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Summary of the main results

m Motivation and background discussion on Noncommutative
Quantum Mechanics (NCQM).

m Introduction to the nilpotent Lie group Gy and its unitary
dual Gye.

m A class of unitarily equivalent representations (UIRs) of Gye
and their relation to 2-parameter classes of gauge potentials.

m Construction of Wigner functions for gauge equivalence
classes of UIRs of Gyc.
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What is noncommutative quantum mechanics?

e Noncommutative quantum mechanics, abbreviated as NCQM in

the sequel, is the quantum mechanics in noncommutative
configuration space.
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What is noncommutative quantum mechanics?

e Noncommutative quantum mechanics, abbreviated as NCQM in
the sequel, is the quantum mechanics in noncommutative
configuration space.

e Focus on a nonrelativistic quantum mechanical system of
2-degrees of freedom. Here, we have 2 positions and 2 momenta
coordinates denoted by g1, g2, p1 and ps. Denote an element of
the 4-dimensional Abelian group of translations of R* as
(¢1,42,p1,p2). The Weyl-Heisenberg group is just a nontrivial
central extension of this Abelian group, a generic element of which
is denoted by (6, q1, g2, p1,p2). The Weyl-Heisenberg Lie algebra,
on the other hand, admits a realization of self adjoint differential
operators on the smooth vectors of L?(R?), the commutation
relations for which read as follows:

[Q1, P1] = [Qa, By] = il (1)



Hasibu
n
Chowdhuryj

A foreword
to Noncom-
mutative

Quantum
Mechanics

of the group

e Here, Qi’s and P;’s are the self-adjoint representations of the Lie
algebra basis elements @);’s and P;’s where ¢ = 1,2. Note that the
noncentral basis elements ();’s and P;’s correspond to the group
parameters p;’s and ¢;’s, respectively, for ¢ = 1,2. Also, I stands
for the identity operator on L?(R?) and the central basis element
O of the algebra is mapped to scalar multiple of 1.
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e Here, Qi’s and P;’s are the self-adjoint representations of the Lie
algebra basis elements @);’s and P;’s where ¢ = 1,2. Note that the
noncentral basis elements ();’s and P;’s correspond to the group
parameters p;’s and ¢;’s, respectively, for ¢ = 1,2. Also, I stands
for the identity operator on L?(R?) and the central basis element
O of the algebra is mapped to scalar multiple of 1.

e In contrast to the well-known and much studied representation
theory of the Weyl-Heisenberg group, if one considers 3
inequivalent local exponents (see [?]) of the Abelian group of
translations in R* and extend it centrally using them to obtain a
7-dimensional real Lie group denoted by Gy in the sequel.



functior
from gauge

mechanics

(NCQM)

1sibul
an

hury
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of the group

e Here, Qi’s and P;’s are the self-adjoint representations of the Lie
algebra basis elements @);’s and P;’s where ¢ = 1,2. Note that the
noncentral basis elements ();’s and P;’s correspond to the group
parameters p;’s and ¢;’s, respectively, for ¢ = 1,2. Also, I stands
for the identity operator on L?(R?) and the central basis element
O of the algebra is mapped to scalar multiple of 1.

e In contrast to the well-known and much studied representation
theory of the Weyl-Heisenberg group, if one considers 3
inequivalent local exponents (see [?]) of the Abelian group of
translations in R* and extend it centrally using them to obtain a
7-dimensional real Lie group denoted by Gy in the sequel.

e The aim of introducing two other inequivalent local exponents
besides the one used to arrive at the Weyl-Heisenberg group was
to incorporate position-position and momentum-momentum
noncommutativity as employed in the formulation of
noncommutative quantum mechanics (NCQM).
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Representation of the corresponding Lie algebra gy reads:
[Q1, P1] = [Q2, Py] = i, @)
[Ql: Qz] =4I, and [131,152] = iBIL

Here, the central generators associated with the group parameters
0, ¢ and 1) are all mapped to scalar multiples of the identity

operator I on L?(IR?).
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A quick recap of group extension

Given a connected and simply connected Lie group G, the local
exponents £ giving its central extensions are functions
¢ : G x G — R, obeying the following properties:

£9", ") +€d"g,9) =€d",9'9) + €, 9)
5(976) =0= 5(6,9), €<g7g_l) = g(g_lag)'
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A quick recap of group extension

Given a connected and simply connected Lie group G, the local
exponents £ giving its central extensions are functions
¢ : G x G — R, obeying the following properties:

£9", ") +€d"g,9) =€d",9'9) + €, 9)
5(976) =0= g(e’g)’ €<g7g_l) = g(g_lag)'

We call the central extension trivial when the corresponding local
Syed Hasibu . . .
Hassan exponent is simply a coboundary term, in other words, when there
o exists a continuous function ¢ : G — R such that the following
holds

s
(NCQM

£(d',9) = Ean(d',9) == C(g") +C(g) — ¢(d'9).
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A quick recap of group extension

Given a connected and simply connected Lie group G, the local
exponents £ giving its central extensions are functions
¢ : G x G — R, obeying the following properties:

£9", ") +€d"g,9) =€d",9'9) + €, 9)
5(976) =0= g(e’g)’ €<g7g_l) = g(g_lag)'

We call the central extension trivial when the corresponding local
exponent is simply a coboundary term, in other words, when there
exists a continuous function ¢ : G — R such that the following
holds

£(d',9) = Ean(d',9) == C(g") +C(g) — ¢(d'9).

Two local exponents £ and £’ are equivalent if they differ by a

coboundary term, i.e. £'(¢’,9) = £(g', 9) + &eon(9', g). A local
exponent which is itself a coboundary is said to be trivial and the
corresponding extension of the group is called a trivial extension.
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Inequivalent local exponents to arrive at G,.

We shall show that certain triple central extension of the abelian
group of translations of R* reproduces the noncommutative
commutation relations (2). The relevant central extensions are
executed using inequivalent local exponents that are enumerated
in the following theorem:

Theorem

The three real valued functions &, £ and £ on G x G given by

1
£((q1, 92, p1,p2), (41,45, D1, Ph)) = §[q1p§+q2p'z—p1q'1—pzqé],
1
5/(((]17 QQ7p17p2>7 (qivq/QapllapIQ)) = 5[}7117/2 — p2p/1]a
1
¢"((q1, G2, p1,p2), (41,45, P1.P%) = =lads — 241,
2

are inequivalent local exponents for the group, Gr, of translations
in R
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Group composition rule for G,

The group Gy is a 7-dimensional real nilpotent Lie group. Its
group composition rule is given by (see [?])
(0’ ¢’ /l/}’ q7 p)(0/7 ¢/’ 1/117 q/’ pl)
o p
= (0+0’ + §[<qap/> - <paq/>]’¢+ (rb/ + 5

w+w’+g[q/\q’],q+q’,p+p’), (3)

p AP,

where «, 8 and vy some denote strictly positive dimensionful
constants associated with the triple central extension. Here,
a=(q1,92) and p = (p1, p2). Also, in (3), {.,.) and A are defined
as (q,p) := qip1 + g2p2 and q A p := q1p2 — g2p1, respectively..
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Coadjoint orbits of GG, and the unitary dual @Nc

There is a natural action of Gy on its dual Lie algebra gy called
the coadjoint action. This coadjoint action is given by

Kg(plap27 q1,42, 9, ¢) w)(X17X2aX37X4aX57X6’X7)

8] @]
=X —saXs+ észﬁ, Xo — —q2X5 — éplXG

(NCQMFS 2 2 2 2
~y e ~y a
Syed Hasibu , X3+ 5(12)(7 + §p1X5, Xy — §Q1X7 + §p2X5,X5,X6,X7)

(4)
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(4)

If one denotes the 3-polynomial invariants X5, X¢ and X7 by p, o
and 7, respectively, then the underlying coadjoint orbits can be
classified based on the values of the triple (p,o,7) in the following
ways:

12 /30



m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT # 0, the
coadjoint orbits denoted by 07" are R*, considered as affine
4-spaces.
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m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT # 0, the

b coadjoint orbits denoted by 07" are R*, considered as affine
cll of

4-spaces.

m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBo1 = 0, the
coadjoint orbits are denoted by "’5(95’4. For each ordered pair

(k,6) € R? along with p # 0 and ¢ € (—o0,0) U (0, c0)

satisfying p = o( = %, one obtains an R2-affine space to be

the underlying coadjoint orbit "’5(95’(.
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m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT # 0, the
coadjoint orbits denoted by 07" are R*, considered as affine
4-spaces.

m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBo1 = 0, the
coadjoint orbits are denoted by "’5(95 ¢ For each ordered pair
(k,6) € R? along with p # 0 and ¢ € (—o0,0) U (0, c0)

satisfying p = o( = %, one obtains an R2-affine space to be

the underlying coadjoint orbit "’5(95’(.

m When p # 0, 0 # 0, but 7 = 0, the coadjoint orbits denoted
by 0277 are R¥-affine spaces.
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(EeeR satisfying p = o( = Loz One obtains an R2-affine space to be
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" Hassan the underlying coadjoint orbit "’5(95’(.
m When p # 0, 0 # 0, but 7 = 0, the coadjoint orbits denoted
by 0277 are R¥-affine spaces.

m When p # 0, 7 # 0, but 0 = 0, the coadjoint orbits denoted
by O are R*-affine spaces.
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When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — vBoT # 0, the
coadjoint orbits denoted by 07" are R*, considered as affine
4-spaces.
When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT = 0, the
coadjoint orbits are denoted by "’5(95 ¢ For each ordered pair
(k,6) € R? along Witth # 0 and ¢ € (—00,0) U (0, 00)

YPT

satisfying p = o( = Loz One obtains an R2-affine space to be

the underlying coadjoint orbit “’5(95’(.

When p # 0, 0 # 0, but 7 = 0, the coadjoint orbits denoted
by 0277 are R¥-affine spaces.

When p # 0, 7 # 0, but 0 = 0, the coadjoint orbits denoted
by O are R*-affine spaces.

When p =0, 7 # 0 and ¢ # 0, the coadjoint orbits denoted
by O9%7 are also R*-affine spaces.



m When p # 0 only but both ¢ and 7 are taken to be identically
zero, the coadjoint orbits denoted by OZ’O’O are R%-affine
spaces.

1PN G4
14 /30



m When p # 0 only but both ¢ and 7 are taken to be identically
zero, the coadjoint orbits denoted by (’)Z’O’O are R*-affine
spaces.

m When p =7 =0 but ¢ # 0, the underlying coadjoint orbit
denoted by 4097 is an affine R%-plane. For each fixed
ordered pair (cs3,c4) such a 2-dimensional coadjoint orbit
exists.
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n m When p = 0 = 0 but 7 # 0, the underlying coadjoint orbit
denoted by -2 Og’O’T is an affine R?-plane. For each fixed
ordered pair (c1,¢2) such a 2-dimensional coadjoint orbit
exists.
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When p # 0 only but both ¢ and 7 are taken to be identically
zero, the coadjoint orbits denoted by (’)Z’O’O are R*-affine
spaces.

When p =7 =0 but ¢ # 0, the underlying coadjoint orbit
denoted by 4097 is an affine R%-plane. For each fixed
ordered pair (cs3,c4) such a 2-dimensional coadjoint orbit
exists.

When p = o =0 but 7 # 0, the underlying coadjoint orbit
denoted by -2 Og’O’T is an affine R?-plane. For each fixed
ordered pair (c1,¢2) such a 2-dimensional coadjoint orbit
exists.

When p = 0 =7 =0, the coadjoint orbits are 0-dimensional
points denoted by ©1-¢2-¢3,¢4 (’)8’0’0. Every quadruple
(c1,c2,c3,c4) gives rise to such an orbit.
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Unitary irreducible representations of G, and
those of its Lie algebra g,

Since, Gy¢ is a connected, simply connected nilpotent Lie group,
its unitary irreducible representations are in 1-1 correspondence
with the underlying coadjoint orbits as corroborated by the
method of orbit. There are nine distinct types of equivalence
classes of unitary irreducible representations of Gy¢ and its Lie
algebra gyc:
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of the group

Unitary irreducible representations of G, and
those of its Lie algebra g,.

Since, Gy¢ is a connected, simply connected nilpotent Lie group,
its unitary irreducible representations are in 1-1 correspondence
with the underlying coadjoint orbits as corroborated by the
method of orbit. There are nine distinct types of equivalence
classes of unitary irreducible representations of Gy¢ and its Lie
algebra gyc:

Case:p # 0,0 # 0,7 # 0 with p?a? —yBo7 # 0

Unirreps of Gyc:

(U8+(0,9,¢,q,p)f)(r)

— eip(9+0t171 ri+apzre+$qip1+ %Q2P2)6i0(¢+ §P1P2)

XeiT(w+’YQ2T1+%qlq2)f (7"1 +q1,m72 +q2 + Uﬂpl) ) (5)
po

where f € L*(R?,dr).



Reps of gye:

Q1 =11 +i1972, Q2 =13,
(6)
R o R B 0
Pi=—inl,  Py=—2p —in
! Zharl ’ 2 Rt Zharg ’

Syed Hasibu

Hassan with the following identification:

he L 9o 9P aB=-T (7)

pa (par)? (pa)?

B := %, here, can be interpreted as the constant magnetic field
applied normally to the Q10Q5-plane.

of the group
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Case: p# 0,0 # 0,7 # 0 with p?a? — yBoT =0
Unirreps of Gyc:

(U;g(ea ¢7¢7 q1, QQ,p1,p2)f)(7’)
= eip
. (a2 _ B
> ’LP( 28 4192 24171172) f(r —q +

B
a—<p2),
where f € L%(R,dr).

1PN G4
17 /30
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(0+%¢+ 5"—«1)) +irg1+i6gz —iparpr — LGS rga+L2 (¢1p1 —g2p2)
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Case: p# 0,0 # 0,7 # 0 with p?a? — yBoT =0
Unirreps of Gyc:

(Ugf(av ¢a 'l/}a q1, q2,p1,p2)f)(7n)

.92 .
(9+ o+S 3 w)+inq1+i5quiparp17’p% S rga+82 (q1p1—gap2)

ip( S q1q2— 2 p1p2
Xep(zﬁqq 2cpp)f(r_q1+£p2)’ (8)
ag
where f € L*(R,dr).
Reps of gne:
o o 0
Ql = -, QQ = “97’
or (9)
. 0 . hr

Plihlﬁ'/ﬁ*ihf, P2:h5+

or 9’

of the group



On the gauge or unitarily equivalent irreducible
representations of NCQM

1eorem

A 2-parameter (I, m) continuous family of unitarily equivalent
irreducible representations, associated with the 4-dimensional
coadjoint orbit OF " of the connected and simply connected
nilpotent Lie group Gye due to a fized nonzero triple (p,o,T)
satisfying p?a® — Tyo B # 0, is given by

Chowdhury

( PUT(Q ¢ 7/)7(17 )f)(ThT?)
ip2a?y(1-1)

. - patyoBm(1—1)
:ei09+10¢+ifﬂ)ezpaplrl+Zpap2T2+*2_§T‘yd‘ﬁl7p - q1ro+ilTygory +i +*T'r wBl—p P1La1

z[%aflT’YUiExl_rn)]pzqg«#z(mff)aﬁplpz«#‘L[Tw Tv(A=1)(ryoBl— T'y;ﬁlm. p2a?)

TyoBl—p }qqu

Xe

5 1-m)of TyoB(l+m—Ilm)—p2a? . 3 TyoBl(1—m)—p2a?
Xf(’l_( pa) p2+ i'yoﬁl—pzaz ‘11a'2+7"‘)(;ﬁp1_*(pg:2)7‘12 ; (10)

where f € L>(R2,dr). Here, | € R\ {&2} and m € R.

TyoB

1 8 /30
of the group 1¢ 3C



funct

Self adjoint representation of gy acting on the smooth vectors of
L?(R2?, drydrs) is given by

Am __ 7:0',3 i

Q' =r — M e Oy

QY =re+ (1 —m)

icB 0

p*a? ary’
1m Typa(l —1) o k2 TyoB(l +m — Im) — p*a? 0
LT ryeBl—p2a? ? T pa Tyo Bl — p2a? ory’
. Ity [ryeBl(1 —m) — p?a®] 8
pm = 21 —
2 pa mt { pdad Or

(11)
of the group

1PN G4
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Amo_ iof3 i
=" mpzoz2 Ory’
Am iof i
Q3 =72+ (1- m)7p2a2 oy b
pln_ Twall=D) 5 i [mesi=p 10 1P
y08l — p2a? 2 pa | 1y0fl — pPa? or’

pa pa 0202 ) ory

m ATy A, lryoB\ 0
P =—17f<7 e

Self adjoint representation of gyc can be re-written as



Amo_ iof3 i
=" mpzoz2 Ory’
Am iof i
Q3 =72+ (1- m)7p2a2 oy b
pln_ Twall=D) 5 i [mesi=p 10 1P
y08l — p2a? 2 pa | 1y0fl — pPa? or’

le'm=l7.JA;”7L< 7l7”yoﬁ> 7]

pa po p2a? ) Oy’

Commutation relations:

Am  plomy _ Alm plym _i
[lepl ]—[Qz )PZ ]_paﬂ’

Am Am io_ﬁ plom plom ‘T'Y (13)
[leQz]:_pzazﬂl [Pl ,P2 ]:_pQQQH'

Self adjoint representation of gyc can be re-written as

1PN G4
20 /30
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Inspired by the fact that the real parameters [ and m do not
contribute to the commutation relations of NCQM as has been
verified in (13), we can thereby choose a continuous family of
gauges using the noncommutative position operators Ql and Qg
given in (11).

Definition

Associated with the UIRs (10) of Gy, one can define the
2-parameter family of vector potentials

Abm = (_%Q2 , %}Q{”) for a fixed nonzero triple

(p, o, 7) satisfying p?a? — myo 8 # 0, with Q,’én’s as given in (12), to
be noncommutative vector potentials determining continuous

family of NCQM gauges for [ € R \ {%} and m € R. While

writing the vector potential A»™, its dependence on p, o and 7 is
suppressed due to notational convenience.



e Landau gauge corresponds to [ = 1, m = 0 so that the gauge
potential is AL0 = (0, —%Q?) - (o,—;—;trl) satisfying
DAy’ - 0,A)°0 = — 1B,

Self adjoint representation of gy in the Landau gauge:

Q? =T,

90—y, 4 f0B 0

Q=72+ a2 o’

Pl,Ui_Li (14)
B padry’

. T i(tyoB — p*a?) 0
JR (my /‘; g/) ) 9
pa pPad Iry

of the group
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e Landau gauge corresponds to [ = 1, m = 0 so that the gauge

potential is AN = (0, —;—ZQ?) = ( , plrl) satisfying

DAy’ - 0,A)°0 = — 1B,
Self adjoint representation of gyc in the Landau gauge:
Q? =T,
Beris L0
N i 14
) i

./ 2__
e Symmetric gauge corresponds to [ = palpax WZUO; 2fo)
and m = % Vector potential reads:

(Vp*a® — ot — pa)f)l;

o}

Alsd = (b — v/p*a® — 7 BoT) %
- of @

(15)
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e It can be verified that the following holds:

L4 L3
AL — 9, AR =

2h BY _
= — 1-——-1|:=8B
] h ’

where we chose B = —;—g—, 9 =—

p;’—gzandh:

le7

(16)
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e It can be verified that the following holds:

1 2 B _
AL _ g ald Z 2R < L 1) =B,  (16)

9 h

where we choseB——p—a,ﬂ 2 2 and h——

e Self adjoint representation of gy in symmetric gauge:
iop o

2p%2a2 Ory’
iop o

2p%a2 Ory’

1ok 202 — yBoT — pa i
Pz :( P UW; P )T272p2a2(pa+ /p2a27pyﬁo-7—)87

A7 1 —/n202 — ;
PyE = (o = ypPo? = ybor) . _ 5 (por+ Vpta? —qfor) 5

ofs 2p%«
(17)
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On the construction of Wigner function

e Standard Wigner quasi-probability distribution for a system
with 2-degrees of freedom (g1, q2):

W(lx)(Al;a,p)
1 i 4 1 1
s = — TRP1IT1IT R P272 T S
(NCQM awh B2 e n g A (27‘1 q1, 27"2 CI2>
Syed Hasibu 1 1
sl XX\ =3 — a5~ ¢ drqdrs, (18)

where \, x € L?(R?, dridrs).
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On the construction of Wigner function

e Standard Wigner quasi-probability distribution for a system
with 2-degrees of freedom (g1, q2):

W(lx)(Al;a,p)
1 i 4 1 1
s = — TRP1IT1IT R P272 T S
tNCQl\[Fh oh - e n n A (27'1 q1, 27"2 CI2>
Syed Hasibu 1 1
sl XX\ =3 — a5~ ¢ drqdrs, (18)

where \, x € L?(R?, dridrs).

e This is a quantum mechanical result. What is noncommutative
quantum mechanical analog of (18). What if we incorporate the
gauge parameters [ and m into our study?

24 /30
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e The answer to the above question is given by:
Wl'm(|Xp,U,T></\p,cr,T|§ Qnes Pnc; K1, ka2, k3)

_ lo
27 |k202 — koks |2
qz,m
X Xk1,k2,ks | =571 — Lne

2 k1

3

ql,m 1 ql,m
—iaph —iaph 1,nc 2,nc
’l.ﬂpl ncrl 1Py [ T2 )\ — _ 3 _ _ il
€ ’ ’ k1.kok T1 T2
L. o
lm
1 a5
——ry — =2 ) drydrs, (19)
2 k1
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e The answer to the above question is given by:

WE (X poor) (Apovr s Gucs Puci K1, K2, k3)

Tm T

_ la| i} o1 —iaph ora )\ 1 a1 92.nc
Py e k1,ka,ks ™ — —F—y5T2—
2r|k3a? — koksBy|2 Jre 2 ky "2 k1

1 a1 d
X Xk1,ka ks <*§7"1 - 1'"61 —sT2 — 2?) drydrs, (19)

e with the “noncommuting coordinates” o™, p"™, in terms of the

phase space coordinates k7, k3, k3 and k} can be read off as

tm_ [k3vkafl(1 —m) — ka®k} + mklkzﬂﬁka

tne ™ (k2Bkanl — kfa?)
1m kiafkaBlsy(L+m — Im) — k}a®]k3 + (1 — m)kaB(ksvka Bl — )kg
2 ne = Fra(kaBsy — K2a?)
Bk (L= Dk + (0® — kB ks
ne ka2 — koBkyy ’
L K0’k — kiaksylk
Pone =~ 73 9 1 A7

ka2 — koBkayl
(20)
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0 _ o«
Qe = kT,

10 _ kiaks + ko Bk
q2,nc kla

Pinc = K3,
1 kfa?kj — kiksayk;
P2 ne =

kl‘%ﬂﬁ - k}zkg,B’y

(21)

gner function for NCQM in Landau gauge:

1PN G4
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eWigner function for NCQM in Landau gauge:

from gauge 1,0 _
equivalence Gine = ki,
a0 = kiaks + ko B3
2,nc k‘la ?
- 1)
pl,nc - 3

L kia?k; — kiksavyk}
Paoe = a2 ks iy

e Wigner function for NCQM in symmetric gauge:

lo,5 _ (kiat+y/ka?— kzﬁ’ﬂ’v)k*—bﬁh

Q1ne = 2\/k ke
Lo,k (k}a®—kaBhay+hkiay/kFa —kaBha)ks+(kaBy/k 02—k Bkay)k}
92 nc 2(kIa?—k2Pks7) ’
1, kia(keBksy—ki o +hiay/ki a2 —kaBks)ki+(kiakaf/k3 a2 — kzdks"/)ks
Pine = ka2B(k3a?—k2Bksv)
1, _ kiokaBki—kia(kia—y/k}a2—kaBksy)ky
P2nc .

k2By/k3a? ks Blay
(22)
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Some proposals

Inspired by Fedosov’s deformation quantization, one can consider
the following problem:

e Fedosov started with an arbitrary finite dimensional symplectic
manifold and then considers the Weyl algebra bundle whose base
manifold is the underlying symplectic manifold and the fiber at
one point is the associative algebra of formal power series in A
mochanics whose coefficients are the smooth functions on the respective
(NEQD tangent spaces which are of course symplectic vector spaces. Then
f-Riat he studied various geometric aspects of this Weyl algebra bundle
by constructing appropriate connections on this bundle using the
symplectic connection of the underlying symplectic manifold.

Chowdhuryj
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Some proposals

Inspired by Fedosov’s deformation quantization, one can consider
the following problem:

e Fedosov started with an arbitrary finite dimensional symplectic
manifold and then considers the Weyl algebra bundle whose base
manifold is the underlying symplectic manifold and the fiber at
one point is the associative algebra of formal power series in A
whose coeflicients are the smooth functions on the respective
tangent spaces which are of course symplectic vector spaces. Then
he studied various geometric aspects of this Weyl algebra bundle
by constructing appropriate connections on this bundle using the
symplectic connection of the underlying symplectic manifold.

e We like to start with a nilpotent Lie group, find its unitary dual.
Then we would look at the foliation of the dual algebra into
coadjoint orbits. There will be an appropriate base manifold over
which the fibres are the coadjoint orbits and the fibre bundle is
precisely the dual algebra associated with the nilpotent group that
we started with.
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Now inspired by Fedosov’s construction, we want to replace these
fibres (coadjoint orbits) with formal power series in parameters
that label them (in fact from Kirillov’s theory these coadjoint
orbits are in 1-1 correspondence with the unitary dual of the
nilpotent Lie group that we started with). So, if one of the
coadjoint orbits represent an unirrep of the nilpotent group being
labeled by 3 parameters, then the corresponding associative
algebra will be a formal power series in those 3 parameters. We
can term such a bundle as the corresponding nilpotent lie algebra
bundle and see how Fedosov’s construction turns out in this
context.
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Now inspired by Fedosov’s construction, we want to replace these
fibres (coadjoint orbits) with formal power series in parameters
that label them (in fact from Kirillov’s theory these coadjoint
orbits are in 1-1 correspondence with the unitary dual of the
nilpotent Lie group that we started with). So, if one of the
coadjoint orbits represent an unirrep of the nilpotent group being
labeled by 3 parameters, then the corresponding associative
algebra will be a formal power series in those 3 parameters. We
can term such a bundle as the corresponding nilpotent lie algebra
bundle and see how Fedosov’s construction turns out in this
context.

e In the proposed construction, the base manifold of the
“nilpotent Lie algebra bundle” will precisely be the deformation
parameter space. And from Kirilov’s theory, these parameters
describe the smooth foliations of the coadjoint orbits in the dual
Lie algebra. I am not sure, if under such construction where the
deformation parameters describe such smooth foliation, may
address the convergence issues of a formal power series.



e There are at present 2 worked out (partially) examples that may
help one to delve further into such construction. One is the
Heisenberg group and the other is the kinematical symmetry

e it group of noncommutative quantum mechanics Gyc.
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your patience!
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