CONTINUED)

To finish the proof it remains only to check that Dα satisfies the
twisted ε′-condition

DαJν = ε′νJDα.

Since D itself satisfies it, just check that

(α + ε′νJαJ−1ν)Jν = (αJν + ε′νJαJ−1νJν
= αJν + ε′νJα

= ε′νJ
(
α + ε′J−1ν−1αJν

)
= ε′νJ

(
α + ε′νJαJ−1ν

)
. �

Thus like in the usual case of the real spectral triples the
twisted fluctuations form a semigroup.
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EXAMPLE: CONFORMAL PERTURBATIONS

Let us assume that we have a real spectral triple (A,H,D, J)
with reality operator J and fixed signs ε, ε′. Let k ∈ π(A) be a
positive and invertible bounded operator such that k−1 is also
bounded, and let us denote by kJ := AdJ(k) = JkJ−1.

PROPOSITION

If (A,H,D) with J is a real spectral triple, which satisfies order
one condition, then for:

Dk = kJDkJ , ν(h) = k−1kJ h,

the triple (A,H,Dk ) with J is a ν-twisted real spectral triple.
If furthermore (A,H,D) is even with grading γ, then (A,H,Dα)
is even with (the same) grading γ.
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EXAMPLE: CONFORMAL PERTURBATIONS

PROOF

Since k and kJ are bounded operators it is clear that ν̄ sends
bounded operators to bounded operators, and ∀a ∈ A:

ν̄(π(a)) = k−1π(a)k .

We show now that Dk satisfies the twisted order-one condition :

Jπ(b)J−1[Dk , π(a)] = Jπ(b)J−1JkJ−1[D, π(a)]JkJ−1

=kJ [D, π(a)]kJJ(k−2π(b)k2)J−1 = [Dk , π(a)] J ν̄2(π(b))J−1.

Next we check compatibility between J and ν:

νJν = k−1JkJ−1Jk−1JkJ−1 = J.
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EXAMPLE 1: CONFORMAL PERTURBATIONS

PROOF (CTD)

Finally, if JD = ε′DJ then for Dk we have:

JDk = JkJJ−1JDkJ = ε′kDJkJ = ε′k(kJ)−1Dk (kJ)−1kJ,

so that the twisted ε′-condition is satisfied

νJDk = ε′DkJν. �

REMARK

In the ’classical’ case of a manifold M and (commutative)
A = C∞(M) with AdJ being the complex conjugation, the
conformal twists are always trivial as JkJ−1 = k for a positive k
and hence ν = id.
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THE (ν, ρ) TWISTING

DEFINITION ((ν, ρ)-TWISTED ST )

We say that (A,H,D, J) is a (ν, ρ)-type twisted real spectral
triple if:

(1) for all a ∈ A, the commutators [D,a]ρ are bounded,

(2) νJ preserves the domain of D,

(3) DJν = ε′νJD and νJν = J and ν2γ = γν2,

(4) the (ν, ρ)-twisted first-order condition holds:

[[D,a]ρ,b]ρ◦ν−2 = 0

EXAMPLES

(1) The (ν, id)-type spectral triple (untwisted) with twisted
reality of [Brzezinski, Ciccola, Dabrowski,Sitarz]

(2) The (1, ρ)-type twisted real spectral triple of [Landi,
Martinetti].
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TWISTING AND UNTWISTING

THEOREM

Let A be a ∗-algebra and π̃ : A→ B(H) be a ∗-representation of
A on a Hilbert space H. Let J : H → H be a C-antilinear
isometry such that J2 = ε and that the zero order condition is
satisfied. Let ρ be an algebra automorphism, and let ν be a
bounded operator on H with the bounded inverse such that

(a) ν implements an algebra automorphism ν̂ of A in
representation π̃ and ρ = ν̂−2, or

(b) ν is a unitary operator such that ν−2 implements ρ in
representation π̃

Let
πν : A→ B(H), a 7→ ν−1π̃(a)ν, (1)

be the induced representation of A...



TWISTING AND UNTWISTING

... and set

π =

{
π̃, in case (a),
πν , in case (b),

so that π is always a ∗-representation. Assume further that

νJν = J.

For an operator D̃ on H, set

D = νD̃ν,

Then:

(1) (π,D, J, ν2) satisfy conditions of a spectral triple with a
ν2-twisted real structure if and only if (π̃, D̃, J, ρ) satisfy
conditions of real ρ-twisted spectral triple.



TWISTED AND UNTWISTED

We can summarise here three different kinds of twisted reality
conditions obtained by the conformal twisting of a real spectral
triple (A,H, π,D, J) in the following table:

(A,H, π, k ′Dk ′, J) (A,H, π, kk ′Dkk ′, J) (A,H, π, kDk , J)

spectral triple with
the ν-twisted real
structure and first-
order condition

real ρ-twisted
spectral triple

twisted spectral
triple with real
structure and un-
twisted first-order
condition

ν = k−1k ′ ρ = Adu2 ν = kk ′−1

Here k = π(u) ∈ π(A), where u ∈ A is invertible and such that k
is positive with bounded inverse, k ′ = JkJ−1 and we have
νJD = ε′JDν, and νJν = J in the first and the third cases.
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Are there more examples (not conformal)?

Is there an intersection with modular Fredholm modules ?
What are the implications for geometry (Poisson, almost
commutative) ?
What is the largest class of conditions possible ?

THANK YOU !
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