Two Variable Trace Formula

Kalyan B. Sinha

J.N.Centre for Advanced Scientic Research and Indian Institute of Science, Bangalore, India.

(in collaboration with Arup Chattopadhyay)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Notations

- Introduction
- Approximation Results
- Trace Formula in Finite Dimension
- Main Theorem
- Absolute Continuity of the Measure which Appears in Main Theorem
- References

くほと くほと くほと

Notations

- $\mathcal{H} \equiv$ Separable Hilbert space
- $\mathcal{B}(\mathcal{H}) \equiv$ Set of bounded operators
- $\mathcal{B}_1(\mathcal{H})\equiv$ Set of trace class operators
- $\mathcal{B}_2(\mathcal{H}) \equiv$ Set of Hilbert-Schmidt class operators
- $\mathcal{B}_{\rho}(\mathcal{H}) \equiv$ Schatten-p class operators
- $\|\cdot\|_p \equiv \text{Schatten-p norm}$
- $\mathcal{P}([a,b]) \equiv$ Set of polynomials with complex coefficients on [a,b]
- $C([a, b]) \equiv$ Set of continuous functions on [a, b]
- $\sigma(H) \equiv$ Spectrum of the operator H

▶ < ∃ ▶ < ∃ ▶</p>

Introduction

• Let H and H_0 be two possibly unbounded self-adjoint operators in a separable Hilbert space \mathcal{H} such that $V = H - H_0 \in \mathcal{B}_1(\mathcal{H})$. Then Krein proved that there exists a unique real-valued $L^1(\mathbb{R})$ - function ξ with support in the interval [a, b] such that

$$\operatorname{Fr}\left[\phi\left(H_{0}+V\right)-\phi\left(H_{0}\right)\right]=\int_{a}^{b}\phi'(\lambda)\ \xi(\lambda)\ d\lambda,\tag{1}$$

for a large class of functions ϕ (where $a = \min\{\inf \sigma(H), \inf \sigma(H_0)\}$ and $b = \max\{\sup \sigma(H), \sup \sigma(H_0)\}$).

- The function ξ is known as Krein's spectral shift function and the relation (1) is called Krein's trace formula.
- The original proof of Krein [4] uses analytic function theory.
- Later, Voiculescu approached the trace formula (1) from a different direction.

Kalyan B. Sinha (JNCASR)

Introduction

• If H and H_0 are bounded, then Voiculescu [6] proved that

$$\operatorname{Tr}\left[p\left(H\right)-p\left(H_{0}\right)\right]=\lim_{n\longrightarrow\infty}\operatorname{Tr}\left[p\left(H_{n}\right)-p\left(H_{0,n}\right)\right],$$
(2)

where p is a polynomial and H_n , $H_{0,n}$ are finite-dimensional approximation of H and H_0 respectively (constructed by adapting Weyl-von Neumann theorem).

- Then one constructs the spectral shift function in the finite dimensional case and finally the formula is extended to the infinite dimensional case.
- Later Sinha and Mohapatra [5] used a similar method to get the same result for the unbounded self-adjoint case.
- More recently, Potapov, Skripka and Sukochev [2] has proven the trace-formula for all orders, obtaining a kind of Taylor's theorem under trace.

Kalyan B. Sinha (JNCASR)

Introduction

- It is natural to ask similar questions for a pair of commuting self-adjoint n-tuples, particularly an appropriate adaptation of Krein's formula (1) to two and higher dimensions.
- Here our aim is to formulate a relevant question for a pair of commuting bounded self-adjoint tuples and use finite-dimensional approximation to get a trace formula.
- Before going to the main result in this talk first we start with an approximation result which we have adapted from the proof of Weyl-von Neumann-Berg Theorem.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Approximation Results

- A result due to Weyl and von Neumann [3] proves that for a self-adjoint operator A that given ε > 0, ∃K ∈ B₂(H) such that ||K||₂ < ε and A + K has pure point spectrum.
- Later Berg extended this to an n-tuples of bounded commuting self-adjoint operators (A₁, A₂,..., A_n), which says that given *ϵ* > 0, ∃ {K_j}ⁿ_{j=1} of compact operators such that ||K_j|| < ϵ ∀j and {A_j - K_j}ⁿ_{j=1} is a commuting family of bounded self-adjoint operators with pure point spectra.
- Here we extend in the next theorem the ideas of the proof of Berg's result as given in [1].
- It is worth mentioning that Voiculescu [7] had earlier obtained related (though not the same) results.

Approximation Results

Theorem 1

Let $\{A_i\}_{1 \le i \le n}$ be a commuting family of bounded self-adjoint operators in an infinite-dimensional separable Hilbert space \mathcal{H} . Then there exists a sequence $\{P_N\}$ of finite-rank projections such that $\{P_N\} \uparrow I$ as $N \longrightarrow \infty$ and such that there exists a commuting family of bounded self-adjoint operators $\{B_i^{(N)}\}_{1 \le i \le n}$ with the properties that for $p \ge n$ and for each i $(1 \le i \le n)$, as $N \longrightarrow \infty$,

(i)
$$P_N B_i^{(N)} P_N = B_i^{(N)} P_N$$
, (ii) $\left\| A_i - B_i^{(N)} \right\|_p \longrightarrow 0$,

(iii)
$$\|[A_i, P_N]\|_p \longrightarrow 0$$
,
(iv) $\|P_N A_i P_N - B_i^{(N)} P_N\|_p \longrightarrow 0$ and (v) $\{B_i^{(N)} P_N\} \uparrow A_i$.

イロト 不得下 イヨト イヨト 二日

Sketch of the Proof of Theorem 1:

• Without loss of generality we assume that $0 \le A_i \le I$ for all $1 \le i \le n$, and we start with the representation for each *i*,

$$A_i = \sum_{k=1}^{\infty} 2^{-k} E_k^{(i)},$$

where $E_k^{(i)} = E_{A_i} \left(\bigcup_{j=1}^{2^{k-1}} (2^{-k}(2j-1), 2^{-k}(2j)] \right)$ with E_{A_i} the spectral measure associated to the bounded self-adjoint operator A_i .

• Next set for $N \in \mathbb{N}$ (the set of natural numbers),

$$\mathcal{L}_{N} \equiv \operatorname{span} \{ \left[\prod_{k=1}^{N} \prod_{i=1}^{n} \left(E_{k}^{(i)} \right)^{\epsilon} \right] f_{j} \mid 1 \leq j \leq N; \ \epsilon = \pm 1 \},$$

where $\{f_1, f_2, \dots, f_N, \dots\}$ be a countable orthonormal basis of \mathcal{H} and $\left(E_k^{(i)}\right)^1 = E_k^{(i)}$ and $\left(E_k^{(i)}\right)^{-1} = I - E_k^{(i)}$.

• Then \mathcal{L}_N is a finite dimensional subspace of \mathcal{H} and it has the following properties:

(a)
$$\mathcal{L}_N \subseteq \mathcal{L}_{N+1}$$
, (b) $\begin{pmatrix} \bigcup \\ \bigcup \\ N=1 \end{pmatrix} = \mathcal{H}$,

$$(c) \quad \dim \left(\mathcal{L}_N \right) \leq N \left(2^n - 1 \right)^N + N.$$

- Set P_N to be the finite rank projection associated with the finite dimensional subspace L_N and observe that {P_N} increases to I.
- Next define

$$B_i^{(N)} = \sum_{k=1}^N 2^{-k} E_k^{(i)} + \sum_{k=N+1}^\infty 2^{-k} E_k^{(i)} (I - P_k).$$

Then {B_i^(N)}_{1≤i≤n} is a commuting family of bounded self-adjoint operators.

• Furthermore,
$$A_i - B_i^{(N)} = \sum_{k=N+1}^{\infty} 2^{-k} E_k^{(i)} P_k$$
 and

$$\begin{split} \left\|A_{i}-B_{i}^{(N)}\right\|_{n} &\leq \sum_{k=N+1}^{\infty} 2^{-k} \left\|P_{k}\right\|_{n} \leq \sum_{k=N+1}^{\infty} 2^{-k} \left[k\{1+(2^{n}-1)^{k}\}\right]^{\frac{1}{n}} \\ &= \sum_{k=N+1}^{\infty} k^{\frac{1}{n}} \left[2^{-nk}+(1-2^{-n})^{k}\right]^{\frac{1}{n}} \\ &\leq \sum_{k=N+1}^{\infty} k^{\frac{1}{n}} 2^{-k} + \sum_{k=N+1}^{\infty} k^{\frac{1}{n}} \left[(1-2^{-n})^{\frac{1}{n}}\right]^{k}, \end{split}$$

where we have used that for a, b > 0 , $(a + b)^{\frac{1}{n}} \leq (a^{\frac{1}{n}} + b^{\frac{1}{n}})$.

• Since for fixed n, $(1-2^{-n})^{\frac{1}{n}} < 1$, and since $\sum_{k=1}^{\infty} k^{\frac{1}{n}} \alpha^k < \infty$ for $\alpha < 1$, it follows from the above that for each i $(1 \le i \le n)$ and any $p \ge n$,

$$\left\|A_{i}-B_{i}^{(N)}\right\|_{p} \leq 2^{\left(1-\frac{n}{p}\right)} \left\|A_{i}-B_{i}^{(N)}\right\|_{n}^{\frac{n}{p}} \longrightarrow 0 \quad \text{as} \quad N \longrightarrow \infty. \square$$

Remark

The choice that $0 \le A_i \le I$ does not materially affect the calculations of the above theorem. For if $C_i \in \mathcal{B}(\mathcal{H})$ $(1 \le i \le n)$, then we can set

$$A_i = (2 \|C_i\|)^{-1} C_i + rac{1}{2}I$$

so that $0 \le A_i \le I$ and thus $C_i = 2 \|C_i\| (\sum 2^{-k} E_k^{(i)} - \frac{1}{2}I)$. Thus choosing

$$B_i^{(N)} = 2 \|C_i\| \{ \sum_{k=1}^N 2^{-k} E_k^{(i)} + \sum_{k=N+1}^\infty (I - P_k) E_k^{(i)} - \frac{1}{2}I \}$$

one has $\|[C_i, B_i^{(N)}]\|_p = 2\|C_i\|\|[A_i, B_i^{(N)}]\|_p \to 0$ as $N \to \infty$ for $p \ge n$.

イロト イポト イヨト イヨト 二日

Trace Formula in Finite Dimension

Theorem 2

Let *P* and *Q* be two finite-dimensional projections in a (infinite dimensional separable) Hilbert space \mathcal{H} . Assume furthermore the two commuting pairs of bounded self-adjoint operator tuples (H_1^0, H_2^0) and (H_1, H_2) are acting in the common reducing subspaces \mathcal{PH} and \mathcal{QH} respectively. Also let $\sigma(H_1), \sigma(H_2), \sigma(H_1^0), \sigma(H_2^0)$ be in [a, b] and let ϕ, ψ be in $C^1([a, b])$. Then

$$\operatorname{Tr}\left\{Q\left(\phi(H_{1})-\phi(H_{1}^{0})\right)P\left(\psi(H_{2})-\psi(H_{2}^{0})\right)Q\right\}$$
$$=\int_{[a,b]^{2}}\phi'(x)\ \psi'(y)\ \xi(x,y)\ dxdy,$$
(3)

where $\xi(x, y) = \text{Tr}\left\{Q\left[E_{H_1}(x) - E_{H_1^0}(x)\right]P\left[E_{H_2}(y) - E_{H_2^0}(y)\right]Q\right\}$ and $E_{H_1}(\cdot), E_{H_2}(\cdot), E_{H_1^0}(\cdot), E_{H_2^0}(\cdot)$ are the spectral measures of the operators H_1, H_2, H_1^0, H_2^0 respectively.

Sketch of the Proof of Theorem 2:

By the spectral theorem of self-adjoint operators, Fubini's theorem and performing integration by-parts appropriately we can prove the above theorem. \Box

 In the next theorem we gave an equivalent description of the expression on the left hand side of the equation (3), in terms of divided differences and a B₂(H)-valued spectral measure.

Trace Formula in Finite Dimension

Theorem 3

Under the hypotheses of Theorem 2,

$$\operatorname{Tr}\left\{Q\left(\phi(H_{1})-\phi(H_{1}^{0})\right)P\left(\psi(H_{2})-\psi(H_{2}^{0})\right)Q\right\}$$

$$=\int_{[a,b]^{2}}\int_{[a,b]^{2}}\left\{\frac{\phi(x_{1})-\phi(x_{2})}{x_{1}-x_{2}}\right\}\left\{\frac{\psi(y_{1})-\psi(y_{2})}{y_{1}-y_{2}}\right\}\bullet$$

$$\left\langle\left(H_{1}-H_{1}^{0}\right),\ PE_{\underline{H}^{0}}(dx_{2}\times dy_{1})\left(H_{2}-H_{2}^{0}\right)E_{\underline{H}}(dx_{1}\times dy_{2})Q\right\rangle_{2},$$
where we have written $\underline{H}^{0}=(H_{1}^{0},H_{2}^{0}),\ \underline{H}=(H_{1},H_{2});\ E_{\underline{H}^{0}}(\cdot)$ and $E_{\underline{H}}(\cdot)$
are the associated spectral measures of the operators tuples \underline{H}^{0} and \underline{H}

respectively on the Borel sets of $|a, b|^2$, and where $\langle \cdot, \cdot \rangle_2$ denotes the inner product of the Hilbert space $\mathcal{B}_2(\mathcal{H})$.

• Note that the above theorem (Theorem 3) can also be extended in an infinite dimensional setting.

Sketch of the Proof of Theorem 3:

In \mathcal{H} , using the ideas of double spectral integrals, trace properties, Fubini's theorem and the fact that (H_1^0, H_2^0) , (H_1, H_2) are two commuting pairs of self-adjoint operators, we can prove the above theorem. \Box

Main Theorem

Theorem 4

Let (H_1^0, H_2^0) and (H_1, H_2) be two commuting pairs of bounded self-adjoint operators in a separable Hilbert space \mathcal{H} such that $H_j - H_j^0 \equiv V_j \in \mathcal{B}_2(\mathcal{H})$ and such that $\sigma(H_j)$, $\sigma(H_j^0) \subseteq [a, b]$ for j = 1, 2. Then there exists a unique complex Borel measure μ on $[a, b]^2$ such that

$$\mathsf{Tr}\Big\{\Big(\phi(H_1)-\phi(H_1^0)\Big)\Big(\psi(H_2)-\psi(H_2^0)\Big)\Big\}=\int_{[a,b]^2}\phi'(x)\ \psi'(y)\ \mu(dx\times dy),$$

where $\phi, \psi \in \mathcal{P}([a, b])$.

Sketch of the Proof of Theorem 4:

• (Finite Dimensional Reduction):

Applying approximation results (Theorem 1) to the pairs (H_1^0, H_2^0) and (H_1, H_2) we get two commuting pairs of finite dimensional self-adjoint operators $(H_1^{0(N)}, H_2^{0(N)})$ and $(H_1^{(N)}, H_2^{(N)})$ in $P_N^0 \mathcal{H}$ and $P_N \mathcal{H}$ respectively, such that

$$\begin{split} \left\| \left[H_{j}^{0}, P_{N}^{0} \right] \right\|_{p}, \ \left\| P_{N}^{0} H_{j}^{0} P_{N}^{0} - H_{j}^{0(N)} P_{N}^{0} \right\|_{p} \longrightarrow 0 \text{ as } N \longrightarrow \infty \text{ for } p \ge 2, \ j = 1, 2, \\ \\ \text{and} \end{split}$$

$$\left\| \left[H_j, P_N \right] \right\|_p, \ \left\| P_N H_j P_N - H_j^{(N)} P_N \right\|_p \longrightarrow 0 \text{ as } N \longrightarrow \infty \text{ for } p \ge 2, \ j = 1, 2,$$

where P_N^0 , P_N are projections increasing to I (i.e. P_N^0 , $P_N \uparrow I$).

• Applying the above results we show that

$$\operatorname{Tr}\left\{\left(\phi(H_{1})-\phi(H_{1}^{0})\right)\left(\psi(H_{2})-\psi(H_{2}^{0})\right)\right\} = \lim_{N \to \infty} \operatorname{Tr}\left\{P_{N}\left(\phi(H_{1}^{(N)})-\phi(H_{1}^{0(N)})\right)P_{N}^{0}\left(\psi(H_{2}^{(N)})-\psi(H_{2}^{0(N)})\right)\right\},\tag{4}$$

for $\phi, \psi \in \mathcal{P}([a, b])$.

3

イロト 不得 トイヨト イヨト

• (Finite Dimensional Trace formula): Using Theorem 2 we get

$$\operatorname{Tr}\left\{P_{N}\left(\phi(H_{1}^{(N)})-\phi(H_{1}^{0(N)})\right)P_{N}^{0}\left(\psi(H_{2}^{(N)})-\psi(H_{2}^{0(N)})\right)\right\}$$

= $\int_{a}^{b}\int_{a}^{b}\phi'(x) \ \psi'(y) \ \xi_{N}(x,y) \ dxdy$
= $\int_{[a,b]^{2}}\phi'(x) \ \psi'(y) \ \mu_{N}(dx \times dy),$ (5)

where

$$\xi_N(x,y) = \operatorname{Tr}\Big\{P_N\left[E_{H_1^{(N)}}(x) - E_{H_1^{0(N)}}(x)\right]P_N^0\left[E_{H_2^{(N)}}(y) - E_{H_2^{0(N)}}(y)\right]P_N\Big\}$$

and μ_N is a complex Borel measure on $[a, b]^2$ such that

$$\mu_N(\Delta) = \int\limits_{\Delta} \xi_N(x,y) dx dy, \quad ext{ for a Borel subset } \Delta \subseteq [a,b]^2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• (Finite Dimensional Trace formula): Moreover, using Theorem 3 we have that

$$\operatorname{Tr}\left\{P_{N}\left(\phi(H_{1}^{(N)})-\phi(H_{1}^{0(N)})\right)P_{N}^{0}\left(\psi(H_{2}^{(N)})-\psi(H_{2}^{0(N)})\right)\right\}$$
$$=\int_{[a,b]^{2}}\int_{[a,b]^{2}}\left\{\frac{\phi(x_{1})-\phi(x_{2})}{x_{1}-x_{2}}\right\}\left\{\frac{\psi(y_{1})-\psi(y_{2})}{y_{1}-y_{2}}\right\}\bullet\left(P_{N}^{0}V_{1}^{(N)}P_{N},\ P_{N}^{0}E_{\underline{H}^{0(N)}}(dx_{2}\times dy_{1})V_{2}^{(N)}E_{\underline{H}^{(N)}}(dx_{1}\times dy_{2})P_{N}\right)_{2},$$
(6)

where
$$V_j^{(N)} = H_j^{(N)} - H_j^{0(N)}$$
 for $j = 1, 2$ and
 $E_{\underline{H}^{0(N)}}(dx_2 \times dy_1) = E_{H_1^{0(N)}}(dx_2)E_{H_2^{0(N)}}(dy_1)$ and
 $E_{\underline{H}^{(N)}}(dx_1 \times dy_2) = E_{H_1^{(N)}}(dx_1)E_{H_2^{(N)}}(dy_2)$ are $\mathcal{B}_2(\mathcal{H})$ -valued spectral
measures of the operators tuples $\underline{H}^{0(N)}$ and $\underline{H}^{(N)}$ respectively on the
Borel sets of $[a, b]^2$.

3

• Combining (5) and (6) we get

$$\int_{[a,b]^2} \Psi(x,y) \mu_N(dx \times dy)$$

$$= \int_{[a,b]^2} \int_{[a,b]^2} \left\{ \frac{\phi(x_1) - \phi(x_2)}{x_1 - x_2} \right\} \left\{ \frac{\psi(y_1) - \psi(y_2)}{y_1 - y_2} \right\} \bullet$$

$$\left\langle P_N^0 V_1^{(N)} P_N, \ P_N^0 E_{\underline{H}^{0(N)}}(dx_2 \times dy_1) V_2^{(N)} E_{\underline{H}^{(N)}}(dx_1 \times dy_2) P_N \right\rangle_2$$

$$= \int_{[a,b]^2} \int_{[a,b]^2} \frac{\int_{x_2 y_2}^{x_1 y_1} \Psi(x,y) dx dy}{(x_1 - x_2)(y_1 - y_2)} \bullet \left\langle P_N^0 V_1^{(N)} P_N, P_N^0 E_{\underline{H}^{0(N)}}(dx_2 \times dy_1) V_2^{(N)} E_{\underline{H}^{(N)}}(dx_1 \times dy_2) P_N \right\rangle_2,$$

where $\Psi(x, y) = \phi'(x)\psi'(y)$ and $\phi, \psi \in \mathcal{P}([a, b])$.

◆□> ◆□> ◆豆> ◆豆> □ 豆

- For fixed N, we can extend the above equality to an arbitrary polynomial Ψ in two variables by taking suitable linear combination of products of polynomials in one-variables, x and y and then extend the above equality from P([a, b]²) to C([a, b]²) by Stone-Weierstrass theorem.
- Next we show that for all $\Psi \in C([a, b]^2)$,

$$\int_{[a,b]^2} \Psi(x,y) \ \mu_N(dx \times dy) \bigg| < C \ \|\Psi\|_{\infty},$$

for some constant C (< ∞) and hence by applying Helley's theorem we conclude that there exists a subsequence μ_{N_k} of μ_N such that μ_{N_k} converges weakly to a unique complex Borel measure μ on $[a, b]^2$, that is,

$$\lim_{k \to \infty} \int_{[a,b]^2} \Psi(x,y) \, \mu_{N_k}(dx \times dy) = \int_{[a,b]^2} \Psi(x,y) \, \mu(dx \times dy) \, \forall \, \Psi \in C([a,b]^2)$$

Regarding Absolute Continuity of the Measure μ :

- Unlike in one variable Krein's trace formula we note that the measure μ which appears in Theorem 5 is not necessarily absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^2 . In fact the measure μ may be singular with respect to the product Lebesgue measure on \mathbb{R}^2 as shown in Theorem 6.
- Indeed, if we assume that the measure μ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^2 , then there exists a function $\xi \in L^1([a, b]^2)$ such that $\mu(dx \times dy) = \xi(x, y)dxdy$.
- Next from the main theorem (Theorem 4) in particular situation where $H_1 = H_2 = H$ and $H_1^0 = H_2^0 = H^0$ we get

$$\operatorname{Tr}\left\{\left(\phi(H) - \phi(H^{0})\right)\left(\psi(H) - \psi(H^{0})\right)\right\}$$

= $\int_{a}^{b} \int_{a}^{b} \phi'(x) \ \psi'(y) \ \xi(x, y) \ dxdy,$ (7)

where $\phi, \psi \in \mathcal{P}([a, b])$.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

• On the other hand we will show separately in the next theorem bellow (a counterexample theorem) that

$$\operatorname{Tr}\left\{\left(\phi(H)-\phi(H^{0})\right)\left(\psi(H)-\psi(H^{0})\right)\right\}=\int_{a}^{b}\phi'(t)\,\psi'(t)\,\eta(t)\,dt,\ (8)$$

for suitable $\phi, \psi \in \mathcal{P}([a, b])$.

• Combining (7) and (8) we conclude that

$$\xi(x,y) = \delta(x-y) \ \eta(y),$$

which contradicts the fact that $\xi \in L^1([a, b]^2)$ and hence the measure μ is not absolutely continuous.

• Before going to discuss counterexample theorem in an infinite dimensional setup let us start with the similar type of theorem in finite dimension.

Theorem 5

Let H and H^0 be two self-adjoint operators in a finite dimensional Hilbert space \mathcal{H} such that $\sigma(H) \cup \sigma(H^0) \subseteq [a, b]$. Then the trace formula

$$\mathsf{Tr}\Big\{\Big(\psi(H)-\psi(H^0)\Big)\Big(\phi(H)-\phi(H^0)\Big)\Big\}=\int_a^b \psi'(t) \ \phi'(t) \ \eta(t) \ dt$$

holds for a suitable class of functions $\phi, \psi : [a, b] \mapsto \mathbb{R}$ in $C^1([a, b])$ and

$$\eta(t) = \operatorname{Tr}\left\{\left(H - H^{0}\right)\left(E_{H^{0}}(t) - E_{H}(t)\right)\right\}.$$

Sketch of the Proof of Theorem 5:

• By spectral theorem and performing integration by-parts we get

$$\operatorname{Tr}\left\{\left(H-H^{0}\right)\left(\phi(H)-\phi(H^{0})\right)\right\}=\int_{a}^{b}\phi'(t) \eta(t) dt,$$

where
$$\eta(t) = \text{Tr}\left\{\left(H - H^0\right)\left(E_{H^0}(t) - E_H(t)\right)\right\}$$
 and ϕ is a real-valued continuously differentiable function on $[a, b]$.

- Next consider the real-valued continuously differentiable function
 ψ : [a, b] → [ψ(a), ψ(b)] such that ψ' ≠ 0. Moreover, ψ is invertible
 and ψ⁻¹ is also continuously differentiable.
- Now let G⁰ = ψ(H⁰) and G = ψ(H). Then both G and G⁰ are bounded self-adjoint operators and therefore by applying the above argument to G, G⁰ and interchanging the spectral variable λ = ψ(t) of G, G⁰ to the spectral variable t of H, H⁰ we conclude

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへの

$$\operatorname{Tr}\left\{\left(\psi(H) - \psi(H^{0})\right)\left(\phi(H) - \phi(H^{0})\right)\right\}$$

=
$$\operatorname{Tr}\left\{\left(G - G^{0}\right)\left(\phi \circ \psi^{-1}(G) - \phi \circ \psi^{-1}(G^{0})\right)\right\}$$
(9)
=
$$\int_{a}^{b} \phi'(t) \ \tilde{\eta}(\psi; t) \ dt,$$

where

$$\tilde{\eta}(\psi;t) = \mathsf{Tr}\Big\{\Big(\psi(H) - \psi(H^0)\Big)\Big(E_{H^0}(t) - E_H(t)\Big)\Big\},\$$

and once again by performing integration by-parts and using the spectral theorem we conclude

$$\int_a^b \tilde{\eta}(\psi;t) \ dt = \int_a^b \ \psi'(t) \ \eta(t) \ dt.$$

3

米国 とくほとくほど

• Finally by considering the function

$$ilde{\psi}(t) = egin{cases} \psi(t) & ext{ for } & extbf{a} \leq t \leq lpha \ \psi(lpha) & ext{ for } & lpha \leq t \leq b, \end{cases}$$

where $a \leq \alpha \leq b$ and noting the fact that $\tilde{\eta}(\tilde{\psi}; t) = \tilde{\eta}(\psi; t)$ for $a \leq t \leq \alpha$ and $\tilde{\eta}(\tilde{\psi}; t) = 0$ for $\alpha \leq t \leq b$ we conclude that

$$\int_{a}^{lpha}\psi'(t) \ \eta(t) \ dt = \int_{a}^{lpha} \ ilde{\eta}(\psi;t) \ dt,$$

and thus $\tilde{\eta}(\psi; t) = \psi'(t) \eta(t)$ almost everywhere and therefore the result follows by combining with equation (9).

イロト 不得 トイヨト イヨト 二日

Theorem 6

Let H and H^0 be two bounded self-adjoint operators in an infinite dimensional Hilbert space \mathcal{H} such that $H - H^0 = V \in \mathcal{B}_2(\mathcal{H})$ and

 $\sigma(H)\cup\sigma(H^0)\subseteq [a,b]$. Then there exists a function $\eta\in L^1([a,b])$ such that

$$\operatorname{Tr}\left\{\left(\phi(H) - \phi(H^{0})\right)\left(\psi(H) - \psi(H^{0})\right)\right\} = \int_{a}^{b} \phi'(t) \ \psi'(t) \ \eta(t) \ dt, \ (10)$$

for a suitable class of functions $\phi, \psi : [a, b] \mapsto \mathbb{R}$ in $C^1([a, b])$.

<ロ> (四) (四) (三) (三) (三) (三)

Sketch of the Proof of Theorem 6:

• (Finite Dimensional Reduction):

► Using Weyl-Von Neumann theorem we conclude that there exists a sequence {P_N} of finite rank projections such that

$$\|(I - P_N)H^0 P_N\|_2, \|(I - P_N)V\|_2, \|(I - P_N)HP_N\|_2 \longrightarrow 0$$
 (11)

 $\text{ as } N \longrightarrow \infty.$

Using the above results we show that

$$\operatorname{Tr}\left\{\left(\phi(H) - \phi(H^{0})\right)\left(\psi(H) - \psi(H^{0})\right)\right\}$$

= $\lim_{N \longrightarrow \infty} \operatorname{Tr}\left\{P_{N}\left(\phi(P_{N}HP_{N}) - \phi(P_{N}H^{0}P_{N})\right)\right\}$
 $P_{N}\left(\psi(P_{N}HP_{N}) - \psi(P_{N}H^{0}P_{N})\right)P_{N}\right\}$

for $\phi, \psi \in \mathcal{P}([a, b])$.

イロト 不得下 イヨト イヨト 二日

• (Finite Dimensional Formula):

Using Theorem 5 we conclude that for a suitable class of functions $\phi, \psi : [a, b] \mapsto \mathbb{R}$,

$$\operatorname{Tr}\left\{P_{N}\left(\phi(P_{N}HP_{N})-\phi(P_{N}H^{0}P_{N})\right)\right.$$
$$\left.P_{N}\left(\psi(P_{N}HP_{N})-\psi(P_{N}H^{0}P_{N})\right)P_{N}\right\}$$
$$=\int_{a}^{b} \phi'(t) \ \psi'(t) \ \eta_{N}(t) \ dt,$$

where

$$\eta_N(t) = \operatorname{Tr}\Big\{P_N\Big(P_NHP_N - P_NH^0P_N\Big)P_N\Big(E_{P_NH^0P_N}(t) - E_{P_NHP_N}(t)\Big)\Big\}.$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

• Finally to guarantee the existence of the function $\eta \in L^1([a, b])$ we show that the sequence $\{\eta_N\}$ is a Cauchy sequence in $L^1([a, b])$. Indeed, we have shown that for $f \in L^{\infty}([a, b])$ and

$$\begin{split} \|\eta_{N} - \eta_{M}\|_{L^{1}([a,b])} &= \sup_{0 \neq f \in L^{\infty}([a,b])} \frac{\left| \int_{a}^{b} f(t) \left[\eta_{N}(t) - \eta_{M}(t) \right] dt \right|}{\|f\|_{\infty}} \\ &\leq \|V\|_{2} \left\{ \|P_{N}H(I - P_{N})\|_{2} + \|P_{N}H^{0}(I - P_{N})\|_{2} + \|P_{M}H(I - P_{M})\|_{2} \\ &+ \|P_{M}H^{0}(I - P_{M})\|_{2} + \|P_{N}VP_{N} - P_{M}VP_{M}\|_{2} \right\}, \end{split}$$

which converges to zero as $N, M \longrightarrow \infty$ (by (11)) and therefore $\{\eta_N\}$ is a Cauchy sequence in $L^1([a, b])$.

 $g(t) = \int_{a}^{t} f(\lambda) d\lambda$

・ロト ・ 一下・ ・ ヨト・・

Remark

In the counterexample theorem (Theorem 6) we can extend the theorem for any $\phi, \psi \in C^1([a, b])$. The only restriction of the function ψ in Theorem 6 is the following: $\psi' \neq 0$ and $\psi^{-1} \in C^1([a, b])$. Now if we assume that $\psi' = 0$ for some subset of [a, b], then since ψ is continuously differentiable $\psi' = 0$ on some interval $\Delta \subseteq [a, b]$ and hence ψ is constant on Δ . Let $\Delta^{c} = \bigcup_{i=1}^{\infty} \delta_{i}$ where δ_{i} is an interval of [a, b] for $i \geq 1$ and consider the function $\tilde{\psi}|_{\Delta^c} = \sum_{i=1}^{\infty} \psi|_{\delta_i}$. Therefore by applying Theorem 6 corresponding to the function $\tilde{\psi}|_{\Delta^c}$ we will have the final conclusion because both left hand side and right hand side of (10) are equals to zero whenever ψ is constant.

イロト イポト イヨト イヨト 二日

References

[1] K.R. DAVIDSON, C*- Algebras by Example, Field Institute Monographs, American mathematical Scocitey, 1996.

[2] D. POTAPOV.; A. SKRIPKA and F. SUKOCHEV, Spectral shift function of higher order, Invent. Math., 193 (2013), no. 3, 501–538.

[3] T. Kato, Perturbation Theory of Linear Operators (2nd ed.), New York, Springer Verlag, 1976.

[4] M.G. KREIN, On certain new studies in the perturbation theory for self-adjoint opera- tors, Topics in Differential and Integral equations and Operator theory, (Ed.I Gohberg), OT 7 (Basel: Birkhauser-Verlag) 1983, 107–172.

・ロト ・回ト ・ヨト ・ヨト

References

[5] K.B. SINHA, and A.N. MOHAPATRA, Spectral Shift Function and Trace Formula, Proc.Indian Acad.Sci.(Math.Sci.), Vol. 104, No.4, November 1994, 819–853.

[6] D. VOICULESCU, On a Trace Formula of M.G.Krein, Operator Theory: Advances and Applications, Vol.24(1987), 329–332. (Basel:Birkhauser-Verlag)

[7] D.V. VOICULESCU, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory, 2 (1979), no. 1, 3–37.

・ 何 ト ・ ヨ ト ・ ヨ ト

THANK YOU

Kalyan B. Sinha (JNCASR)

3

イロン イヨン イヨン イヨン