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Classical differential geometry:
e an orientable manifold M, smooth functions, C>*(M),
o differential algebra Q(M), metric g"*, Laplace operator A,
@ spin® structure(s), real spin structure, Dirac operator
Definitions and properties are known:
e existence of spin structure, classification,
e properties of the Dirac operator (ellipticity...)
Problems are to calculate:
e the eigenvalues of the Dirac operator
e the invariants of the manifolds/structures
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GEOMETRY AND THE HILBERT SPACES.

Much of classical geometry can be encoded in terms of
operators on a separable Hilbert space.

Q differential calculus: da = [D, g]

@ The FODC: a projective module Q' (M)

@ metric: d(x,y) = supp g <1 [f(X) — f(¥)I

@ additional connection (if spinors twisted by a vector bundle)
@ dimension (growth of eigeinvalues: N(A) ~ A9),

O integral (exotic traces) and other beasts...
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THE GEOMETRY ACCORDING TO CONNES

Algebra A, its faithful representation = on a Hilbert space #, a
selfadjoint unbounded operator D, satisfying several conditions:

@ Vac A[D,n(a)] € B(H), D~ is compact
@ evenST:Iyve A 42 =1,y =~,yD+ Dy =0,
@ 3, antilinear J? = ¢1,JJI = 1
Jy=¢€vJ, JD=¢€DJ, [Jr(a)d,n(b)] =0,
Q [[D, a], Jr(b)J] = 0 (D: first order differential operator)
(s ] ...+ conditions of ,analysis” type

If A= C>°(M), M a spin Riemannian compact manifold,
H = L?(S) (sections of spinor bundle) and D the Dirac operator
on M then to (A, H, D) is a spectral triple (with a real structure).
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COMMUTATIVE AND NONCOMMUTATIVE

were proposed in order to describe Standard Model and have a
good description of real spin geometries.

A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36,
6194, (1995)

which satisfy Connes’ axioms are in 1:1 correspondence with
Riemannian spin manifolds with a given spin structure and
metric.

A. Connes, On the spectral characterization of manifolds, J. Noncom.
Geom. 7, 1-82 (2013)

Classical (real) spectral triples are slightly richer than spin
geometries — as they describe (for example) geometries with
torsion.
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e The Noncommutative Torus: UV = 2™ VU
Usual Dirac operator the same as on the torus [Connes]
e Finite matrix algebras (M,(C) & Mk(C) & - - -
Dirac operator is a finite matrix [Paschke & AS, Krajewski]
e Isospectral deformations (9-deformations of manifolds)
Usual Dirac operators [Connes, Landi, Dubois-Violette, AS,
Varilly]
e Moyal deformation [x*, x| = 0"~
The usual isospectral Dirac
e g-deformations: Standard Podle$ sphere [Dabrowski, AS]
Dirac with exponential growth

There is so far no general method. Only examples.
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REDISCOVERING THE SPIN STRUCTURE.
The question: What is the spin structure in NCG ?

There are four inequivalent equivariant spin structures on the
2-dimensional noncommutative torus, with a unique choice of
equivariant Dirac operator for each spin structure:

d+ = Ty + TV

which satisfies the Hochschild cycle condition, provided that
TuT, # T,Tv. The spectrum of the equivariant Dirac operator
depends on the spin structure.

More results followed (J-J. Venselaar).
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NONCOMMUTATIVE TORUS AND MORE
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REDISCOVERING THE SPIN STRUCTURE.

e The choice of each of the spin structures corresponds to
the choice of the equivariant real structure J

e The results were extended by J-J Venselaar to higher
dimensional NC tori.

e Similar results were obtained by P.Olczykowski and AS for
three-dimensional noncommutative Bieberbach manifolds.

e Similar results for lens spaces (J-J.Venselaar and AS).

Problem: Why only flat or round geometries ?
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ARE THERE ANY INTERESTING NC GEOMETRIES ?

A Qr

The facts:
© for the examples of g-deformed algebras (Podles spheres,
SUq(2)) - there are no spectral geometries in the exact
sense — but — there are geometries in which some of the
commutation relations are satisfied up to compact
operators:

[Jw(a)J’1,7r(b)} € Kq,
[Jn(a)d ™, [D, 7(b)]] € Kq,
@ the soft version of the commutant and order one axiom is

perfectly acceptable for the purpose of index or spectral
action calculations

Remark: Leads to nontrivial classical "triples”.
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Take M a compact Riemannian spin manifold, on which S' acts
freely and isometrically. Assume that the lenght of fibre is
constant. Aim: express the Dirac operator on the total space
using the Dirac on the base space and the U(1) connection w.
Amman & Bar (1998); LD+AS (Comm.Math.Phys, 318, 1,
111-130 (2013))



RECENT EXAMPLES OF NEW NC GEOMETRIES

Take M a compact Riemannian spin manifold, on which S' acts
freely and isometrically. Assume that the lenght of fibre is
constant. Aim: express the Dirac operator on the total space
using the Dirac on the base space and the U(1) connection w.
Amman & Bar (1998); LD+AS (Comm.Math.Phys, 318, 1,
111-130 (2013))

A family of conformally rescaled Dirac operators on the
noncommutative 2-torus for which the Gauss-Bonnet formula
holds:

D, = hDh, HD?H?,

where h € JC>(T)J, so it is in the commutant, h > 0, was
introduced by Connes and Tretkoff, by M.Khalkhali et al, LD,AS.
All good properties (Hochschild cocycle etc) hold.



RECENT EXAMPLES OF NEW NC GEOMETRIES

If you take a torus with the metric dx? + k—2(x, y)dy? (that is,
for instance the usual ,round" torus embedded in R3) the Dirac
operator is:

D = —ic'0x — io® (k 9y + 30, (k)),

Same is possible with NC torus and the Gauss-Bonnet holds
(LD+AS, Asymmetric noncommutative torus, SIGMA 11 (2015)
075-086).

These are examples of new spectral geometries that do not
satisfy (or at least not in the obvious sense) the axioms of
first-order condition.



NEW: REALITY TWISTED BY AN AUTOMORPHISM

Let A be a complex *-algebra and let (H, 7) be a (left)
representation of A on a complex vector space H. A linear
automorphism v of H defines an algebra automorphism

v : End(H) — End(H), dr>vopov .



NEW: REALITY TWISTED BY AN AUTOMORPHISM

Let A be a complex *-algebra and let (H, 7) be a (left)
representation of A on a complex vector space H. A linear
automorphism v of H defines an algebra automorphism

v : End(H) — End(H), dr>vopov .

The inverse of 7 is ¢ — v~ o ¢ o v. Since 7 is an algebra map,
the composite

T A z End(H) Z End(H)




NEW: REALITY TWISTED BY AN AUTOMORPHISM

Let A be a complex *-algebra and let (H, 7) be a (left)
representation of A on a complex vector space H. A linear
automorphism v of H defines an algebra automorphism

v : End(H) — End(H), b vogov .

The inverse of 7 is ¢ — v~ o ¢ o v. Since 7 is an algebra map,
the composite

T A z End(H) Z End(H)

is an algebra map too, and hence it defines a new
representation (H, ) of A. The map v is an isomorphism that
intertwines (H, 7) with (H, 7).

We could also require that 7¥(a) € 7(A) so for faithful = the
map » defines an (algebra) automorphism of A
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TWISTED REALITY

Let A be a «-algebra, (H, 7) a representation of A, D a linear
operator on H, and let v be a linear automorphism of H. We
say that the triple (A, H, D) admits a v-twisted real structure if
there exists an anti-linear map J : H — H such that J? = €id,
and, for all a,b € A,

[7(a), Jr(b)J~ '] =0,

[D, w(a)]J7?(n(b))J ! = Jn(b)J'[D, n(a)],

DJv = €'vdD,

where e,¢ € {+, —}.
vdv = J,



TWISTED REALITY
If (A, H, D) admits a grading operator v : H — H:
B (@] =0, yD=-Dy, v2y=upf,
then the twisted real structure J is also required to satisfy
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TWISTED REALITY
If (A, H, D) admits a grading operator v : H — H:
=id, [1,7(a]=0 +D=-Dy, vPy=ny?
then the twisted real structure J is also required to satisfy
v =€e'J,

where ¢” is another sign.
This purely algebraic definition of twisted reality is motivated by
and aimed at being applicable to spectral triples.

In case of H being a Hilbert space the automorphism v is also
assumed to be densely defined and selfadjoint, with the
requirement that 7 maps 7 (A) into bounded operators.

The signs ¢, €, ¢ determine the KO-dimension modulo 8 in the
usual way and the operator J is antiunitary.



TWISTED REAL SPECTRAL TRIPLES

We shall say that a spectral triple admits a v-twisted real
structure, or simply that is a v-twisted real spectral triple.

The commutant condition is called the order-zero condition and
the one with the Dirac operator is called the twisted order-one
condition. We shall call the modified condition the the twisted
€¢’-condition.



TWISTED REAL SPECTRAL TRIPLES

We shall say that a spectral triple admits a v-twisted real
structure, or simply that is a v-twisted real spectral triple.

The commutant condition is called the order-zero condition and
the one with the Dirac operator is called the twisted order-one
condition. We shall call the modified condition the the twisted
€¢’-condition.

This is an extension not a replacement. In the case of v = id
we get the usual, well known, spectral triples.
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THE FLUCTUATIONS OF THE DIRAC OPERATOR

Let Q}, be a bimodule of one forms:

Qp :={) _n(a)[D,(b)]|a;, bj € A}.
i
The standard fluctuaction (= gauge transform) of a spectral
triple (A, H, D) consist of
D~ D+a, «oa=a" €Q1D.

In case of a real spectral triple the fluctuated D is
D+ o+ ¢Jad™1, where o + ¢ Jad " is selfadjoint.

For our case of v-twisted real spectral triple we set the
fluctuated Dirac operator D, to be:

D, :=D+a+évdad v,

with the requirement that o + ¢’vJaJ~'v is selfadjoint.
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(the same) grading ~.

The composition of twisted fluctuations is a twisted fluctuation.



FLUCTUATIONS

If (A, H, D) with J € End(H) is a v-twisted real spectral triple,
then (A, H, D) with (the same) J is also a v-twisted real
spectral triple.

If (A, H, D) is even with grading ~, then (A, H, D,,) is even with
(the same) grading ~.

The composition of twisted fluctuations is a twisted fluctuation.

As a perturbation of D by a bounded selfadjoint operator, the
fluctuated Dirac operator D,, is selfadjoint, has bounded
commutators with 7(a) € A and has compact resolvent.

We show that a fluctuation of the fluctuated Dirac operator is
also a fluctuation. In other words, that

Qp. =Qh,  acQl.



PROOF (CONTINUED)

We compute:

[vdad v, m(a)] = vdad~'vr(a) — n(@)vdad v
= vdad 'vr(a) — vr(P 1 (a))Jad v
= vdad (@) — vdad ' n(D(a))v

(a) -

= vdad'vr(a) — vdad vr((@))r =



PROOF (CONTINUED)

We compute:

[vdad v, m(a)] = vdad~'vr(a) — n(@)vdad v
= vdad Yvn(a) — vr(p7'(a))Jad v
(a) — vdad'n(0(a))v
(a) -

vdad vr((a))v =

= vdad Yun

= vdad un(a
Therefore for any a € Qf, and a € A we have:

[Da,m(a)] = [D, 7(a)] + [a, m(a)] € Q.
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PROOF (CONTINUED)

To finish the proof it remains only to check that D, satisfies the
twisted ¢’-condition
D.,Jv = €vdD,,.

Since D itself satisfies it, just check that

(o + €vdad™'v)dv = (adv + €vdad Tvdy
= adv + dvda

— ) (a i 1/_104J1/)
= ] <a o y) ; O

Thus like in the usual case of the real spectral triples the
twisted fluctuations form a semigroup.



EXAMPLE: CONFORMAL PERTURBATIONS

Let us assume that we have a real spectral triple (A, H, D, J)
with reality operator J and fixed signs ¢, ¢’. Let k € 7(A) be a
positive and invertible bounded operator such that k=1 is also
bounded, and let us denote by kY := Ad,(k) = JkJ~".



EXAMPLE: CONFORMAL PERTURBATIONS

Let us assume that we have a real spectral triple (A, H, D, J)
with reality operator J and fixed signs ¢, ¢'. Let k € w(A) be a
positive and invertible bounded operator such that k=1 is also
bounded, and let us denote by kY := Ad,(k) = JkJ~".

If (A, H, D) with J is a real spectral triple, which satisfies order
one condition, then for:

Dy = k‘Dk?,  v(h) =k 'k’h,

the triple (A, H, Dx) with J is a v-twisted real spectral triple.
If furthermore (A, H, D) is even with grading ~, then (A, H, D,,)
is even with (the same) grading ~.
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bounded operators to bounded operators, and Va € A:

o(n(a)) = k~'n(a)k.
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EXAMPLE: CONFORMAL PERTURBATIONS

Since k and kY are bounded operators it is clear that 7 sends
bounded operators to bounded operators, and Va € A:

o(n(a)) = k~'n(a)k.

We show now that Dy satisfies the twisted order-one condition :
Jr(b)J ' [Dk, w(a)] = Jr(b)J 'k [D, n(a)]JkJ
=k’|D, w(a)|k!J(k2x(b)k?)J~! = [Dx, n(a)] JF2(x(b))J .

Next we check compatibility between J and v:

vdv = k= "Ukd Uk TUkd—1 = U.



EXAMPLE 1: CONFORMAL PERTURBATIONS

Finally, if JD = ¢’ DJ then for Dy we have:
JDy = Jk?YJ~1UDK? = € kDJK? = ' k(k?) "1 Dx(k?) Tk,
so that the twisted €¢/-condition is satisfied

vdDy = € Dxdv. O
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Finally, if JD = ¢’ DJ then for Dy we have:
JDy = Jk?YJ~1UDK? = € kDJK? = ' k(k?) "1 Dx(k?) Tk,
so that the twisted €¢/-condition is satisfied

vdDy = € Dxdv. O

In the 'classical’ case of a manifold M and (commutative)

A = C>(M) with Ad, being the complex conjugation, the
conformal twists are always trivial as JkJ~' = k for a positive k
and hence v = id.



THE (v, p) TWISTING

We say that (A, H, D, J) is a (v, p)-type twisted real spectral
triple if:
(1) for all a € A, the commutators [D, a], are bounded,
(2) vd preserves the domain of D,
(3) DJv = €vdD and vdv = J and 12y = 12,
(4) the (v, p)-twisted first-order condition holds:
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pov—



THE (v, p) TWISTING

We say that (A, H, D, J) is a (v, p)-type twisted real spectral
triple if:
(1) for all a € A, the commutators [D, a], are bounded,
(2) vd preserves the domain of D,
(3) DJv = €vdD and vdv = J and 12y = 12,
(4) the (v, p)-twisted first-order condition holds:

(1D.al,.b],,, > =0
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(1) The (v,id)-type spectral triple (untwisted) with twisted
reality of [Brzezinski, Ciccola, Dabrowski,Sitarz]

(2) The (1, p)-type twisted real spectral triple of [Landi,
Martinetti].



TWISTING AND UNTWISTING

Let A be a «-algebra and 7 : A — B(H) be a x-representation of
A on a Hilbert space H. LetJ : H — H be a C-antilinear
isometry such that J? = € and that the zero order condition is
satisfied. Let p be an algebra automorphism, and let v be a
bounded operator on H with the bounded inverse such that

(a) v implements an algebra automorphism © of A in
representation # and p = 02, or
(b) v is a unitary operator such that v—2 implements p in
representation i
Let
m A= B(H), a~ v %, (1)

be the induced representation of A...



TWISTING AND UNTWISTING

... and set
i, incase (a),
Im =
m,, incase (b),

so that w is always a x-representation. Assume further that
vdv = J.

For an operator D on H, set
D=vDy,

Then:

(1) (=, D, J,v?) satisfy conditions of a spectral triple with a
v2-twisted real structure if and only if (7, D, J, p) satisfy
conditions of real p-twisted spectral triple.



TWISTED AND UNTWISTED

We can summarise here three different kinds of twisted reality
conditions obtained by the conformal twisting of a real spectral
triple (A, H, 7, D, J) in the following table:

structure and first-
order condition

(A H, 7, K'DK',J) | (A, H, 7, kk'DkK',J)| (A, H,m, kDk,J)
spectral triple with | real p-twisted | twisted  spectral
the v-twisted real | spectral triple triple  with real

structure and un-
twisted first-order
condition

v=k K

p=Ady

v = kk'1

Here k = n(u) € 7(A), where u € Alis invertible and such that k
is positive with bounded inverse, k' = JkJ~' and we have
vdD = €' JDv, and vJv = J in the first and the third cases.
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CONCLUSIONS

e Are there more examples (not conformal)?
o |s there an intersection with modular Fredholm modules ?

e What are the implications for geometry (Poisson, almost
commutative) ?

e What is the largest class of conditions possible ?

THANK YOU !
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