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My talk is based on the following work:
Connecting dissipation and non-commutativity :A
Bateman system case study. Sayan Kumar Pal,
Partha Nandi, Biswajit Chakraborty.-(Phys. Rev. A 97,
062110, 2018)
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Introduction to Dissipative systems

The equation of motion for the one-dimensional damped
harmonic oscillator (D.H.O) is

ẍ + γẋ + ω2x = 0 (1)

If R = 4ω2

γ2 > 1, the motion is oscillatory with exponentially
decaying amplitude. Otherwise, the motion is nonoscillatory
i.e. overdamped.
Since the system (1) is dissipative, a straightforward
Lagrangian description leading to a consistent canonical
quantization is not available.

Sayan Kumar Pal Dissipation and Noncommutativity



Time-independent Lagrangian formulation
We consider (1) along with its time reversed image

ÿ − γẏ + ω2y = 0 (2)

making the composite system (Bateman oscillator)
conservative. The Lagrangian is:

L = ẋ ẏ +
γ

2
(xẏ − ẋy)− ω2xy (indirect representation) (3)

where x is the D.H.O coordinate and y corresponds to its
time-reversed counterpart.
On introducing the rotated coordinates (x1 = x+y√

2
, x2 = x−y√

2
),

the above Lagrangian can be written in a compact notation as

L =
1

2
gij ẋi ẋj −

γ

2
εijxi ẋj −

ω2

2
gijxixj (4)

where gij is the pseudo - Euclidean metric: g11 = -g22 = 1 and
g12 = 0.
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Hamiltonian formulation of the problem

Now the Hamiltonian corresponding to (4) is :

H =
1

2
(p1 −

γx2

2
)2 − 1

2
(p2 +

γx1

2
)2 +

1

2
ω2(x2

1 − x2
2 ) (5)

Clearly we notice that the hamiltonian H is a difference of two
positive hamiltonians H1 and H2 -

H = H1 − H2 (6)

so that it is not bounded from below.
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We include additional interactions to (1) and (2)

ẍ + γẋ + ω2x = −εy − ηÿ (7)

ÿ − γẏ + ω2y = −εx − ηẍ (8)

where, ε and η are constant parameters.
We call it the generalized coupled dho problem in 2D.

The corresponding Lagrangian and Hamiltonian written in
terms of the (x1, x2) coordinates are given by-

L =
(η + 1)

2
ẋ2

1 +
(η − 1)

2
ẋ2

2−
γ

2
(x1ẋ2 − x2ẋ1)−(ε+ ω2)

2
x2

1−
(ε− ω2)

2
x2

2

H =
p2

1

2(η + 1)
+

p2
2

2(η − 1)
+
γ

2

(
x1p2

η − 1
− x2p1

η + 1

)
+

(
γ2

8(η − 1)
+

(ε + ω2)

2

)
x2

1 +

(
γ2

8(η + 1)
+

(ε− ω2)

2

)
x2

2

The positive definiteness of the Hamiltonian can now be ensured if we demand η > 1
and ε > ω2.
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Further we implement a canonical transformation given by:
x1 −→ (η+1

η−1
)

1
4 x1 , p1 −→ (η−1

η+1
)

1
4p1

x2 −→ (η−1
η+1

)
1
4 x2 , p2 −→ (η+1

η−1
)

1
4p2 .

In terms of these transformed variables, the Hamiltonian can
be rewritten as -

H =
p2

1

2µ
+

p2
2

2µ
+

γ

2µ
(x1p2 − x2p1) +

1

2
µω2

1x
2
1 +

1

2
µω2

2x
2
2 (9)

where µ =
√

(η + 1)(η − 1) and the frequencies are given by -

ω2
1 = γ2

4(η2−1)
+ ε+ω2

η+1
, ω2

2 = γ2

4(η2−1)
+ ε−ω2

η−1
.

Finally, we are in a stage to carry out the quantization
effectively through the path integral scheme by promoting the
phase space variables to the level of operators satisfying
noncommutative Heisenberg algebra.
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Noncommutative QM

The NC Heisenberg algebra is:

[x̂i , x̂j ] = iθεij ; [p̂i , p̂j ] = 0 ; [x̂i , p̂j ] = i~δij (10)

Here θ denotes the spatial noncommutative parameter.
Auxiliary Hilbert space Hc is defined as,

Hc = Span

{
|n〉 =

(b†)n√
n!
|0〉 ; b =

x̂1 + i x̂2√
2θ

}
The quantum Hilbert space Hq is defined as the space of
Hilbert-Schmidt operators acting on Hc :

Hq =
{
ψ(x̂1, x̂2) : ψ(x̂1, x̂2) ∈ B (Hc) , trc(ψ†(x̂1, x̂2)ψ(x̂1, x̂2)) <∞

}
Hq furnishes a representation of the entire Heisenberg
algebra through the action

X̂i |ψ) = |x̂iψ) , P̂i |ψ) =
~
θ

[εij x̂j , |ψ)]
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We can construct a state in quantum Hilbert space:

|z , z̄) ≡ |x1, x2) =
1√
2πθ
|z〉〈z |. (11)

where, |z〉 = e−zz̄/2ezb
† |0〉 and z = 1√

2θ
(x1 + ix2) is a

dimensionless complex number.

The ‘position’ representation of a state |ψ) = ψ(x̂1, x̂2) can
be constructed as

(x1, x2|ψ) =
1√
2πθ

trc(|z〉〈z |ψ(x̂1, x̂2)) =
1√
2πθ
〈z |ψ(x̂1, x̂2)|z〉.

(12)

We now introduce the normalized momentum eigenstates

|p) =

√
θ

2π~2
e
i
√

θ
2~2 (p̄b+pb†)

; P̂i |p) = pi |p) (13)

satisfying the completeness relation∫
d2p |p)(p| = 1Q . (14)
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Formalism - Path integral quantization

The wave-function of a “free particle” on the
noncommutative plane is given by

(z , z̄ |p) =
1√

2π~2
e−

θ
4~2 p̄pe

i
√

θ
2~2 (pz̄+p̄z)

. (15)

The completeness relation for the position eigenstates
|z , z̄) reads∫

2θdzdz̄ |z , z̄) ? (z , z̄ | =

∫
dx1dx2 |x1, x2) ? (x1, x2| = 1Q

The propagation kernel on the noncommutative plane
reads -

(zf , tf |z0, t0) = lim
n→∞

∫ n∏
j=1

(dzjdz̄j ) (zf , tf |zn, tn) ?n (zn, tn|....|z1, t1) ?1 (z1, t1|z0, t0) . (16)
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(zj+1, tj+1|zj , tj ) = (zj+1|e
− i

~ εĤ |zj )

=

∫ +∞

−∞
d2pj e

− θ
2~2 p̄j pj e

i

√
θ

2~2

[
pj (z̄j+1−z̄j )+p̄j (zj+1−zj )

]

×e
− i

~ ε[
p̄j pj
2µ

+
µθ

4
(ω2

1−ω
2
2 )(z̄2

j+1+z2
j )+

µθ
4

(ω2
1 +ω2

2 )(2z̄j+1zj +1)− iγ
2µ

√
θ
2

(pj z̄j+1−p̄j zj )]
.

Substituting the above expression in eq.(16) and
computing the star products, we obtain

(zf , tf |z0, t0) = lim
n→∞

∫ n∏
j=1

(dzjdz̄j )
n∏

j=0

d2pj

exp

 n∑
j=0

 i

~

√
θ

2

[
pj

{(
1 +

iεγ

2µ

)
z̄j+1 − z̄j

}
+ p̄j

{
zj+1 −

(
1 +

iεγ

2µ

)
zj

}]
+ σpj p̄j


+

θ

2~2

n−1∑
j=0

pj+1 p̄j −
i

~
εV (z̄j+1, zj )


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where σ = −
(

iε
2µ~ + θ

2~2

)
and

V (z̄j+1, zj) = µθ
4

(ω2
1−ω2

2)(z̄2
j+1 +z2

j )+ µθ
4

(ω2
1 +ω2

2)(2z̄j+1zj +1).
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On executing the momentum integral, we obtain

(zf , tf |z0, t0) = lim
n→∞

A

∫ n∏
j=1

(dzjdz̄j ) exp
(
−~∂zf ~∂z̄0

)

× exp

(
θ

2~2

n∑
l=0

n∑
r=0

{(
1 +

iεγ

2µ

)
z̄l+1 − z̄l

}
M−1

lr

{
zr+1 −

(
1 +

iεγ

2µ

)
zr

})

× exp

− i

~
ε

n∑
j=0

V (z̄j+1, zj )


On taking the limit ε→ 0 and performing the sum over
k , we finally get -

(zf , tf |z0, t0) = A exp
(
−~∂zf ~∂z̄0

)∫ z(tf )=zf

z(t0)=z0

DzDz̄ exp

(
i

~
S

)
where the action S is given as follows :

S =

∫ tf

t0

dt

[
θ

2

{
˙̄z(t) +

iγ

2µ
z̄(t)

}(
1

2µ
+

iθ

2~
∂t

)−1{
ż(t)− iγ

2µ
z(t)

}

−µθ
2

(
ω2

1 + ω2
2

)
z̄(t)z(t)− µθ

4
(ω2

1 − ω2
2)
(
z2(t) + z̄2(t)

) ]
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Results - General Solution

The equations of motion following from above action are :

ẍ1 +

{
γ

µ
− µθ

~
ω2

2

}
ẋ2 +

{
ω2

1 −
γ2

4µ2

}
x1 = 0 . (17)

ẍ2 −
{
γ

µ
− µθ

~
ω2

1

}
ẋ1 +

{
ω2

2 −
γ2

4µ2

}
x2 = 0 . (18)

In contrast, the classical equations of motion as obtained
from the Hamiltonian (9) are -

ẍ1 +
γ

µ
ẋ2 +

{
ω2

1 −
γ2

4µ2

}
x1 = 0 . (19)

ẍ2 −
γ

µ
ẋ1 +

{
ω2

2 −
γ2

4µ2

}
x2 = 0 . (20)
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The system of equations (17) and (18) can be solved
simultaneously to yield the following characteristic
frequencies -

ν± =

√
Ω2

1 + Ω2
2 + γ1γ2

2
±

1

2

√
γ1γ2(2Ω2

1 + 2Ω2
2 + γ1γ2) + (Ω2

1 − Ω2
2)2 (21)

where,

γ1 =
γ

µ
− µθ

~
ω2

2 , γ2 =
γ

µ
− µθ

~
ω2

1. (22)

and,

Ω2
1 = ω2

1 −
γ2

4µ2
, Ω2

2 = ω2
2 −

γ2

4µ2
. (23)
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Canonical formalism

We use the linear transformation-

X̂i = X̂i
c − θ

2~
εij P̂j (24)

connecting the phase space operators
(X̂i , P̂i) −→ (X̂i

c
, P̂i).

The Hamiltonian (9) now becomes :

Ĥ =
P̂1

2

2µ1
+

P̂2
2

2µ2
+

1

2
µ(ω2

1X̂
c
1

2
+ ω2

2X̂
c
2

2
) +

γ2

2
X̂ c

1 P̂2 −
γ1

2
X̂ c

2 P̂1

where

µ1 =
µ

(1− γθ
2~ +

µ2θ2ω2
2

4~2 )
; µ2 =

µ

(1− γθ
2~ +

µ2θ2ω2
1

4~2 )
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To diagonalise the Hamiltonian we introduce the following
canonical transformation-

X̂ c
1

X̂ c
2

P̂1

P̂2

 =


acosu 0 0 1

b
sinu

0 acosu 1
b
sinu 0

0 −bsinu 1
a
cosu 0

−bsinu 0 0 1
a
cosu



q̂1

q̂2

π̂1

π̂2

 (25)

Therefore, we have

Ĥ = σ2
1π̂

2
1 + σ2

2π̂
2
2 + k2

1 q̂
2
1 + k2

2 q̂
2
2 + λ1q̂1π̂2 + λ2q̂2π̂1 . (26)

Setting λ1 = 0 = λ2, we get the diagonalised form of the
Hamiltonian which basically is a 2D harmonic oscillator. And
other coefficients depend on the ratio of a and b.
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Spectrum

From canonical quantization we finally arrive at the
diagonalised form of the Hamiltonian as :

Ĥ = 2~k1σ1(N̂1 +
1

2
) + 2~k2σ2(N̂2 +

1

2
) ; N̂1 = â†1â1, N̂2 = â†2â2

The energy eigen-frequencies are Ω+ = 2k1σ1, Ω− = 2k2σ2

Note: The real spectrum of the Hamiltonian is obtained by
taking vanishing limits of η, ε which forces one to impose
n1 = n2 for a physical subspace of the Hilbert space.
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Restoring the Bateman form

Finally, on re-writing the equations (17) and (18) in terms
of the original coordinates x, y,

ẍ + ηÿ + (γ +
θω2

~
−
θγ2

4~
−
εηθ

~
)ẋ + (

εθ

~
−
ηθω2

~
)ẏ + εy + ω2x = 0 . (27)

and,

ÿ + ηẍ − (γ +
θω2

~
−
θγ2

4~
−
εηθ

~
)ẏ − (

εθ

~
−
ηθω2

~
)ẋ + εx + ω2y = 0 , (28)

Now on taking the limit η = 0 = ε, we get-

ẍ + (γ +
θω2

~
− θγ2

4~
)ẋ + ω2x = 0 . (29)

and,

ÿ − (γ +
θω2

~
− θγ2

4~
)ẏ + ω2y = 0 . (30)
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Discussions

. Even if γ = 0 initially, γR is non-zero: γR = θω2

~ . This
indicates that quantum effects along with NC can induce
damping.
. On the other hand, if γ2

4
> ω2, we can fine-tune θ, taken as

a free parameter, to the following value: θc = γ~
γ2

4
−ω2

, so that

γR = 0.
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Spectrum of the Bateman system

The spectrum of the pure Bateman oscillator (η = 0 = ε)
turns out to be

λR± = i
γR
2
±
√
ω2 − γ2

R

4
(31)
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Summary

Firstly we would like to mention that we have addressed
two different problems at one stroke, namely the Landau
problem with anisotropic oscillator potentials and the
Bateman oscillators by considering our “master
equations”.
We have successfully carried out the quantization of a
dissipative system both in the path integral and canonical
schemes.
There is an additional NC contribution towards damping -
a SHO in NC space can behave as a damped harmonic
oscillator. Therefore, noncommutativity can lead to
dissipation !
An indication is shown that an original dissipative theory
in commutative space can be mapped to a non-dissipative
NC theory, hinting at a possible ‘duality’ between these
two aspects!
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THANK YOU
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One can attempt to quantize this system following t’hooft.

H =
1

4ρ
(ρ + H)2 − 1

4ρ
(ρ− H)2 = H1 − H2 (32)

where we need to have {H1,H2} = {ρ,H} = 0 To get the
lower bound for the Hamiltonian one thus imposes the
constraint condition onto the Hilbert space: H2 |ψ〉 = 0 ,
which projects out the states responsible for the negative part
of the spectrum.

Therefore, H |ψ〉 = H1 |ψ〉 =
(

1
2
p2
r + Ω2

2
r 2
)
|ψ〉

H1 thus reduces to the Hamiltonian for the linear harmonic

oscillator r̈ + Ω2r = 0, where Ω =
√

(ω2 − γ2

4
)
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