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Introduction

Introduction
[Doplicher, Fredenhagen, Roberts ’95]: QM + GR⇒ uncertainties
∆qµ satisfy Spacetime Uncertainty Relations (STUR)
Minkowski spacetime replaced by a Quantum (noncommutative)
Spacetime E (C*-algebra generated by qµ)
QFT on QST has remarkable properties [Bahns, Doplicher,
Fredenhagen, Piacitelli ’01,’03,’04,...]
It can also serve as a (partial) substitute of inflation [Doplicher, M.,
Pinamonti ’13]
Perturbative algebraic quantum field theory (pAQFT):
renormalization on curved spacetime, construction of algebras of
interacting observables, quantum gravity... [Hollands, Wald,
Brunetti, Fredenhagen, Dütsch, Rejzner... ’01 on]

Aim of this talk:
Adapt pAQFT to QST to obtain a more manageable vperturbation
expansion and study some consequences
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Quantum spacetime and QFT

Spacetime Uncertainty Relations
QM+GR⇒ energy E localized in region of radius R ' E−1 not hidden
by TS only if R & RE ' E , i.e. R & λ (Planck length). But if only one
coordinate is well localized, TS will not form
[DFR] analysis:

quantum state localized in region supp f of sizes ∆qµ, µ = 0, . . . ,3

ωf (A) = 〈eiϕ(f )Ω,Aeiϕ(f )Ω〉
energy E ' 1/minµ{∆qµ} =⇒ energy density ρ
solution of linearized Einstein equations with source ρ given by
retarded potential: gαβ(∆qµ)
if signals from supp f have to be observable TS should not form:
g00 > 0

Spacetime Uncertainty Relations (STURs)

∆q0
3∑

j=1

∆qj ≥ λ2,

3∑
i<j=1

∆qi∆qj ≥ λ2
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Quantum spacetime and QFT

Quantum Spacetime
STURs can be realized by assuming that ∆qµ’s are standard
deviations of quantum operators qµ satisfying suitable commutation
relations, as for Heisenberg uncertainty relations

Quantum Conditions

[qµ,qν ] = iλ2Qµν , [qρ,Qµν ] = 0,

QµνQµν = 0,
(

1
4

Qµν(∗Q)µν

)2

= 1

Noncommutative C*-algebra E of Quantum Spacetime (QST)
generated by qµ’s replaces algebra of functions on Minkowski
It is equipped with action of the Poincaré group qµ → Λµνqν + aν

E has nontrivial center Z (E) = functions on a manifold
Σ ' TS2 × Z2 and E ' C0(Σ,K), K = compact operators
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Quantum spacetime and QFT

Optimal localization on QST

In an irreducible representation qµ is a Lorentz transform of
Schroedinger’s (x1, x2,p1,p2)

⇓

There exists states of optimal localization ω on E, minimizing∑
µ

(∆qµ)2 = (∆x1)2 + (∆x2)2 + (∆p1)2 + (∆p2)2

given by translates of the harmonic oscillator ground states
They are the best approximation of points on QST
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Quantum spacetime and QFT

Free quantum fields on QST

ϕ free (scalar) field on Minkowski can be defined on QST through
Weyl-von Neumann-Moyal quantizazion

ϕ(q) =

∫
d4k ϕ̌(k)⊗ eikq

(formal) element of F⊗ E, F field algebra
it satisfies Klein-Gordon equation (derivatives on E defined by
∂µϕ(q) := ∂

∂xµϕ(q + x1) )
ωx , ωy optimally localized states around x , y =⇒
[id⊗ ωx (ϕ(q)), id⊗ ωy (ϕ(q))] falls off as a Gaussian of width λ for
large spacelike x − y

Locality is lost at distances small w.r.t. λ, but recovered as λ→ 0
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Quantum spacetime and QFT

(Perturbative) interacting fields on QST
Several (inequivalent) possibilities of defining perturbative interacting
fields

Hamiltonian approach (interaction picture) with interaction
Lagrangian defined by : ϕ(q)n : [DFR]
Yang-Feldman equation and quasi-planar Wick products [Bahns,
Doplicher, Fredenhagen, Piacitelli ’02 & ’04]
Hamiltonian approach with interaction defined by quantum Wick
product : ϕn(q) :Q, which yields UV-finite (IR-cutoff) theory to all
orders [Bahns, Doplicher, Fredenhagen, Piacitelli ’03]

: ϕn(q) :Q defined by generalizing point-splitting to QST:
e.g., for n = 2

: ϕ2 : (x) := lim
y→x

ϕ(x)ϕ(y)− 〈Ω, ϕ(x)ϕ(y)Ω〉

limit y → x has to be performed in a way compatible with the STURs
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Quantum spacetime and QFT

Quantum Wick product
Introduce quantum coordinates of independent events

qµj := 1⊗ · · · ⊗ qµ ⊗ · · · ⊗ 1, j = 1, . . . ,n

tensor product of Z -moduli =⇒ [qµj ,q
ν
k ] = iλ2Qµνδjk

introduce center of mass and relative coordinates

q̄µ :=
1
n

∑
j

qµj , ξµjk := qµj − qµk

identification of commutators =⇒ [q̄µ, ξνjk ] = 0, [ξµjk , ξ
ν
jk ] = 2iλ2Qµν

evaluating optimally localized state on ξµjk yields a map
E (n) : E⊗Z n → E ' C∗(q̄µ)
define quantum Wick product as

: ϕn(q) :Q := E (n)(: ϕ(q1) . . . ϕ(qn) :)

=

∫
d4k1 . . . d4kn : ϕ̌(k1) . . . ϕ̌(kn) : e−

λ2
4

∑
j |kj− 1

n
∑

l kl |2ei
∑

j kj q
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Quantum spacetime and QFT

Feynmann rules for quantum Wick product

S-matrix is equivalent to the one of a non-local QFT on commutative
Minkowski with interaction Hamiltonian

HI(t) =

∫
x0=t

d3x
∫

dx1 . . . dxn e−
1

2λ2
∑

j |xj−x |2
δ(x̄ − x) : ϕ(x1) . . . ϕ(xn) :

(x̄ := 1
n
∑

j xj , x = (t ,x))
Feynmann rules for this theory are modified [Piacitelli 2004]:

time ordering is done w.r.t. to x̄0, not x0
j

vertices of Feynmann diagrams become fat (x → x1, . . . , xn)
propagator between xj and yk depends also on x̄0 − ȳ0

Resulting perturbation theory is manifestly unitary but not easy to
handle (e.g., pass to momentum space...)
We look for a more manageable formulation

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 12 / 32
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Perturbative AQFT

Observables as functionals
Proposed by [Brunetti, Dütsch, Fredenhagen 2009] to construct
perturbatively algebras of observables (or fields) for the interacting
theory defined by Lagrangian

L = L0 + LI =
1
2
∂µφ∂

µφ− 1
2

m2φ2 + LI

With M(= R4) spacetime, define:
C := C∞(M,R) ∩ S′(M) field configurations
F := {F : C→ C : F (n) := δnF

δφn ∈
E′(Mn),WF (F (n)) ∩ (Mn × (V̄ n

+ ∪ V̄ n
−)) = ∅} observables

Floc := {F ∈ F : F (1) ∈ D(M), supp F (n) ⊂ {x1 = x2 = · · · = xn}}
local observables
Freg := {F ∈ F : F (n) ∈ D(Mn)} regular observables

E.g.: F (φ) =
∫

Mn K (x1, . . . , xn)φ(x1) . . . φ(xn) with K ∈ D(Mn) regular,
LI(φ) =

∫
M g(x)φ(x)4 local but not regular
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Perturbative AQFT

Free fields algebra 1/2

Algebra of free fields defined by deforming the pointwise product
M : Freg ⊗ Freg → Freg as

F ∗ i
2 ∆ G = M ◦ e

∫
M2

i
2 ∆(x−y) δ

δφ(x)
⊗ δ
δφ(y) (F ⊗G)

(formal power series), with ∆ := ∆R −∆A free field commutator
function
Then:

[φ(x), φ(y)]∗ i
2 ∆

=
i
2

∆(x − y)

⇒ (Freg, ∗ i
2 ∆) is isomorphic to the *-algebra generated by the free

scalar quantum field ϕ on Fock space
Formal series can sometimes be replaced by convergent ones by
requiring bounds for F (n) [Bahns, Rejzner 2017]
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Perturbative AQFT

Free fields algebra 2/2
Problem: as WF (∆) ⊂ M2 × ((V̄+ × V̄−) ∪ (V̄− × V̄+)),
∆(x1 − y1)∆(x2 − y2)F (2)(x1, x2)G(2)(y1, y2) makes no sense for
F ,G ∈ F ⇒ ∗ i

2 ∆ cannot be extended to F, but LI 6∈ Freg

Solution: since for the 2-point function ∆+

WF (∆+) = {(x , y ,p,q) : y = x + tp, p2 = 0,p0 > 0,q = −p}
it is possible to define the product on F

F ∗∆+ G = M ◦ e
∫

M2 ∆+(x−y) δ
δφ(x)

⊗ δ
δφ(y) (F ⊗G)

and F 7→ e
1
2

∫
M2 H(x−y) δ2

δφ(x)δφ(y) F =: αH(F ), with
H = ∆+ − i

2∆ = 1
2(∆+ + ∆−) defines an isomorphism

αH : (Freg, ∗ i
2 ∆)→ (Freg, ∗∆+)

E.g.

α−1
H (φ(x)φ(y)) = φ(x) ∗ i

2 ∆ φ(y)−∆+(x − y) = : φ(x)φ(y) :

⇒ (F, ∗∆+) algebra generated by Wick monomials
Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 16 / 32
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Problem: as WF (∆) ⊂ M2 × ((V̄+ × V̄−) ∪ (V̄− × V̄+)),
∆(x1 − y1)∆(x2 − y2)F (2)(x1, x2)G(2)(y1, y2) makes no sense for
F ,G ∈ F ⇒ ∗ i

2 ∆ cannot be extended to F, but LI 6∈ Freg

Solution: since for the 2-point function ∆+

WF (∆+) = {(x , y ,p,q) : y = x + tp, p2 = 0,p0 > 0,q = −p}
it is possible to define the product on F

F ∗∆+ G = M ◦ e
∫

M2 ∆+(x−y) δ
δφ(x)

⊗ δ
δφ(y) (F ⊗G)

and F 7→ e
1
2

∫
M2 H(x−y) δ2

δφ(x)δφ(y) F =: αH(F ), with
H = ∆+ − i

2∆ = 1
2(∆+ + ∆−) defines an isomorphism

αH : (Freg, ∗ i
2 ∆)→ (Freg, ∗∆+)

E.g.

α−1
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Perturbative AQFT

Interacting fields 1/2

The time-orderd product of two local functionals with disjoint supports
is defined as

F ·T G := M ◦ e
∫

M2 ∆F (x−y) δ
δφ(x)

⊗ δ
δφ(y) (F ⊗G)

with the Feynmann propagator ∆F , and satisfies the casual
factorization property

F ·T G = F ∗∆+ G if supp F is earlier than supp G

The map (F1, . . . ,Fn) 7→ F1 ·T · · · ·T Fn is then extended to all Fj ∈ Floc
by induction on n, mantaining causal factorization (plus other
requirements) [Epstein, Glaser 1973].
The non-uniqueness of the extension gives rise to the renormalization
group
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Perturbative AQFT

Interacting fields 2/2

Given an interaction s.t. αHLI ∈ Floc the (IR-cutoff) S-matrix is defined
by

S(LI) = α−1
H T (eiT−1αHLI ) =

+∞∑
n=0

in

n!
α−1

H (αHLI ·T · · · ·T αHLI)

and it is unitary in (α−1
H (F), ∗ i

2 ∆): S(LI) ∗ i
2 ∆ S(LI) = 1 (while it is not in

general if LI ∈ Freg)
Interacting fields are defined by the Bogoliubov map

RLI (F ) := S(LI)
−1 ∗ i

2 ∆ α−1
H (αHF ·T αHS(LI))

= S(LI)
−1 ∗ i

2 ∆

[
+∞∑
n=0

in

n!
α−1

H (αHF ·T αHLI ·T · · · ·T αHLI)

]

where F ∈ Floc
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pAQFT and QST

Non-unitarity
For a : ϕn(q) :Q interaction on QST the effective interaction on
commutative spacetime is

L′I,eff(ϕ) =
1

(
√

2πλ)4(n−1)n2

∫
M

dx g(x)×∫
Mn

dx1 . . . dxn e−
1

2λ2
∑

j |xj−x |2
δ(x̄ − x) : ϕ(x1) . . . ϕ(xn) :

Problem: turning on the pAQFT machinery, T-products order w.r.t.
x0

1 , . . . , x
0
n ⇒ Feynmann diagrams computed using Filk rules⇒

resulting S(L′I) is non unitary
Key observation: the limit g → 1 of L′I is equivalent to the limit g → 1 of

LI,eff(ϕ) =
1

(
√

2πλ)4n

∫
M

dx g(x) :

[∫
M

dy e−
1

2λ2 |y−x |2
ϕ(y)

]n

:
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pAQFT and QST

Further deformation of fields ∗-product
With

Gλ(x) :=
1

(
√

2πλ)4
e−
|x|2

2λ2

define the following:
ιλ : C→ C, ιλφ(x) =

∫
M Gλ(x − y)φ(y)

rλ : F → F, (rλF )(φ) = F (ιλφ)

∆λ(x) =
∫

M2 Gλ(x − y)∆(y − z)Gλ(z)⇔ ∆̂λ(p) = e−λ
2|p|2∆̂(p)

and further deform the product on Freg as

F ∗ i
2 ∆λ

G = M ◦ e
∫

M2
i
2 ∆λ(x−y) δ

δφ(x)
⊗ δ
δφ(y) (F ⊗G)

Then rλ : (Freg, ∗ i
2 ∆λ

)→ (Freg, ∗ i
2 ∆) is a *-homomorphism and

LI,eff(φ) =

∫
M

dx g(x)α−1
H (ιλφ(x)n) = (rλLI)(φ)

LI(φ) =

∫
M

dx g(x)α−1
Hλ

(φ(x)n)⇒ αHλLI ∈ Floc
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pAQFT and QST

Wick polynomials and ∗∆+,λ
product

In order to include Wick polynomials we can also deform the ∗∆+

product:

F ∗∆+,λ
G = M ◦ e

∫
M2 ∆+,λ(x−y) δ

δφ(x)
⊗ δ
δφ(y) (F ⊗G)

with

∆+,λ(x) =

∫
M2

Gλ(x − y)∆+(y − z)Gλ(z)⇔ ∆̂+,λ(p) = e−λ
2|p|2∆̂+(p)

so that rλ : (F, ∗∆+,λ
)→ (F, ∗∆+) is a *-homomorphism

There holds also

i∆λ(x − y) = [id⊗ ωx (ϕ(q)), id⊗ ωy (ϕ(q))]

∆+,λ(x − y) = 〈Ω, id⊗ ωx (ϕ(q))id⊗ ωy (ϕ(q))Ω〉
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pAQFT and QST

·Tλ product

Proposition
The modified Feynmann propagator

∆F ,λ(x) := θ(x0)∆+,λ(x) + θ(−x0)∆+,λ(−x)

is a continuous bounded function and

∆̂F ,λ(p) =
ie−λ

2(2|p|2+m2)

p2 −m2 + i0

Then the ·Tλ product

F ·Tλ G := M ◦ e
∫

M2 ∆F ,λ(x−y) δ
δφ(x)

⊗ δ
δφ(y) (F ⊗G)

is the time-ordered product w.r.t. to ∗∆+,λ
and is directly well-defined

on F without the need of renormalization
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pAQFT and QST

S-matrix and interacting product
Theorem
With Hλ := ∆+,λ − i

2∆λ, the S-matrix

S(LI) :=
+∞∑
n=0

in

n!
α−1

Hλ
(αHλLI ·Tλ · · · ·Tλ αHλLI)

is unitary in (α−1
Hλ

(F), ∗ i
2 ∆λ

): S(LI) ∗ i
2 ∆λ

S(LI) = 1

Perturbative expansion given by usual Feynmann diagrams with ∆F ,λ
propagators
Moreover, RLI can be perturbatively inverted, and we can define the
interacting algebra as (F, ∗LI ) with interacting product:

F ∗LI G := R−1
LI

(RLI (F ) ∗ i
2 ∆λ

RLI (G))
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Localizability in a spherically symmetric spacetime

Localizability in a spherically symmetric spacetime
Aim: produce a rigorous version of DFR argument on curved
spacetime
Strategy:

1 consider a (scalar massless) free quantum field φ on a
background (M,gµν) in a (Hadamard) state such that

2φ = 0, Gµν = 8πω(Tµν)

2 prepare a localized state: for f ∈ C∞c (M)

ωf (A) :=
ω(φ(f )Aφ(f ))

ω(φ(f )φ(f ))
, A ∈ A

3 evaluate change to expectation value of Tµν after localization
4 estimate backreaction on metric and formation of TS by

Raychauduri equation (no linearization of gravity)
5 impose principle of gravitational stability

Step 4 (and 5) only under assumption of spherical symmetry of
background metric

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 26 / 32



Localizability in a spherically symmetric spacetime

Localizability in a spherically symmetric spacetime
Aim: produce a rigorous version of DFR argument on curved
spacetime
Strategy:

1 consider a (scalar massless) free quantum field φ on a
background (M,gµν) in a (Hadamard) state such that

2φ = 0, Gµν = 8πω(Tµν)

2 prepare a localized state: for f ∈ C∞c (M)

ωf (A) :=
ω(φ(f )Aφ(f ))

ω(φ(f )φ(f ))
, A ∈ A

3 evaluate change to expectation value of Tµν after localization
4 estimate backreaction on metric and formation of TS by

Raychauduri equation (no linearization of gravity)
5 impose principle of gravitational stability

Step 4 (and 5) only under assumption of spherical symmetry of
background metric

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 26 / 32



Localizability in a spherically symmetric spacetime

Spherical symmetry
To evaluate backreaction, we should solve

Gµν = 8π ωf (Tµν)

It is very difficult. Assume spherical symmetry
Spacetime is I × R+ × S2, retarded coordinates:
spanned by future null geodesic emanated from
the center of the sphere

I u proper time on the worldline γ of center
I s retarded distance: affine parameter along the

null geodesics with s(0) = 0 and ṡ(0) = 1

The general spherically symmetric metric is

ds2 := −A(u, s)du2 − 2ds du + r(u, s)2dΩ2

Fix u, the family of null geodesics forms a cone
Cu
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Localizability in a spherically symmetric spacetime

Backreaction and trapped surfaces
Theorem ([Doplicher, M., Pinamonti ’13])
For a large class of spherically symmetric (M,gµν) and ω (including
cosmological ones), and for f ∈ C∞c (M) as in figure with

s1 < s2 <
3
2

s1, (s2)2 < s2 , s2 :=
1

6 C

the future of C0 contains a trapped sur-
face.

C0

O ⊃ supp f

s1

s2
supp ∆(f ) ∩ J−(O)

For a flat Friedmann-Robertson-Walker spacetime with metric

ds2 = −dt2 + a(t)2[dr2 + r2dΩ2]

the limitation becomes r & λ
a(t) ⇒ effective Planck length diverges near

the singularity, as argued by [Doplicher, ’01]
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A cosmological application

The λ→ +∞ limit of the S-matrix
We expect that near the Big Bang the effective Planck length diverges,
so we prove

Theorem
To all perturbative orders

lim
λ→∞

S(V ) = eiV , lim
λ→∞

RV (F ) = F

(eiV defined by pointwise product)

This suggest that:
near the Big Bang interactions should disappear
and correlations of free fields diverge

Thus there should remain no degrees of freedom at initial times.
Similar indications obtained in the Yang-Feldman approach
This could provide an alternative solution to the initial conditions
problem
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Conclusions

Conclusions and outlook
Summary:

pAQFT is an effective approach to the perturbative construction of
interacting observables in QFT
pAQFT can be modified to treat QFT on QST (or suitable
non-local QFT on ordinary spacetime) yielding unitary and
UV-finite S-matrix without renormalization
λ→∞ limit of S-matrix indicates that QFT on QST has zero
degrees of freedom at initial singularity

Outlook:
There are indications that perturbative series for S-matrix is Borel
summable (in d = 4)
pAQFT is naturally adapted to curved spacetimes, yielding
generally covariant interacting theories, so it is natural to look for
generally covariant QFT on curved QST (free as a first step)
Initial conditions could be replaced by different asymptotics as
t → 0
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