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I will discuss the quantum spacetime describe by the κ -Minkowski
commutation relations:

[x0, xi] = iλxi, [xi, xj] = 0, i, j = 1,2,3.

This is a noncommutative geometry, like the quantum phase
space. I will ask what are the possible measurements, the states,
their localisation, change of observers. . .

I will be very basic and follow Diracs correspondence principle,
associating to coordinates and all observables operators on a
Hilbert space. Consider their spectrum, eigenfunctions and spec-
tral decomposition.

I assume that the eigenvalues are the possible results of a measurement of

the observables, and use the standard apparatus of quantum mechanics, but

not consider conjugate momenta and their commutations. ~ plays no role,

except when comparing with quantum phase space.
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Let me first introduce a case study: Quantum Phase Space of

a particle.

This is of course well known material, but I will use it to compare with κ -Minowski.

Phase space is a six-dimensional space spanned by (qi, pi) . Quantization

introduces the commutation relation [qi, pj] = i~δij ,

The most common representations of position and momenta is operators

on L2(R3
q)

q̂iψ(q) = qiψ(q) ; p̂iψ(q) = −i~
∂

∂qi
ψ(q) .
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q̂ ’s and p̂ ’s are unbounded selfadjoint operators with a dense domain. The

spectrum is the real line (for each i ).

They have no eigenvectors but improper eigenfunctions: distribution.

Since the q̂i’s commute it is possible to have a simultaneous improper eigen-

vector of all of them, these are the Dirac distributions δ(q − q̄) for a particular

q̄ vector in R3 For a particular momentum p̄ the improper eigenfunctions

of the p̂i are plane waves eip̄iqi .

Formally, the eigenvalue equation ∂qψ(q) = αψ(q) , α ∈ C3 is solved by eα·q

with a vector α

No function of this kind is square integrable, there are no (proper) eigenfunc-

tions. The operator p̂ is self-adjoint on the domain of absolutely continuous

functions. α must be pure imaginary because the distributions must be well

defined on the domain of selfadjointness of the operators.
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The improper eigenfunctions of momentum are physically interpreted as infi-

nite plane waves of precise frequency. Since plane waves are not vectors of the

Hilbert space there is no quantum state which would give as measure exactly

the value ~k, nevertheless we have all learned to live with this fact, and there

is a well-defined sense in which we talk about “particles of momentum ~k ”.

Implicitly we have chose q̂i as a complete set of observables, the description

of a quantum state as a function of positions. |ψ(q)|2 (normalized) is the

density probability to find the particle at position q .

The ψ is complex and contains also the information about the density prob-

ability of the momentum operator.

We could have chosen p̂ as complete set. Then we would have the Fourier

transformed φ(p) It is important that the Fourier transform is an isometry, it

maps normalized functions of positions into normalized functions of momenta

And of course we have other choices, number operator and angular momentum . . .

4



This was for quantum phase space, and the deformation param-

eter was ~

I now want to reproduce this discussion for κ -Minkowski, four

dimensionlal space with different commutation relation and a

deformation parameter λ = 1
κ

This is a quantum space, but I will only consider its kinematic,

and leave ~ alone for the moment.

But is a relativistic space, hence later I will worry about Poincaré

transformations.
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I will look for a representation of the xµ on L2(R3) :

x̂iψ(x) = xiψ(x)

x̂0ψ(x) = iλ

∑
i

xi∂xi +
3

2

ψ(x) = iλ
(
r∂r +

3

2

)
ψ(x).

Positions are multiplicative operators, time is dilation. The 3/2 factor is

necessary to make the operator symmetric.

For dilations the polar basis is appropriate. The commutation relationsand

uncertainty principle become

[x̂0, cos θ] = [x̂0, eiϕ] = 0 , [x0, r] = iλr.

∆x0∆r ≥
λ

2
|〈r〉|.

The operator is selfadjoint on all absolutely continuous functions
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What is the spectrum of the time operator? Monomial in r are formal solu-

tions of the eigenvalue problem:

iλ
(
r∂r +

3

2

)
rα = iλ(α+

3

2
)rα = λαr

α,

The eigenvalues are real if and only if α = −3
2

+ τ with −∞ < τ < ∞ a real

number.

For momentum we had plane waves, in this case we have the following dis-

tributions

Tτ =
r−

3
2−iτ

λ−iτ
= r−

3
2e−iτ log(rλ)

The distribution has the correct dimension of a length to the 3/2, the factor of λ is there

to avoid taking the logarithm of a dimensional quantity. Since λ is a natural scale for the

model, its choice is natural, but not unique.
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For quantum phase space we had as complete set of observables

either three q ot three p , and we could back and forth among

the two by a Fourier transofrm,

For κ -Minkowski we have either (r, θ, ϕ) or (τ, θ, ϕ) , and we

switch among the two with a Mellin transform

ψ(r, θ, ϕ) =
1√
2π

∫ ∞
−∞

dτ r−
3
2e−iτ log(rλ)ψ̃(τ, θ, ϕ) =M−1

[
ψ̃(τ, θ, ϕ), r

]
,

ψ̃(τ, θ, ϕ) =
1√
2π

∫ ∞
0

dr r
1
2eiτ log(rλ)ψ(r, θ, ϕ) =M

[
ψ(r, θ, ϕ),

3

2
+ iτ

]
.

|ψ|2 and |ψ̃|2 can be interpreted as the probabilty density to find the particle

in position r or time τ respectively
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It is useful to have an idea of the dimensional quantities involved.

Call t the eigenvalue of the time operator x0

c , then τ = t cλ .

c
λ is a dimensional quantity. If we choose for λ the Planck

length then c
λ ∼ 2 · 1043 Hz. In other words if t = 1 s, then

τ = 2 · 1043 , an extremely large number.

If t is of the order of Planck time, then τ ∼ 1 .
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I will now give some examples of localised state, at the origin and away

Consider the following state (chosen to simplify calculations) localised in space

in a small region of size a around a point at distance z0 along the z axis.

ψz0,a(r, θ, ϕ) =

{ √
3λ

2aπ((a+z0)3−z3
0)
, z0 ≤ r ≤ (z0 + a) and cos θ > 1− a

λ

0, otherwise

In the limit a→ 0 the state is localised in z0
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The Mellin transform of this function, integrating out the angular

variables, gives:∫
|ψ̃z0,a|

2 sin θ dθ =

[
a

4π2z0
−

a2

8λ(π2z2
0)

+O(a3)

]

This tends to a constant which vanishes as a→ 0. Localising in

space implies delocalising in time

The series expansion for a around 0 , and z0 around ∞ , are

the same. |ψ̃z0|2 = λ
4π2z0

− aλ
8π2z2

0
+

a2λ
(
7−4τ2

)
192π2z3

0
+ O

(
a3
)

This means that a sharp localization of a particle far away from

the origin implies that the particle cannot be localised in time.

In accordance with the uncertainty for κ -Minkowski.
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It is impossible to sharply localise a state at a point, except at the origin

xi = 0 , which is an exceptional point.

The equivalent of the Gaussians of ordinary quantum mechanics are the log-Gaussians

L(r, r0) = Ne
−(log r−log r0)2

σ2 = e

−

 log
(
r
r0

)
σ

2

e−
9

16σ
2

√
σ(2π)3/4

√
r3

0

They have a maximum in r = r0 , which localizes at r = r0 as σ → 0 , and

localizes at r = 0 as r0 → 0 , for any value of σ ≥ 0 .
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Their Mellin transform are ordinary Gaussians (up to phases and normaliza-

tions) independent on r0

L̃(τ, r0) =
σ

1
2e−

1
4σ

2τ(τ−3i)riτ
0

2 4√2π3/4
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In the double limit r0 → 0 and σ →∞ , all 〈rn〉L and all 〈(x0)n〉L
go to zero as σ →∞ .

This is a state localised both in space (at r = 0 ) and in time

(at τ = 0 )

Localisation at arbitrary time is simply achieved multiplying the

state by
(
r
λ

)iτ0

With the usual abuse of notation we will call these state as |oτ〉 .
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We have argued that the origin is a special point. Does this
mean that somewhere in the universe there is “the origin”. A
special position in space singled out by the κ -God?

Implicitly in our discussion, when we were referring to states
we were assuming the existence of an observer measuring the
localisation of states.

This observer is located at the origin, and he can measure with
absolute precision where he is. For him “here” and “now” make
sense. He cannot localise with precision states away from him,
as a consequence of the noncommutativity of κ -Minkowski.

What about other observers? A different observer will be in gen-
eral Poincaré transformed, i.e. translated, rotated and boosted.
These operations are usually performed with an element of the
Poincaré group.
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One of the motivations for the introduction of κ -Minkowski is its relations

to the quantum group κ -Poincaré. We should therefore used deformed

transformations.

We require invariance under the transformation xµ → x′µ = Λµ
ν ⊗ xν + aµ ⊗ 1

Let me give the commutations relations in a particular basis (Zakrzewski, Mercati-Sergola)

[aµ, aν] = iλ (δµ0 a
ν − δν0 a

µ) , [Λµν,Λ
ρ
σ] = 0

[Λµν, a
ρ] = iλ

[
(Λµσδ

σ
0 − δµ0) Λρν +

(
Λσνδ

0
σ − δ0

ν

)
ηµρ

]
.

With coproduct, antipode and counit

∆(aµ) = aν ⊗ Λµν + 1⊗ aµ , ∆(Λµν) = Λµρ ⊗ Λρν ,

S(aµ) = −aν(Λ−1)µν , S(Λµν) = (Λ−1)µν , ε(aµ) = 0 , ε(Λµν) = δµν ,
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We represented the κ -Minkowski algebra as operators. But in doing so we

had implicitly chosen an observer.

In order to take into account the fact that there are different observers we en-

large the the algebra (and consequently the space) to include the parameters

of the new observers. We call then new set of states as Pκ

Our (generalized) Hilbert space will now comprise not only function on space-

time (either functions of r or τ ), but also functions of the a ’s and Λ ’s.

We can represent the κ -Poincaré group faithfully as

aρ = −i λ
2

[
(Λµ

σδσ0 − δµ0) Λρ
ν +

(
Λσ

νδ0
σ − δ0

ν

)
ηµρ
]

Λν
α

∂
∂ωµ

α
+ iλ

2

(
δρ0 qi

∂
∂qi

+ δµi qi
)

+ 1
2
h.c.

The Λ ’s are represented as multiplicative operators
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We have therefore that, like spacetime, the space of observers is also non-

commutative, and the noncommutativity is only present in the translation

sector.

We now explore the space of observers, seen as states. First consider the

observer located at the origin, which is reached via the identity transformation.

Define |o〉P of with the property:

P〈o| f(a,Λ)|o〉P = ε(f) ,

with f(a,Λ) a generic noncommutative function of translations and Lorentz transformation

matrices, and ε the counit.

This state describes the Poincaré transformation between two coincident ob-

servers. The state is such that all combined uncertainties vanish. Coincident

observers are therefore a well-defined concept in κ -Minkowski spacetime.
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A change of observer will transform xµ → x′µ = Λµν ⊗ xν + aµ ⊗ 1

and primed and unprimed coordinates correspond to different ob-

servers.

Identifying x with 1⊗ x we generate an extended algebra P ⊗M which

extends κ -Minkowski by the κ -poincaré group algebra.

This algebra takes into account position states and observables

Remember that, just as we cannot sharply localize position states, neither we

can sharply localize where the observer is.

Since Lorentz transformations commute among themselves, we can however

say if two observers are just rotated with respect to each other
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We can build the action of the position, translation and Lorentz transforma-

tions operator on generic functions of all those variables.

To simplify notations let us consider 1 + 1 dimensions. In this case there are

only two position coordinates, two translations coordinates and one Lorents

transformation parametrized by ξ

The relations are Λ0
0 = Λ1

1 = cosh ξ , Λ0
1 = Λ1

0 = sinh ξ ,

[a0, a1] = iλa1 , [ξ, a0] = −iλ sinh ξ , [ξ, a1] = iλ (1− cosh ξ) .

And the action on P is

a0 = iλq
∂

∂q
+ iλ sinh ξ

∂

∂ξ
, a1 = q + iλ (cosh ξ − 1)

∂

∂ξ
,
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States (non entangled) will be objects of the kind |g〉 ⊗ |f〉

In particular |g〉 ⊗ |o〉 is a pure translation of the state at the origin.

The new observer measures coordinates with x′ . The expectation values on

(normalised) transformed state is

〈x′µ〉 = 〈g| ⊗ 〈o|x′µ|g〉 ⊗ |o〉 = 〈g|Λµν|g〉〈o|xν|o〉+ 〈g|aµ|g〉〈o|o〉 ,

We get:

〈x′µ〉 = 〈g|aµ|g〉 ,

The expectation value of the transformed coordinates is completely by trans-

lations. This is natural, the different observers are comparing positions, not

directions.

21



In general

〈x′µ1 . . . x′µn〉 = 〈g|aµ1 . . . aµn|g〉〈o|o〉 = 〈g|aµ1 . . . aµn|g〉 .

Poincaré transforming the origin state |o〉 by a state with wavefunction |g〉 in

the representation of the κ -Poincaré algebra, the resulting state will assign,

to all polynomials in the transformed coordinates the same expectation value

as what assigned by |g〉 to the corresponding polynomials in aµ.

In other words, the state x′µ is identical to the state of aµ .

All uncertainty in the transformed coodinates ∆x′µ is introduced by the

uncertainty in the state of the translation operator, ∆aµ .

Let me stress that, dun to the noncommutativity of translations, we do not

know precisely where the new observer is unless she has just time translated

the origin, i.e. |g〉 = |oa0〉P .

It is also possible to see that the uncertainty of states increases with translation.

22



Conclusions and Outlook

There are some obvious things to do in this context. Some choices were

not unique and it would be interesting to see how many of the qualitative

conclusions depend on them. Some aspects are still aneddotical and can be

generalized.

We considered a regime which is not very natural in physics: the effects of a

quantum spacetime for which the noncommutativity parameter of space, λ

is nonzero, while we ignored ~

Bringing ~ back into the picture would require us to consider momenta, and

their connections with translations.

This is not easy in κ -Minkowski, where momenta form a curved space.

This led some to introduce a principle of relative locality, which reaches

conclusions compatible with ours
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