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Moyal plane:

[x2, x1] = iθ

IRA:

U2U1 = e2πiθU1U2

Moyal - IRA:

U1 = e2πix1 U2 = e2πix2



Abstract

Sigma-model solitons over the Moyal plane and noncommutative tori
(also known as Irrational Rotation Algebra),

as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in
the source algebra

Solutions, having non-trivial topological content (instantons),
are constructed via suitable Morita duality bimodules
(obtained using the Schrödinger representation).



Inputs from time-frequency analysis and Gabor analysis

Solitons over NC tori via Gabor frames of time-frequency analysis.

The energy functional for projections in noncommutative tori becomes a func-
tional for functions generating Gabor frames in L2(R× Zq)

q = 1. Gabor frames for L2(R) of the form {EmβTnαg}m,n∈Z, with g a Schwartz
function; α and β are parameters in R\{0} such that |αβ| < 1.

(Tx)g(t) = g(t− x), x, t ∈ R the translation operator

(Eω)g(t) = e2πitωg(t), ω, t ∈ R the modulation operator.

The energy functional,

E(g) =
π

|αβ|

∑
n,m∈Z

((αn)2 + (βm)2) |〈g, EmβTnαS−1
g g〉|2

is bounded from below by the constant q = 1 (a Chern number).

The Gaussian g(x) = e−πx
2−iλx, λ ∈ C attains this minimum.



Non-linear σ-models:

field theories of maps X between the source space (Σ, g), and the target
space (M,G). The action functional

S[X] =
1

2π

∫
Σ

√
g gµν Gij(X)∂µX

i ∂νX
j ,

The stationary points:

harmonic maps from Σ to M ; describe minimal surfaces embedded in M .

Σ two dimensional, conformal invariance:

the action S is invariant for any rescaling of the metric g → eσg.

Thus the action only depends on the conformal class of the metric and may
be rewritten using a complex structure on Σ

S[X] =
i

π

∫
Σ
Gij(X) ∂Xi ∧ ∂̄Xj ,



Here ∂ and ∂̄, a complex structure and d = ∂ + ∂.

In two dimensions

complex and conformal

are the same thing.

In two-dimensions, the conformal class of a general constant metric is parametrized
by a complex number τ ∈ C, =τ > 0.

Up to a conformal factor, the metric is

g = (gµν) =

(
1 <τ
<τ |τ |2

)
.



An algebraic generalization: by dualization and reformulation in terms of the
∗-algebras A = C∞(Σ,C) and B = C∞(M,C).

Embeddings X of Σ into M correspond to ∗-algebra morphisms πX : B → A,
with correspondence

f 7→ πX(f) = f ◦X.

∗-algebra morphisms make sense for general algebras A and B.

The configuration space is all ∗-algebra morphisms from B to A

The definition of the action functional involves generalizations of the confor-
mal and Riemannian geometries.



Connes:
conformal is understood in the framework of positive Hochschild cohomology.

The tri-linear map φ : A⊗3 → R,

φ(f0, f1, f2) =
i

π

∫
Σ
f0∂f1 ∧ ∂̄f2

is an extremal of positive Hochschild cocycles belonging to the Hochschild
cohomology class of the cyclic cocycle ψ defined by

ψ(f0, f1, f2) =
i

2π

∫
Σ
f0 df1 ∧ df2.

On the one hand ψ, the fundamental class, allows one to integrate 2-forms
in dimension 2, so it is a metric independent object

On the other hand, φ defines a suitable positive scalar product

〈a0da1, b0db1〉 = φ(b∗0a0, a1, b
∗
1)

on 1-forms and depends on the conformal class of the metric.



Expressions like φ and ψ make sense for a general algebra A.

Compose the cocycle φ with a morphism π : B → A to obtain a positive
cocycle on B

φπ = φ ◦ (π ⊗ π ⊗ π)

Evaluate the cocycle φπ on a suitably element of B⊗3 which provides the
noncommutative analogue of the metric on the target;

Easiest choice for this metric: a positive element G =
∑

i b
i
0δb

i
1δb

i
2 of the space

of universal 2-forms Ω2(B).

Thus, a well defined and positive quantity

S[π] = φπ(G) (1)

a noncommutative analogue of the action functional of the non linear σ-model.



Here:

π is the dynamical variable (the embedding)

whereas φ (the conformal structure on the source) and
G (the metric on the target) are background structures that have been fixed.

The critical points of the σ-model for the action functional (1):
generalizations of harmonic maps; “minimally embedded surfaces” in the
(noncommutative) space associated with B.

The role of the other cocycle ψ is to give a topological ‘charge’.

More on this late on.



Two points as a target space M = {1,2}

Any continuous map from a connected surface Σ to a discrete space is con-
stant, a commutative theory would be trivial.

Not the case for a“noncommutative” source space: in general, not trivial
such maps, ‘dually’, as ∗-algebra morphisms from the algebra of functions
over M = {1,2}, that is C2, to the algebra A of the noncommutative source.

As a vector space C2 is generated by the projection function e defined by
e(1) = 1 and e(2) = 0;

⇒ any ∗-algebra morphism π : C2 → A is the same as a projection p = π(e) ∈ A.

The configuration space of a two point target space sigma-model is the
collection of all projections P (A) in the algebra A.

Choosing the metric G = δeδe on the space M = {1,2}, and a Hochschild
cocycle φ for the conformal structure, the action functional is simply

S[p] = φ(1, p, p),

Positivity in Hochschild cohom implies it is bounded by a topological term



Noncommutative torus and Moyal plane as source space:

(A, tr, ∂1, ∂2)

the action functional is

S[p] =
1

4π
tr(∂p∂p).

with the natural complex structure on A given by

∂ = ∂1 − i ∂2, ∂ = ∂1 + i ∂2,

and derivations ∂1 and ∂2 infinitesimal generators of a T2-action

and tr an invariant trace.

All of above can be extended to more general metrics.

In two dimensions: Up to a conformal factor the general constant metric is
parametrized by a complex number τ ∈ C, =τ > 0.



The corresponding ‘complex torus’ T2 = R2/Z + τZ would act infinitesimally
on A with two complex derivations

∂ = ∂1 + τ̄∂2 , ∂ = ∂1 + τ∂2.

As usual, the critical points of the action functional are obtained by equating
to zero its first variation, that is the linear term in an infinitesimal variation

δS[p] = S[p+ δp]− S[p], for δp ∈ Tp(P (A)) .

One gets

p ∆(p) (1− p) = 0 and (1− p) ∆(p) p = 0 ,

or, equivalently the non-linear equations of the second order

p ∆(p)−∆(p) p = 0 . (2)

with the Laplacian of the metric ∆ = 1
2
(∂∂ + ∂∂)



The cyclic 2-cocycle giving the fundamental class is

ψ(a0, a1, a2) =
1

2πi
tr
(
a0(∂1a1∂2a2 − ∂2a1∂1a2)

)
,

For any projection p ∈ P (A), the quantity

c1(p) := ψ(p, p, p)

is an integer: the index of a Fredholm operator.

For any p ∈ P (A) it holds that

S[p] ≥ |c1(p)| .

The equality for projection p satisfying self-duality or anti-self duality eqns

p(∂1 ± i ∂2)(p) = 0 (3)

These equation imply the EOM (2).

Solutions are σ-model solitons



p = |ξ >< η|

|ξ >, |η > in a suitable Hilbert-module

‘field-theory’ Hilbert space



Projection from Morita equivalence (Rieffel)

A Morita equivalence between (pre C∗-algebras) A and B:

a A− B-bimodule E

with a left-linear A-valued hp •〈·, ·〉 and a right-linear B-valued hp 〈·, ·〉•.

There is an associativity condition:

•〈ξ, η〉 ζ = ξ 〈η, ζ〉•

It follows an identification B ' KA(E) (compact endomorphisms).

In particular, there exist elements {η1, ..., ηn} in E such that∑
j
〈ηj, ηj〉• = 1B .

Then, the associativity condition gives that the matrix p = (pjk)

pjk = •〈ηj, ηk〉

is a projection in the matrix algebra Mn(A).



Both algebras A and B are in the joint smooth domain of two commuting
derivations ∂1 and ∂2 ; and have faithful invariant tracial states, which are
compatible in the sense that:

tr •〈ξ, η〉 = tr 〈η, ξ〉•

Derivations are lifted to E as (left and right) covariant derivatives:

∇j : E → E , j = 1,2,

∇j(a ξ) = (∂ja) ξ + a (∇jξ) and ∇j(ξ b) = (∇jξ) b+ ξ(∂jb)

compatible with both the
A-valued hermitian structure •〈·, ·〉 ; the B-valued hermitian structure 〈·, ·〉•

∂j(•〈ξ, η〉) = •〈∇jξ, η〉+ •〈ξ,∇jη〉
and

∂j(〈ξ, η〉•) = 〈∇jξ, η〉• + 〈ξ,∇jη〉• .



Lifting self-duality equations: solitons

The holomorphic/anti-holomorphic, connection on E,

∇ = ∇1 − i∇2, ∇ = ∇1 + i∇2

lift to E the complex derivations ∂ = ∂1 − i ∂2 or ∂ = ∂1 + i ∂2.

The ‘rank’ one case:

Seek solutions of the s-d eqs (3) of the form

pψ := •〈ψ,ψ〉 ∈ A with ψ ∈ E such that 〈ψ,ψ〉• = 1B.

The projection pψ is a solution of the s-d eqs:

pψ∂(pψ) = 0 ,

if and only if the vector ψ is a generalized eigenvector of ∇

i.e. there exists λ ∈ B such that

∇ψ = ψλ .



How to compute the topological charge:

The curvature of the covariant derivatives is defined as

F12 := ∇1∇2 −∇2∇1

Let ψ ∈ E be such that 〈ψ,ψ〉• = 1B and pψ := •〈ψ,ψ〉 ∈ A the corresponding
projection. Then, its topological charge is:

c1(pψ) = −
1

2πi
tr 〈ψ, F12ψ〉• .

Constant curvature: F12 = −2πi q idE

the projection pψ = •〈ψ,ψ〉 has then topological charge

c1(p) = q tr(1B) ∈ Z

note that neither q nor tr(1B) need be an integer



Moyal plane from Schrödinger representation

The projective representation of R2 on L2(R) defined for ξ ∈ L2(R) by

(π(z) ξ)(t) = e2πitωξ(t− x), for z = (x, ω). (4)

⇒ π(z)π(z′) = e−2πixω′π(z + z′).

The map c : R× R→ T, c(z, z′) = e−2πi(xω′) is a 2-cocycle.

Its matrix-coefficients are defined for ξ, η ∈ L2(R) by

Vηξ(z) := 〈ξ, π(z)η〉L2(R) =

∫
R
ξ(t)η(t− x)e−2πitωdt

In signal analysis Vηξ is known as the short time Fourier transform



Moyal’s identity: 〈Vηξ, Vψϕ〉L2(R2) = 〈ξ, ϕ〉L2(R)〈η, ψ〉L2(R)

An additional important consequence of this identity:

is a reconstruction formula for ξ ∈ L2(R) in terms of {π(z)η : z ∈ R2}.

Let η and ψ be in L2(R) such that 〈ψ, η〉 6= 0. Then for any ξ ∈ L2(R),

ξ = 〈ψ, η〉−1

∫∫
R2

〈ξ, π(z)η〉π(z)ψ dz = 〈ψ, η〉−1

∫∫
R2

Vηξ(z)π(z)ψ dz.

The twisted group algebra L1(R2, c) of R2 associated to the cocycle c.

For k and l in L1(R2), the twisted convolution (k\l):

(k\l)(z) =

∫∫
k(z′)l(z − z′)c(z′, z − z′) dz′

and twisted involution of k ∈ L1(R2):

k?(z) = c(z, z)k(−z) = e−2πixωk(−z)



The integrated representation

K = π(k) =

∫∫ 2

R
k(z)π(z)dz

for k ∈ L1(R2), is a non-degenerate bounded representation of the twisted
convolution algebra L1(R, c) on L2(R2).

The adjoint of K = π(k) is given by K∗ = π(k?) and the composition of
K = π(k) and L = π(l) corresponds to (k\l):

KL =

∫∫ 2

R
(k\l)(z)π(z)dz .

Denote by A the class of all operators K = π(k) for k ∈ S(R2); they are all
trace-class. Its norm closure is all compact operators.

A is a model of the Moyal plane: the Fourier transforms of the symbols
defining elements of A yield the Moyal product:

k ? l = F−1
(
F(k)\F(l)

)
for k, l ∈ S(R2).



Rieffel:

The space E = S(R) is an equivalence bimodule between A and C

with respect to the actions:

K · ξ =

∫∫
k(z)π(z)ξ dz,

ξ · λ = ξ λ

and A and C-valued hermitian products:

•〈ξ, η〉 =

∫∫
〈ξ, π(z)η〉L2(R)π(z)dz =

∫∫
Vηξ(z)π(z)dz = π(Vηξ)

〈ξ, η〉• = 〈η, ξ〉L2(R) .



A two dimensional spectral geometry

Commuting derivations (an infinitesimal action of T2) ∂1, ∂2:

∂1K = 2πi

∫∫
R2

xk(x, ω)π(x, ω) dxdω,

∂2K = 2πi

∫∫
R2

ωk(x, ω)π(x, ω) dxdω.

They lift to covariant derivatives on the equivalence bimodule E:

(∇1ξ)(t) = 2πi t ξ(t) and (∇2ξ)(t) = ξ′(t)

they are compatible with both left and right hermitian structures.

The connection has constant curvature:

F1,2 := [∇1,∇2] = −2πi idE



For ψ ∈ S(R) normalized as 〈ψ,ψ〉• = ‖ψ‖2 = 1,

⇒ a non-trivial projection pψ = •〈ψ,ψ〉 in A.

The projection pψ is a solution of the self-duality equations,

pψ(∂pψ) = 0

if and only if, for some λ ∈ C, the element ψ satisfies

∇ψ = ψλ .

Eigenfunction equations for ∇; solutions are generalized Gaussians:

ψλ(t) = c e−πt
2−iλt.

Explicitly,

pψ = •〈ψ,ψ〉 =

∫∫
R2

Vψψ(z)π(z) dz

Vψψ(x, ω) = e−
π

2
(x2+ω2)e−πixω− i

2
(λ̄+λ)x+1

2
(λ̄−λ)ω .

For its topological charge:

c1(pψ) = tr(pψ) = Vψψ(0) = 1 .



The constant curvature is none other than the Heisenberg commutation re-
lations (in the Schrödinger representation).

The anti-holomorphic connection ∇ = ∇1 + i∇2 is the annihilation operator;

the holomorphic ∇ = ∇1 − i∇2 is the creation operator.

The self-duality equation for the projections

is the equation for the minimizers of the Heisenberg uncertainty relation,

which explains why they are Gaussian ψλ.



The irrational rotation algebra (aka the noncommutative torus).

For θ ∈ R, the C∗-algebra Aθ of the noncommutative torus

is the norm closure of the span of {π(θk, l) : k, l ∈ Z}: the restriction of the
Schrödinger rep (4) of R2 on L2(R) to θZ× Z ⊂ R2.

Denoting π(0,1) = M1 and π(θ,0) = Tθ they satisfy:

M1Tθ = e2πiθTθM1 .

The smooth torus: subalgebra Aθ of Aθ consisting of operators

π(a) =
∑
k,l∈Z

aklπ(θk, l), for a = (akl) ∈ S (Z2).

With a and b in S(R) we have for their product

π(a)π(b) = π(a\b)

where a\b is the twisted convolution

(a\b)(k, l) =
∑
m,n∈Z

amnbk−m,n−le
−2πiθn(k−m)



while π(a)∗ = π(a∗), where a∗ is the twisted involution of a:

(akl)
∗ = e−2πiθkla−k,−l .

Operators commuting with π(θk, l) are associated with the lattice Z× θ−1Z.

They make up the algebra A1/θ of elements

b =
∑
k,l∈Z

bklπ(k, θ−1l), for b = (bkl) ∈ S (Z2)

Take A = Aθ and B = (A1/θ)
op ' A−1/θ (this acts from the right)



The space E = S(R) is an equivalence bimodule between the noncommutative
tori A and B with respect to the actions:

a · ξ =
∑
k,l∈Z

aklπ(θk, l)ξ,

and ξ · b =
∑
k,l∈Z

bklπ(k, θ−1l)∗ξ,

and with hermitian products

•〈ξ, η〉 = θ
∑
k,l∈Z

Vηξ(θk, l)π(θk, l),

and 〈ξ, η〉• =
∑
k,l∈Z

Vξη(k, lθ−1)π(k, θ−1l) .



A two dimensional spectral geometry

The infinitesimal action of an ordinary torus T2 on both algebras Aθ and A−1/θ,
are derivations. On Aθ they are

∂1(a) = 2πi
∑
k,l

kak,lπ(θk, l)

and ∂2(a) = 2πi
∑
k,l

lak,lπ(θk, l) ,

and the dual ones on A−1/θ are then

∂1(b) = −2πiθ−1
∑
k,l

k bk,lπ(k, θ−1l)∗

and ∂2(b) = −2πiθ−1
∑
k,l

l bk,lπ(k, θ−1l)∗ .

Lift to covariant derivatives ∇1, ∇2 on the bimodules E = S(R) :

(∇1ξ)(t) = 2πi θ−1 t ξ(t) and (∇2ξ)(t) =
dξ(t)

dt
=: ξ′(t) .

The curvature is constant:

F1,2 := [∇1,∇2] = −2πi θ−1 idE .



Frames

As a module over Aθ, the space E = S(R) is of finite rank and projective and
it admits a standard module Parseval frame {η1, ..., ηn} for S(R), that is each
ξ ∈ S(R) has an expansion,

ξ = •〈ξ, η1〉 η1 + · · ·+ •〈ξ, ηn〉 ηn.

For 0 < θ < 1, the module S(R), is given by a projection in Aθ itself: one can
use a one-element Parseval frame η

From a standard module frame η one gets a Parseval frame η̃ by taking the
element η̃ := η(〈η, η〉•)−1/2

Then 〈η̃, η̃〉• = 1 and •〈η̃, η̃〉 is a projection in Aθ.



Frames and projections:

• The Hermite function

η = ψk(t) = cke
πt2 dk

dtk
e−2πt2

gives a projection pk = •〈η̃, η̃〉 ∈ Aθ, if 0 < θ < (k + 1)−1.

• Let η ∈ S(R) be a totally positive function of finite type greater than 2.
Then, p

η̃
= •〈η̃, η̃〉 is a projection in Aθ for 0 < θ < 1.

All of these projections have topological charge equal to 1. From

c1(p) = q tr(1B)

with now q = θ−1 (the curvature) and tr(1B) = tr(A−1/θ) = θ.



Duality and Gabor frames

For a Parseval frame, the duality principle (Wexler-Raz identity), reads as an
expansion of each ξ in S(R) both over A and B,

ξ = •〈ξ, η̃〉 η̃ = η̃ 〈η̃, ξ〉• ,

with •〈ξ, η̃〉 ∈ A and 〈η̃, ξ〉• ∈ B which are uniquely determined.



This helps for the soliton equation.

As before, the s-d eqs for the projection pψ obeys pψ∂(pψ) = 0 translate to a
generalized eigenvector equation

∇ψ = ψλ ,

with now λ =
〈
ψ,∇ψ

〉
• ∈ A−1/θ.

Using the duality principle we have that

with ψ := η(〈η, η〉•)−1/2

the projection pψ = •〈ψ,ψ〉 ∈ Aθ

satisfies the s-d eqs:

• For 0 < θ < (k + 1)−1, if η is the k-th Hermite functions ψk.

• For 0 < θ < 1, if η is a tot pos fun in S(R) of finite type greater than 2.



In particular, the Gaussian function

ψλ(t) = c e−
π

θ
t2−iλt , for λ ∈ C ,

obeys the equation ∇ψλ = ψλλ.

The right hermitian product 〈ψλ, ψλ〉• is invertible in A−1/θ for all 0 < θ < 1,

so that the projections pλ = •

〈
ψ̃λ, ψ̃λ

〉
, with ψ̃λ := ψλ(〈ψλ, ψλ〉•)−1/2

are solutions of the self-duality equations

The moduli space of such Gaussian solutions, is parametrised by possible λ’s
modulo gauge transformations

(implemented by invertible elements in A−1/θ)

is a copy of the complex torus.



More examples and appications



Sigma-model solitons over the Moyal plane and noncommutative tori,
as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in
the source algebra

Solutions, having non-trivial topological content, are constructed via suitable
Morita duality bimodules,

Inputs from time-frequency analysis and Gabor analysis

More interesting cases

Uses in time-frequency analysis and Gabor analysis



Thank you


