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Irreducible Entropy from 3 Spins

Irreducible Entropy from 3 spin 1
2 ’s

An example: Three spin 1
2 ’s (say neutrons) sitting at a point.

The algebra of observables A: spins Si , their products, and linear
combinations thereof.
1
2 ⊗

1
2 ⊗

1
2 ≡

3
2 ⊕

1
2 ⊕

1
2 .

The full Hilbert space is 8-dimensional.
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Irreducible Entropy from 3 Spins

Irreducible Entropy from 3 spin 1
2 ’s

Starting from the state

|φ 3
2 ,

3
2
〉 = |ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉

we can construct the spin 3
2 representation easily.

This is a unique 4-d subspace of the original 8-d Hilbert space.
The projector to this subspace is uniquely defined.
Simple matter to construct a density matrix:

ρ =
∑

m

λm|φ 3
2 ,m
〉〈φ 3

2 ,m
|, λm ≥ 0,

∑
m

λm = 1. (1)

The von Neumann entropy S(ρ) of ρ is simply S = −Trρ log ρ.
We will have nothing more to say about this subspace, and ignore
it henceforth.

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 4 / 23



Irreducible Entropy from 3 Spins

Irreducible Entropy from 3 spin 1
2 ’s

Starting from the state

|φ 3
2 ,

3
2
〉 = |ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉

we can construct the spin 3
2 representation easily.

This is a unique 4-d subspace of the original 8-d Hilbert space.
The projector to this subspace is uniquely defined.
Simple matter to construct a density matrix:

ρ =
∑

m

λm|φ 3
2 ,m
〉〈φ 3

2 ,m
|, λm ≥ 0,

∑
m

λm = 1. (1)

The von Neumann entropy S(ρ) of ρ is simply S = −Trρ log ρ.
We will have nothing more to say about this subspace, and ignore
it henceforth.

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 4 / 23



Irreducible Entropy from 3 Spins

Irreducible Entropy from 3 spin 1
2 ’s

Starting from the state

|φ 3
2 ,

3
2
〉 = |ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉

we can construct the spin 3
2 representation easily.

This is a unique 4-d subspace of the original 8-d Hilbert space.
The projector to this subspace is uniquely defined.
Simple matter to construct a density matrix:

ρ =
∑

m

λm|φ 3
2 ,m
〉〈φ 3

2 ,m
|, λm ≥ 0,

∑
m

λm = 1. (1)

The von Neumann entropy S(ρ) of ρ is simply S = −Trρ log ρ.
We will have nothing more to say about this subspace, and ignore
it henceforth.

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 4 / 23



Irreducible Entropy from 3 Spins

Irreducible Entropy from 3 spin 1
2 ’s

Starting from the state

|φ 3
2 ,

3
2
〉 = |ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉

we can construct the spin 3
2 representation easily.

This is a unique 4-d subspace of the original 8-d Hilbert space.
The projector to this subspace is uniquely defined.
Simple matter to construct a density matrix:

ρ =
∑

m

λm|φ 3
2 ,m
〉〈φ 3

2 ,m
|, λm ≥ 0,

∑
m

λm = 1. (1)

The von Neumann entropy S(ρ) of ρ is simply S = −Trρ log ρ.
We will have nothing more to say about this subspace, and ignore
it henceforth.

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 4 / 23



Irreducible Entropy from 3 Spins

Irreducible Entropy from 3 spin 1
2 ’s

Starting from the state

|φ 3
2 ,

3
2
〉 = |ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉

we can construct the spin 3
2 representation easily.

This is a unique 4-d subspace of the original 8-d Hilbert space.
The projector to this subspace is uniquely defined.
Simple matter to construct a density matrix:

ρ =
∑

m

λm|φ 3
2 ,m
〉〈φ 3

2 ,m
|, λm ≥ 0,

∑
m

λm = 1. (1)

The von Neumann entropy S(ρ) of ρ is simply S = −Trρ log ρ.
We will have nothing more to say about this subspace, and ignore
it henceforth.

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 4 / 23



Irreducible Entropy from 3 Spins

Irreducible Entropy from 3 spin 1
2 ’s

The complement, also 4-dimensional, represents two copies of
the spin-1

2 representation.

There are two states with j = m = 1
2 :

|u(1)
1
2 ,

1
2
〉 =

√
2
3
|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,−
1
2
〉 − 1√

6
|ψ 1

2 ,
1
2
〉|ψ 1

2 ,−
1
2
〉|ψ 1

2 ,
1
2
〉

− 1√
6
|ψ 1

2 ,−
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉

|u(2)
1
2 ,

1
2
〉 =

1√
2
|ψ 1

2 ,
1
2
〉|ψ 1

2 ,−
1
2
〉|ψ 1

2 ,
1
2
〉 − 1√

2
|ψ 1

2 ,−
1
2
〉|ψ 1

2 ,
1
2
〉|ψ 1

2 ,
1
2
〉
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Irreducible Entropy from 3 Spins

We can mix them by any SU(2) matrix to get two other states with
j = m = 1

2 :

|v (a)
1
2 ,

1
2
〉 = |u(b)

1
2 ,

1
2
〉Uba, a,b = 1,2 and U†U = 1.

Thus there is an SU(2) worth of ways for decomposing the
4-dimensional subspace into two spin-1

2 subspaces.

there is no observable that distinguishes the |u(a)
1
2 ,

1
2
〉’s from the

|v (a)
1
2 ,

1
2
〉’s.

This SU(2) action is hence a redundancy, exactly in the same
sense as a gauge symmetry.
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Irreducible Entropy from 3 Spins

How do we define density matrices in this subspace?
Not obvious: there is no canonical projector to either of the spin 1

2
subspaces!

We could try using P(a) =
∑

m |u
(a)
1
2 ,m
〉〈u(a)

1
2 ,m
|.

Then write density matrices ρ(a) in each of the two spin-1
2

subspaces, with ρ = ρ(1) ⊕ ρ(2).
However, because of the gauge redundancy, there is an SU(2)
worth of projectors P(a)(U).
The corresponding ρ(a)(U) give the same expectation value for
any observable A (independent of U).
But the von Neumann entropy now depends on u ∈ SU(2)!
This entropy is always non-zero: the quantum state is necessarily
impure.
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Irreducible Entropy from 3 Spins

Entropy Ambiguity

Suppose we did define a density matrix as ρ = λ1ρ1 + λ2ρ2,
λ1 + λ2 = 1.
This corresponds to using the (non-canonical) projector
P(a) =

∑
m |u

(a)
1
2 ,m
〉〈u(a)

1
2 ,m
|,

If we used the projector P(a)(U), we would find that the λ’s have
changed: λ′a =

∑
b λb|uab|2

von Neumann entropy S = −
∑

a λa lnλa depends on U!
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Algebras, States, Entropy

Algebraic Approach to Quantum Theory

Algebra of observables A. For our example, it is generated by Si .
States ω are positive linear functionals on A.
States ω form a convex set: the associated entropy is unique if the
convex set is a simplex.
The GNS construction gives us a canonical Hilbert space Hω.
Hω carries a representation πω of A.

In general πω is reducible, so Hω =
⊕

r ,j H
(r ,j)
ω .

When there is a degeneracy of representations (r > 1 for some j),
we don’t get a simplex!
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Algebras, States, Entropy

Noncommutative Spaces

Algebra of functions F on a space allows us to reconstruct the
topological space (Gelfand-Naimark theorem) via GNS
construction.
So classical phase space ≡ the (commutative) algebra of
observables.
Commutative algebra gives a classical space.
Noncommutative algebras are thus fundamentally quantum.
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Noncommutative Spaces

Noncommutative Spaces: Examples

Fuzzy S2: [Xi ,Xj ] = iλεijkXk , XiXi = R21.
Moyal space: [xµ, xν ] = iθµν .
κ-Minkowski: [xµ, xν ] = iθρµνxρ.
To reconstruct the space (time), we need to be given not just the
algebra, but also the state.
For many states, we will produce spaces that carry a non-trivial
entropy!
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Noncommutative Spaces

Fuzzy Sphere S2
F

Simple model for S2
F is by Schwinger construction.

Start with a pair of oscillators [âα, â
†
β] = δαβ, α, β = 1,2.

Then x̂i = 1
2 â†α(σi)αβâβ, [x̂i , x̂j ] = iεijk x̂k , x̂i x̂i = N̂

2

(
N̂
2 + 1

)
.
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Spin from Bosons - Schwinger Construction

Review of the Quantum Harmonic Oscillator

Infinite-dimensional Hilbert space H spanned by a complete
orthonormal basis {|n〉,n = 0,1, · · · ,∞}.
The standard bosonic annihilation operator a acts as

a|n〉 = n
1
2 |n − 1〉, ∀n ≥ 1 and a|0〉 = 0

The operator a is unbounded, and hence comes with a domain of
definition:

Da = {
∑

n

cn|n〉|
∑

n

n|cn|2 <∞}
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Spin from Bosons - Schwinger Construction

Review of the Quantum Harmonic Oscillator

Its adjoint a† satisfies

a†|n〉 = (n + 1)
1
2 |n + 1〉, ∀n ≥ 0

and its the closure of its domain is also Da.
The number operator N ≡ a†a has as its domain DN defined as

DN = {
∑

n

cn|n〉, |
∑

n

n2|cn|2 <∞}

The {|n〉} are eigenstates of the number operator N ≡ a†a:

N|n〉 = n|n〉
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Spin from Bosons - Schwinger Construction

Review of the Quantum Harmonic Oscillator

On DN , the operators a and a† satisfy

[a,a†] = 1

(The oscillator algebra)
The number operator N counts the number of quanta in a state,
while the operators a and a† destroy and create respectively a
single quantum.
Thus (a,H) is a representation of the oscillator algebra. It is also
the unique (upto unitary equivalence) irreducible representation of
this algebra (Stone – von Neumann).

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 15 / 23



Spin from Bosons - Schwinger Construction

Review of the Quantum Harmonic Oscillator

On DN , the operators a and a† satisfy

[a,a†] = 1

(The oscillator algebra)
The number operator N counts the number of quanta in a state,
while the operators a and a† destroy and create respectively a
single quantum.
Thus (a,H) is a representation of the oscillator algebra. It is also
the unique (upto unitary equivalence) irreducible representation of
this algebra (Stone – von Neumann).

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 15 / 23



Spin from Bosons - Schwinger Construction

Review of the Quantum Harmonic Oscillator

On DN , the operators a and a† satisfy

[a,a†] = 1

(The oscillator algebra)
The number operator N counts the number of quanta in a state,
while the operators a and a† destroy and create respectively a
single quantum.
Thus (a,H) is a representation of the oscillator algebra. It is also
the unique (upto unitary equivalence) irreducible representation of
this algebra (Stone – von Neumann).

S. Vaidya (IISc) Quantum Entropy, Fuzzy Spheres SNBNCBS, 28 Nov 2018 15 / 23



Spin from Bosons - Schwinger Construction

Other representations of the oscillator algebra

The Hilbert space H can split into two disjoint subspaces
H+ = {

∑
c2n|2n〉 ∈ H} and H− = {

∑
c2n+1|2n + 1〉 ∈ H} :

H = H+ ⊕H−.
On the subspaces H±, the operators b± and its adjoint b†± can be
defined as

b+|2n〉 = n
1
2 |2n − 2〉, b†+|2n〉 = (n + 1)

1
2 |2n + 2〉, b+|0〉 = 0,

b−|2n+1〉 = n
1
2 |2n−1〉, b†−|2n+1〉 = (n+1)

1
2 |2n+3〉, b−|1〉 = 0

with domain of closure Da ∩H±.
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Spin from Bosons - Schwinger Construction

Other representations of the oscillator algebra
(Brandt-Greenberg, JMP 1969)

On the domain DN ∩H± we have [b±,b
†
±] = 1.

So (b−,H−), (b+,H+) and (a,H) are isomorphic to each other.
In other words, there exist unitary operators U± such that
U±b±U†± = a.
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Spin from Bosons - Schwinger Construction

Reducible representations of the oscillator algebra

Using the projection operators

Λ+ =
∞∑

n=0

|2n〉〈2n|, Λ− =
∞∑

n=0

|2n + 1〉〈2n + 1|

one can define an operator b

b = b+Λ+ + b−Λ−

The b acts on the basis vectors |n〉 as

b|2n〉 = n
1
2 |2n − 2〉, b|2n + 1〉 = n

1
2 |2n − 1〉
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Spin from Bosons - Schwinger Construction

Reducible representations of the oscillator algebra

Notice that both |0〉 and |1〉 are annihilated by b.
The operator b satisfies [N,b] = −2b.
A new number operator M can be defined as
M = b†b = 1

2 (N − Λ−).
It has the states |n〉 as eigenstates but each eigenvalue is two-fold
degenerate.
b has domain of closure Da and satisfy [b,b†] = 1 in the domain
DN .
Thus (b,H) forms a reducible representation of the oscillator
algebra.
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Spin from Bosons - Schwinger Construction

Reducible representations of the oscillator algebra

This can generalized to construct an operator b(k) which lowers a
state |n〉 by k−steps.
Define projection operators Λi

Λi =
∞∑

n=0

|kn + i〉〈kn + i |, i = 0,1, · · · k − 1.

that project onto subspaces Hi = {
∑

n ckn+i |kn + i〉}.
In each Hi , define b(i) and b†(i) satisfying [b(i),b

†
(i)] = 1

A reducible representation is given by

b(k) =
k−1∑
i=0

biΛi , bi |kn + i〉 = fi(n)|kn + i − k〉, H =
k∑

i=1

Hi

with [b(k),b(k)†] = 1.
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Entropy for Fuzzy Spaces

Say k1 = K1, k2 = K2 for a1 and a2 for Schwinger construction.
This gives K1K2 identical copies of the fuzzy sphere algebra.
vN entropy S = −

∑K1K2
α=1 λα(u) log λα(u), u ∈ U(K1K2).

The map λα → λα(u) is a Markovian: λβ(u) =
∑

α λαTαβ where
Tαβ = |uαβ|2 ≥ 0,

∑
α Tαβ = 1,

∑
β Tαβ = 1 is a doubly

stochastic matrix.
The entropy is maximized when all λ’s are equal, and
Smax = ln K1K2.
Our fuzzy sphere is an impure state, and carries entropy!
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Summary

Summary

vN entropy is ambiguous in situations that have an underlying
non-Abelian gauge symmetry.
If classical manifolds are emergent from some underlying theory
of quantum gravity, they would be states of some underlying
(noncommutative) algebra.
Generically, these would carry a non-trivial irreducible entropy at
zero temperature.
Evolution of geometry would then have significant thermodynamic
aspect.
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Appendix Joint work with

Collaborators I

A. P. Balachandran and A. R. de Queiroz (Quantum Entropy and its
Ambiguity) 1212.1239, 1302.4924
Nirmalendu Acharyya and Nitin Chandra (Entropy of Fuzzy Spaces)
1405.6471.
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