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computation and intformation tecr

m Several technologies
e Trapped lons
e NMR Quantum Computing
e Superconducting Qubits

B Superconducting Qubits share many promising fea-
tures

e Large coherence times
e Circuits can be printed
e Good integration with current technology

e Like “artificial atoms” where the different coupling con-
stants can be crafted.



osephnson efiec

m Predicted by Josephson ’62. Two superconducting mate-
rials separated by a thin insulator. The effects are due to
tunneling of Cooper Pairs.

e DC Josephson effect

e AC Josephson effect

m |nthe superconducting phase, electrons (Cooper Pairs) form
a Bose-Einstein condensate. All the Pairs collapse in the
groundstate.

sct  E  sc2
Py = p262¢2 Py = p161¢1

e p? Local density of conducting electrons

®m There are two main equations (macroscopically) governing
the Josephson effect.

I=1I;sing V= 2E¢ ¢. Phase difference ¢y — ¢,
@



m DC Josephson effect
e Suppose that there is no applied voltage to the junction:

¢ = const. # 0 I =1;sing

m AC Josephson effect

e Suppose that one applies a constant electric potential:
V =V, = const.

2 2
O = %Vt + const. =z Sin(g‘/t + const.)

m There is another effect: Inverse AC effect
e A DC current appears when an AC voltage is applied.



~_ouperconducting circuits

JJ @) . Current biased Josephson Junction

m We want to describe the dynamics of this quantum system,
i.e. write a Hamiltonian.

e Energy of a Capacitor: ec = 3CV? = 1C (ﬁ)2 ¢?
e Energy of the Junction:

ey = [Pdt= [IVdt =2 [I;sin¢¢dt =~ cos ¢

hl

e Energy of the Current Source: e; = [ —I.Vdt = —%=¢

m The energy of the capacitance has the form of a quadratic
kinetic term. Calling n the canonical conjugated momentum
to ¢ and doing a Legendre transform:

1 h
H=-Em?—E;co8¢ — —I.¢
2 2e




~oupercondaucting Circuits

JJ L rf SQUID

Another prototypical example

e Energy of an Inductor: e, = $5- - Vo

e The Magnetic Field B is the total magnetic field traversing the induc-
tance.

Hamiltonian:

] )2
H = ~Eon® — F;008 6 + g, 9+ P
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ontrollability of quantum system

Time dependent Schrédinger Equation

ov

m H(t)is a family of self-adjoint operators

B The solution of the equation is given in terms of a
unitary propagator

o U:RxR—UH)
® U(t,t)—]IfH
e U(t,s)U(s,7) =U(t,7)

m U(t) = Ult,ty)Vy is a solution of Schrddinger’s
Equation with initial value ¥,



)IHITY OT TINIte aimensional quantun

m Finite dimensional Quantum System H = C"
B Simple situation. Linear controls:

ENJ
Yot

B H,, H, self-adjoint operators (Hermitean matrices).

= (Hy+c(t)Hy) W

m ce(C Space of controls

m Use the controls to steer the state of the system
from Wy — Wy,



JIITY OT 11NIte aimensional quantun

m Ultimate Objective (nottoday): Findacurve c(t) C C
that drives the system from Uy — W.

m Optimal control: The solution V(t) = U(t,ty) ¥
must minimize some functional.

e Minimal time
e Minimal energy

m First of all: Decide wether or not the system is
controllable.

e |If there exists ¢(t) C C such that for some T

Uy = U(T) = Ult, t) ¥y



Ity OT TiNnIte aimensional quantu

m Study the dynamical Lie algebra:

Qie{iHo, ’LHl}

B The reachable set of ¥ is the orbit through ¥ of
the exponential map of the dynamical Lie algebra.

B The finite dimensional quantum system is control-
lable if the dynamical Lie algebra is the Lie algebra
of U(N).



runcation of tne narmoni

Harmonic Oscillator

ov 1d°v 1 1
=+ Ut ()2l = |=(p?+ ) + c(t)g| U

"ot ~ T 2dz? ' 2 >
dvw
pY = —i—— q¥ = 2¥(z)
dz }
m Harmonic Oscillator algebra:

1 1
-i-_ . L .
a =——=(q—1 a—=——=(q+1 _ T

N\n) =nln)  a'ln)=vVn+1n+1)  aln)=+vnjn—1) /




fruncation of tne narmonic

H, HarmonicHOsciIIator
1
1

i— =|—=—— 4+ =2 Y+ c(t)zT|= |=(p* + ¢*) + c(t)q| T

ot 2dx2 2 2
1\
pU = _@'d_ qV = zV(x)
| dz \ ,
® Harmonic Oscillator algebra:
1 1

aT:ﬁ(q—ip) a:ﬁ(qu) N =dla

Nin) = nln)  alln) = v+ 1jn+1) | aln) = vl —1)

m Generators of the dynamic:

1 1
— — H:_
H N—I—2 1 NG




1Iruncation or tne Aarmonic

m Finite-dimensional approximation by the first n eigen-
states

(Hg)ij = (i|Holj) (HY)ij = (i|Holj)




. fruncation o e fnarmonic C

m Finite-dimensional approximation by the first n eigen-
states

(Hy )iy = (¢|Hol7) (HY')ij = (¢|Holj)

m The finite dimensional approximation is control-
lable for all n

dim gie{iH},iH]'} = n*




1ADIIITY OT the farmonic O«

m Generators of the dynamic:

1 1
Hy= N + = H=—(@+a
R =Bt

m Dynamical Lie Algebra of the Harmonic Oscillator

[a,a'] =1 [N, a|l = —a [N, a'] = a'

[iHy,3H)| = ——=[N,a' + a] = ——=(a' — a) = ip = iH>




HaDIlItYy OT tne narmonic Us

m Generators of the dynamic:

1 1
Hy= N + = H=—@+a
0o=N+: 1 \/5( )

m Dynamical Lie Algebra of the Harmonic Oscillator

[a,a'] =1 [N,a] = —a [N, a'] = a

iHo,iHy) = iHs [iHy, iHy) = iH;  [iHy,iHs) = il = iH,




‘ollab| (o) e narmonic Osc

m Generators of the dynamic:

1
Hy= N + = H =—(a'+a

m Dynamical Lie Algebra of the Harmonic Oscillator

[a,a'] =1 [N, a] = —a [N, a'] = a

iHo,iH1] = iHy [iHy,iHy) = iHy  [iHy,iHs) = il = iH,

m Four dimensional Lie algebra!

m The infinite dimensional Harmonic Oscillator is not
controllable.



1ADIIITY OT the farmonic O«

m Why is it controllable for finite dimensions?

m Consider the 3-level truncation (n =0, 1, 2)

atln) = v+ Tin + 1) aln) = v/l — 1)

0 0 0 01 0
o' =11 0 0 00 2
0 v2 0 00 0
m What happens with the dynamical Lie algebra?
0= —sla'+0) p="sd ~ 0
10 0
lg;p) =4 |0 1 0O
00




11aDl OT INTINIte aimensionail S\

Approximate Controllability: A linear control system is ap-
proximately controllable if for every ¥, ¥; € § and every
e > 0 there exist 7' > 0 and ¢(t) C C such that

H\Pl — U(T, to)qfoH < €

m Reasonable for infinite dimensions

m Hilbert Space is defined as equivalence classes
of convergent sequences

m [s natural to expect this if one has exact controlla-
bility of every finite dimensional subsystem



~ Approximate contronapliity

m Consider the Linear Control System:

ENJ
Yot

e H,, H, are self-adjoint.

= (Hy+c(t)Hy) W

e {d,},cn O.N.B of eigenvectors of H,
e &, c D(H,) foreveryn e N
m The linear control system is approximately con-

trollable with piecewise constant controls if[Cham-
brion, Mason, Sigalotti, Boscain 2009]:

® (A1 — \y)nen are Q-linearly independent.
e (H®,,d,.1)#0foranyn e N



(ISténce o1 unitary propagatc

m Study Hamiltonians of the form
o H(t)=> ., fi(t)H;:  domH(t) =D
» Self-adjoint for all ¢
* H; densely defined on D

and symmetric
e fieC®i=1,...,n

o [|H:Y| < K([[H@)Y[ + [l])

Thm [Balmaseda, PP]: With the conditions above, there exists a strongly
differentiable unitary propagator U(t, s) that solves the time dependent
Schrédinger equation

S Ult,s) = ~HOU(L, 3,




-~ otapllity o e evo o] s

m Consider that the following Hamiltonians satisfy the previous conditions.

Hi(t) = > fitt)H;, Ho(t) =), 9:(t)H;

Thm [Balmaseda, PP]: For every T" > 0 and ¢ > 0 there exists 4 > 0 such that
I fi — gillo < 0 implies
|UL(T, 8)bs — Us(T, s)bs|| < €

m This result is important for technical and experimental reasons

e [t allows to avoid other technical conditions like those appearing in the result of
Chambrion et. al.

e [t guarantees that errors in the controls do not propagate dangerously to the solu-
tion.

m With these theorems one can prove that Hamiltonians of the type below
are approximately controllable

2
H=— (3—¢ — ioz) + Vbounded + k¢ + f1(t)p + fo(t)
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Uantum control on tneé pounaar

Time dependent Schrédinger Equation

H(t) is a family of different self-adjoint extension
of the same operator

(H,D(c(t)))

Advantage: There is no need to apply an external
field

Problem: Even the existence of solutions of the
dynamics is compromised.




GLuantum Control on the noundaary

m Assumption:

e The spectrum of (H ,D (c)) only contains eigenvalues with
finite degeneracy.

e Then {®¢},cn forms a complete orthonormal base.

m Fix a reference extension (H, D (c))
e Define the unitary operator

Voo H—H
¢ — Y
e One needs to require additionally that V.: D(c) = D(c)

m Using this unitary transformation one can trans-
form the problem with time dependent domain into
an equivalent one with time independent domain.



‘arying quasiperiodic boundary

0 27

) d2 0) = 12T 2
e &) el 300 |

m This is a family of self-adjoint operators depending on «

e Eigenvalues: (n — a)?
e Eigenfunctions: ¢, (z) = ¢*%e™®

® Assuming that the parameter a depends smoothly with time
this is unitarily equivalent to:

2
H(t) = [z— — a(t)] +a(t)x Dy = “Periodic Boundary Conditions”




rying quasiperiodic boundar

ZE\P [zE — a)]*V + 0a¥ Quantum Faraday Law

df

Particle Moving in a circular
wire

Magnetic flux of intensity 27«

® The magnetic vector potential « is related to the phase change
of the wave function ¢(0) = e"*™¢(2m).



agnetic Lapilacian on planar grapr

m One can generalise this to more general planar
graphs.

m This points out that magnetic laplacians on planar
graphs could be used to model superconducting
qubits. This is ongoing research. Preliminary re-
sults show that the Josephson Junction can be
modelled in these systems with §-like interactions.

O20
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