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Introduction

Introduction

@ [Doplicher, Fredenhagen, Roberts '95]: QM + GR =- uncertainties
AqgH satisfy Spacetime Uncertainty Relations (STUR)

@ Minkowski spacetime replaced by a Quantum (noncommutative)
Spacetime € (C*-algebra generated by g*)

@ QFT on QST has remarkable properties [Bahns, Doplicher,
Fredenhagen, Piacitelli '01,03,04,...]

@ It can also serve as a (partial) substitute of inflation [Doplicher, M.,
Pinamonti '13]

@ Perturbative algebraic quantum field theory (pAQFT):
renormalization on curved spacetime, construction of algebras of
interacting observables, quantum gravity... [Hollands, Wald,
Brunetti, Fredenhagen, Ditsch, Rejzner... ’01 on]
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Introduction

Introduction

@ [Doplicher, Fredenhagen, Roberts '95]: QM + GR =- uncertainties
AqgH satisfy Spacetime Uncertainty Relations (STUR)

@ Minkowski spacetime replaced by a Quantum (noncommutative)
Spacetime & (C*-algebra generated by g*)

@ QFT on QST has remarkable properties [Bahns, Doplicher,
Fredenhagen, Piacitelli '01,03,04,...]

@ It can also serve as a (partial) substitute of inflation [Doplicher, M.,
Pinamonti ’13]

@ Perturbative algebraic quantum field theory (pAQFT):
renormalization on curved spacetime, construction of algebras of
interacting observables, quantum gravity... [Hollands, Wald,
Brunetti, Fredenhagen, Ditsch, Rejzner... ’01 on]

Aim of this talk:

Adapt pAQFT to QST to obtain a more manageable vperturbation
expansion and study some consequences
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Quantum spacetime and QFT

Spacetime Uncertainty Relations

QM+GR = energy E localized in region of radius R ~ E~' not hidden

by TSonly if R > Rg ~ E, i.e. R > X (Planck length). But if only one
coordinate is well localized, TS will not form
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Quantum spacetime and QFT

Spacetime Uncertainty Relations
QM+GR = energy E localized in region of radius R ~ E~' not hidden
by TSonly if R > Rg ~ E, i.e. R > X (Planck length). But if only one
coordinate is well localized, TS will not form
[DFR] analysis:
@ quantum state localized in region supp f of sizes Ag*, n=0,...,3
wi(A) = (e®1Nq, Ae¥(NQ)

energy E ~ 1/ min,{Ag"} = energy density p
@ solution of linearized Einstein equations with source p given by
retarded potential: g,z(Ag*)

@ if signals from supp f have to be observable TS should not form:

9oo >0
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Quantum spacetime and QFT

Spacetime Uncertainty Relations

QM+GR = energy E localized in region of radius R ~ E~' not hidden
by TSonly if R > Rg ~ E, i.e. R > X (Planck length). But if only one
coordinate is well localized, TS will not form

[DFR] analysis:

@ quantum state localized in region supp f of sizes Ag*, n=0,...,3
wi(A) = (e?NQ, Ae¥(Q)

energy E ~ 1/ min,{Ag"} = energy density p
@ solution of linearized Einstein equations with source p given by
retarded potential: g,z(Ag*)

@ if signals from supp f have to be observable TS should not form:
Joo >0

Spacetime Uncertainty Relations (STURS)

3 3
A AG 22 ) AGAG >N

j=1 i<j=1
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Quantum spacetime and QFT

Quantum Spacetime

STURs can be realized by assuming that Ag*’s are standard
deviations of quantum operators g+ satisfying suitable commutation
relations, as for Heisenberg uncertainty relations
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Quantum spacetime and QFT

Quantum Spacetime

STURs can be realized by assuming that Ag*’s are standard

deviations of quantum operators g+ satisfying suitable commutation
relations, as for Heisenberg uncertainty relations

Quantum Conditions

[qli7 qy] = i)\ZQm/, [qp7 QHV] =0,

2
Q@ =0, (30"(:Q)) =1
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Quantum spacetime and QFT

Quantum Spacetime
STURs can be realized by assuming that Ag*’s are standard

deviations of quantum operators g+ satisfying suitable commutation
relations, as for Heisenberg uncertainty relations

Quantum Conditions

[9",q"] = iINQ™, [¢°,Q"]=0,

2
0ua” =0, (30"(Q)u) =1

@ Noncommutative C*-algebra & of Quantum Spacetime (QST)
generated by g*’s replaces algebra of functions on Minkowski
@ It is equipped with action of the Poincaré group g* — ALg” + a”
@ ¢& has nontrivial center Z(€) = functions on a manifold
Y ~ TS? x Zy and € ~ Cy(X, K), K = compact operators
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Quantum spacetime and QFT

Optimal localization on QST

In an irreducible representation g* is a Lorentz transform of
Schroedinger’s (x1, X2, p1, p2)
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Quantum spacetime and QFT

Optimal localization on QST

In an irreducible representation g* is a Lorentz transform of
Schroedinger’s (x1, X2, p1, p2)
4

There exists states of optimal localization w on &€, minimizing

3 (AGHY = (Ax))? + (Ax2)? + (Apy 2 + (Ap2)?

given by translates of the harmonic oscillator ground states
They are the best approximation of points on QST
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Quantum spacetime and QFT

Free quantum fields on QST

v free (scalar) field on Minkowski can be defined on QST through
Weyl-von Neumann-Moyal quantizazion

o(q) = / ok p(k) © e

(formal) element of § ® &, § field algebra
@ it satisfies Klein-Gordon equation (derivatives on € defined by
0up(q) = Forp(q + x1))
@ wy,wy optimally localized states around x,y —

[id ® wx(¢(q)),id ® wy((q))] falls off as a Gaussian of width X for
large spacelike x — y
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Quantum spacetime and QFT

Free quantum fields on QST

v free (scalar) field on Minkowski can be defined on QST through
Weyl-von Neumann-Moyal quantizazion

o(q) = / ok p(k) © e

(formal) element of § ® &, § field algebra
@ it satisfies Klein-Gordon equation (derivatives on & defined by
0up(q) = Forp(q + x1))
@ wy,wy optimally localized states around x,y —

[id ® wx(¢(q)),id ® wy((q))] falls off as a Gaussian of width X for
large spacelike x — y

Locality is lost at distances small w.r.t. A\, but recovered as A — 0
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Quantum spacetime and QFT

(Perturbative) interacting fields on QST
Several (inequivalent) possibilities of defining perturbative interacting
fields
@ Hamiltonian approach (interaction picture) with interaction
Lagrangian defined by : ¢(q)" : [DFR]
@ Yang-Feldman equation and quasi-planar Wick products [Bahns,
Doplicher, Fredenhagen, Piacitelli '02 & '04]

@ Hamiltonian approach with interaction defined by quantum Wick
product : ¢"(q) :q, which yields UV-finite (IR-cutoff) theory to all
orders [Bahns, Doplicher, Fredenhagen, Piacitelli '03]
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Quantum spacetime and QFT

(Perturbative) interacting fields on QST

Several (inequivalent) possibilities of defining perturbative interacting
fields
@ Hamiltonian approach (interaction picture) with interaction
Lagrangian defined by : ¢(q)" : [DFR]
@ Yang-Feldman equation and quasi-planar Wick products [Bahns,
Doplicher, Fredenhagen, Piacitelli '02 & '04]

@ Hamiltonian approach with interaction defined by quantum Wick
product : ¢"(q) :q, which yields UV-finite (IR-cutoff) theory to all
orders [Bahns, Doplicher, Fredenhagen, Piacitelli '03]

. ©"(q) :q defined by generalizing point-splitting to QST:
eg.,forn=2

Lo 1 (x) = lim o(x)e(y) — (Q, o(X)e(¥)R)

y—x

limit y — x has to be performed in a way compatible with the STURs
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Quantum Wick product

@ Introduce quantum coordinates of independent events
qj“ =1®---@¢'®---®@1, j=1,....n

tensor product of Z-moduli —> [qj‘.‘, qy] = IN2QH S
@ introduce center of mass and relative coordinates

1
=2 Gomq -
J

identification of commutators —- [g", ;] =0, [ ;;(,g;;(] = 2i\2Qm
@ evaluating optimally localized state on ,’f< yields a map

E() . g®zn 5 & ~ C*(gH)
@ define quantum Wick product as

2 0"(@) 0 = EP( o(aqr) - 9(qn) )
= /d“k1 K 3K F(Kn) € Sl Sk 5 g
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Quantum spacetime and QFT

Feynmann rules for quantum Wick product

S-matrix is equivalent to the one of a non-local QFT on commutative
Minkowski with interaction Hamiltonian

H,(t):/0 tdsx/dx1 dxne 22 TIPSR x) o). ()
xV=

(% = 157 x, x = (t, %))
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Feynmann rules for quantum Wick product

S-matrix is equivalent to the one of a non-local QFT on commutative
Minkowski with interaction Hamiltonian

Hi(t) :/O tdSX/dx1 dxne 22 TIPSR x) o). ()
xV=

(% =557 %, x = (£,X))

Feynmann rules for this theory are modified [Piacitelli 2004]:
@ time ordering is done w.r.t. to X%, not xj0
@ vertices of Feynmann diagrams become fat (x — Xy,..., Xp)
@ propagator between x; and y, depends also on x° — y°
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Feynmann rules for quantum Wick product

S-matrix is equivalent to the one of a non-local QFT on commutative
Minkowski with interaction Hamiltonian

Hi(t) :/O tdsx/dx1 dxne 22 TIPSR x) o). ()
xV=

(X:= 3%, x = (£, X))
Feynmann rules for this theory are modified [Piacitelli 2004]:

@ time ordering is done w.r.t. to X%, not xj0
@ vertices of Feynmann diagrams become fat (x — Xy,..., Xp)
@ propagator between x; and y, depends also on x° — y°

Resulting perturbation theory is manifestly unitary but not easy to
handle (e.g., pass to momentum space...)
We look for a more manageable formulation
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Perturbative AQFT

Observables as functionals

Proposed by [Brunetti, Dltsch, Fredenhagen 2009] to construct
perturbatively algebras of observables (or fields) for the interacting
theory defined by Lagrangian

1 1
L=Lo+L = 5 GO — §m2¢2+L,
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Perturbative AQFT

Observables as functionals

Proposed by [Brunetti, Ditsch, Fredenhagen 2009] to construct
perturbatively algebras of observables (or fields) for the interacting
theory defined by Lagrangian

1
L= L0+L,——M¢8"“¢> mgb + L,

With M(= R*) spacetime, define:
@ C:= C>*(M,R)n 8 (M) field configurations
e F ={F:C—C: Fn) . —‘3256
E'(M™), WF(F(M) 0 (M™ x (VU V")) = 0} observables
@ Fioc:={FecTF: FIeDM), supp F") C {x; =xo = --- = xp}}
local observables
@ Jreg :={F € F : FN € D(M")} regular observables
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Perturbative AQFT

Observables as functionals

Proposed by [Brunetti, Ditsch, Fredenhagen 2009] to construct
perturbatively algebras of observables (or fields) for the interacting
theory defined by Lagrangian

1
L= L0+L,——M¢8“¢> mgb + L,

With M(= R*) spacetime, define:
@ C:= C>*(M,R)n 8 (M) field configurations
e F={F:e—-C:Fn.= OF ¢

=&
E'(M™), WF(F(M) 0 (M™ x (VU V")) = 0} observables
@ Jioc:={FecT : FO) e DM), supp F(" C {x1 =xp = --- = Xp}}

local observables
@ Jreg :={F € F : FN € D(M")} regular observables
E.g.: F(¢) = [ K(X1,..., Xn)o(X1) ... ¢(xn) with K € D(M") regular,
¢) = [, 9(X)p(x)* local but not regular
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Free fields algebra 1/2

Algebra of free fields defined by deforming the pointwise product
M S:reg ®3’~|—eg — H:reg as

)

Fxin G=Mo elwe é‘A("‘y)aas(x)‘g’%(y)(/:@) G)
2

(formal power series), with A := Ag — A4 free field commutator
function

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 15/32



Perturbative AQFT

Free fields algebra 1/2

Algebra of free fields defined by deforming the pointwise product
M S:reg ®3~reg — fTrreg as

Fxin G=Mo el 5A(X‘y)a¢ix>®%m(F® G)
2

(formal power series), with A := Ag — A4 free field commutator
function
Then:

(60,60, = 5B~ )

= (Jreg, *i 5 ) is isomorphic to the *-algebra generated by the free
2
scalar quantum field ¢ on Fock space
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Perturbative AQFT

Free fields algebra 1/2

Algebra of free fields defined by deforming the pointwise product
M gjreg ®?reg — gjreg as

Fxin G=Mo el é‘A("‘y)aaf(x)@’%(y)(/:® G)
2

(formal power series), with A := Ag — A4 free field commutator
function
Then:

(60,60, = 5B~ )

= (Jreg, *i 5 ) is isomorphic to the *-algebra generated by the free
2

scalar quantum field ¢ on Fock space
Formal series can sometimes be replaced by convergent ones by
requiring bounds for F(" [Bahns, Rejzner 2017]
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Perturbative AQFT

Free fields algebra 2/2

Problem: as WF(A) ¢ M? x (V. x V_)u (V- x V})),

A(xy — y1)A(Xe — y2)F@(x1, x2) G (y1, y») makes no sense for
F.GeF= *in cannot be extended to J, but L; € Jreg

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018
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Perturbative AQFT

Free fields algebra 2/2

Problem: as WF(A) ¢ M? x (V. x V_)u (V- x V})),

A(xy — y1)A(Xe — y2)F@(x1, x2) G (y1, y») makes no sense for
F.GeF= *in cannot be extended to J, but L; € Jreg

Solution: since for the 2-point function A

WF(A+) ={(x,y,p.q) : ¥y =x+tp, P> =0,pp > 0,9 = —p}
it is possible to define the product on &

Fxa, G=Mo glve 8+ )53

?(F@ G)

and F — g2 el NS5 F —: cap(F), with
H=A, - LA =%(A; + A) defines an isomorphism
Q. (gjl’eg7*éA) — (?rega *A+)
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Perturbative AQFT

Free fields algebra 2/2

Problem: as WF(A) ¢ M? x ((V, x V_)u (V. x V})),

A(x1 — y1)A(xo — ¥2)FP®(xq, x2)G®)(y1, y») makes no sense for
F,G e J = i, cannot be extended to J, but L; ¢ Freq

Solution: since for the 2-point function A
WF(A4) = {(x.y,p.q) : y =x+1p, p?=0,p0 > 0,9 = —p}
it is possible to define the product on &

Fxa, G=Mo glve 8+ )53

?(F® G)

and F s e e "N G551 F . (F), with
H=A, - LA =%(A; + A) defines an isomorphism
aH : (.’ﬂeg,*éA) — (Fregs *a,)

E.g.

ay ($()(¥)) = d(x) ¥ia ) = Bi(x —y) =: 9(x)o(y) :

= (J,*a, ) algebra generated by Wick monomials



Perturbative AQFT

Interacting fields 1/2

The time-orderd product of two local functionals with disjoint supports
is defined as

FrG:=Moelw AF(X_'V)%(X)Qb%m(F® G)

with the Feynmann propagator Ag, and satisfies the casual
factorization property

F -1+ G=Fxa, G if supp F is earlier than supp G

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 17/32



Perturbative AQFT

Interacting fields 1/2

The time-orderd product of two local functionals with disjoint supports
is defined as

FrG:=Moelw AF(X_y)%(x)(@%m(F(X) G)

with the Feynmann propagator Ag, and satisfies the casual
factorization property

F -1+ G=Fxa, G if supp F is earlier than supp G

The map (Fy,...,Fp) — Fy -7 --- -7 Fpis then extended to all F; € Jioc
by induction on n, mantaining causal factorization (plus other
requirements) [Epstein, Glaser 1973].

The non-uniqueness of the extension gives rise to the renormalization

group
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Perturbative AQFT

Interacting fields 2/2
Given an interaction s.t. ayL; € Foc the (IR-cutoff) S-matrix is defined
by

+00 :p

. o
S(Ly) = ay' T(e™ 'onty =Y ma;f (anli-7--- -1 anly)
n=0 "

and it is unitary in (ag' (%), #14): S(L1) *55 S(Ly) = 1 (while it is not in
general if L; € Freg)

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 18/32



Perturbative AQFT

Interacting fields 2/2

Given an interaction s.t. ayL; € Foc the (IR-cutoff) S-matrix is defined
by

+00 :p
_ T1a "o
S(Ly) = ay' T(e™ 'onty =Y m%f (anli-1 -1 anl)
n=0
and it is unitary in (ag' (%), #14): S(L1) *55 S(Ly) = 1 (while it is not in
general if L; € Freg)
Interacting fields are defined by the Bogoliubov map

Ry,(F) = S(Ll)_1 *in G5;11(05HF'T anS(L)))
+00 :p

in
= S(L)~! *in > ma;f(OéHF Taplir- T apl)

n=0
where F € JFoe

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 18/32
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PAQFT and QST

Non-unitarity

For a: ¢"(q) :q interaction on QST the effective interaction on
commutative spacetime is

/ _ 1 /
LI,eff(SO) _(\/Z)\)4(n_1)n2 " ng(X)X

| da o e 22 S sx _x) (). p(xn) -
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PAQFT and QST

Non-unitarity

Fora: ¢"(q) :q interaction on QST the effective interaction on
commutative spacetime is

/ _ 1 /
LI,eff(SO) _(\/Z)\)4(n_1)n2 " dXQ(X)X

| da o e 22 S sx _x) (). p(xn) -

Problem: turning on the pAQFT machinery, T-products order w.r.t.
x9,...,x% = Feynmann diagrams computed using Filk rules =
resulting S(L}) is non unitary
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PAQFT and QST

Non-unitarity

Fora: ¢"(q) :q interaction on QST the effective interaction on
commutative spacetime is

/ _ 1 /
L/,eff(SD)—(\/2—#)\)4(,,_1”)2 deg(X)x

| d b e 22 LI Ps(x — x) (). .. o(Xn)

Problem: turning on the pAQFT machinery, T-products order w.r.t.
x9,...,x% = Feynmann diagrams computed using Filk rules =
resulting S(L)) is non unitary

Key observation: the limit g — 1 of L} is equivalent to the limit g — 1 of

L) = amysin [, @90 )i | [ ayemal o)
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PAQFT and QST

Further deformation of fields x-product
With 1 L
G)\(X) = me 2)2

define the following:

@ 1) :C— Cup(x) = [, Ga(x — y)o(y)
°en:J—7, (fAF)( ) = F(tn9)

® A\(X) = fie Ga(x — Y)A(y — 2)Gi(2) & Ax(p) = e XIPFA(p)
and further deform the product on Jreq as

Fin, G= Mo el i8N 555501 (F o G)

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 21/32



PAQFT and QST

Further deformation of fields x-product
With

1x2

G)\( ) (\/_)\)4 S

define the following:

@ 1) :C— € unp(x) = [, Ga(x — y)o(y)
°en:J—7, (fAF)( ) = F(tn9)

® A\(X) = fie Ga(x — Y)A(y — 2)Gi(2) & Ax(p) = e XIPFA(p)
and further deform the product on Jreq as

Fxin, G=Mo el éAA(x_y)%(X)@%(y)(F@ G)
2
Then ry : (Freg, *éAx) — (Freg, *éA) is a *-homomorphism and

Lye(6) = /M o g(x)ap (16 (X)) = (L1)(®)

= /M dx g(X)a;,: (6(x)") = ap,L; € Fioe
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PAQFT and QST

Wick polynomials and *, , product

In order to include Wick polynomials we can also deform the xx
product:

Fa,, G=Mo el 2 0 N5m956(F o G)
with
Ay (x) = /M Ga(x — Y)A(y — 2)G(2) & Ay \(p) = e ¥IPFA ()

sothatry : (F,*a, ,) — (F,*a,) is @ *-homomorphism

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 22/32



PAQFT and QST

Wick polynomials and *, , product

In order to include Wick polynomials we can also deform the xx
product:

Fia,, G=Moehw 2 6 Num®5i (F g G)
with
Ay (x) = /M Ga(x — Y)A(y — 2)G(2) & Ay \(p) = e ¥IPFA ()

sothatry : (F,*a, ,) — (F,*a,) is @ *-homomorphism
There holds also

IBA(x —y) = [id ©@ wx(¥(q)),id © wy(#(q))]
Apa(x —y) = (Q,id ® we(p(q))id © wy(#(q))2)
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PAQFT and QST

-7, product

Proposition
The modified Feynmann propagator

AFp(X) = 0(X°) AL \(X) + 0(—X°) AL\ (—x)
is a continuous bounded function and

. je— N (@lp|*+m?)
AF,/\(p = p2 — m2+10
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PAQFT and QST

-7, product

Proposition
The modified Feynmann propagator

Ara(X) = 00O) A A(X) +0(—X°) A1 A(—)

is a continuous bounded function and

. je— N (@lp|*+m?)
Af(p) =

P2 — m2 +i0

Then the -7, product
F-r, Gi=Moelw AF’*(X‘”%@@%(F@ G)

is the time-ordered product w.r.t. to xa, , and is directly well-defined
on J without the need of renormalization

Gerardo Morsella (Roma 2) pAQFT and QST NCG - Kolkata 2018 23/32



S-matrix and interacting product
Theorem
With Hy == A ) — A, the S-matrix

+00 p

in _
S(Ly) =) maHl(aHALl Ty Ty @Ky L)
n=0 "'

is unitary in (a;,: (F), *gm)’ S(Ly) *ia, S(Ly) =1
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S-matrix and interacting product
Theorem
With Hy == A ) — A, the S-matrix

+00 p

in _
S(Ly) =) maHl(aHALl Ty Ty @Ky L)
n=0 "'

is unitary in (a;,: (F), *gm)’ S(Ly) *ia, S(Ly) =1

Perturbative expansion given by usual Feynmann diagrams with Afg
propagators
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S-matrix and interacting product
Theorem
With Hy == A ) — A, the S-matrix

+00 p

in _
S(L) = maHl(aHkL/ Ty Ty @Ky L)
n=0 "'

is unitary in (a’,:,: (S’F)’*gm)" S(Ly) *ia, S(Ly) =1

Perturbative expansion given by usual Feynmann diagrams with Afr
propagators

Moreover, R;, can be perturbatively inverted, and we can define the
interacting algebra as (J, x;,) with interacting product:

F*L/ G = RL_,1(RLI(F) *%A)\ RL,(G))
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Localizability in a spherically symmetric spacetime

Localizability in a spherically symmetric spacetime

Aim: produce a rigorous version of DFR argument on curved
spacetime

Strategy:

@ consider a (scalar massless) free quantum field ¢ on a
background (M, g,.,) in a (Hadamard) state such that

O¢ =0, G = 8mw(Tuw)
@ prepare a localized state: for f € C3°(M)
w(o(f)As(f))
wi(A) = — =~ AcA
A= @men)
© evaluate change to expectation value of T, after localization

© estimate backreaction on metric and formation of TS by
Raychauduri equation (no linearization of gravity)
© impose principle of gravitational stability
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Localizability in a spherically symmetric spacetime

Localizability in a spherically symmetric spacetime

Aim: produce a rigorous version of DFR argument on curved
spacetime

Strategy:
@ consider a (scalar massless) free quantum field ¢ on a
background (M, g,.,) in a (Hadamard) state such that
O¢ =0, G = 8mw(Tuw)
@ prepare a localized state: for f € C3°(M)

_ w(e(HAg(f))
A= e A
© evaluate change to expectation value of T, after localization
© estimate backreaction on metric and formation of TS by
Raychauduri equation (no linearization of gravity)

© impose principle of gravitational stability
Step 4 (and 5) only under assumption of spherical symmetry of
backi round metric
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Localizability in a spherically symmetric spacetime

Spherical symmetry
To evaluate backreaction, we should solve

G =81 wi(Tw)

It is very difficult. Assume spherical symmetry
@ Spacetime is | x R, x S?, retarded coordinates: ¢

@ spanned by future null geodesic emanated from
the center of the sphere

» u proper time on the worldline ~ of center
» sretarded distance: affine parameter along the
null geodesics with s(0) = 0 and $(0) = 1

@ The general spherically symmetric metric is
ds? := —A(u, s)du? — 2ds du + r(u, s)>dQ?

@ Fix u, the family of null geodesics forms a cone
Cy
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Localizability in a spherically symmetric spacetime

Backreaction and trapped surfaces
Theorem ([Doplicher, M., Pinamonti ’13])

For a large class of spherically symmetric (M, g,.,) and w (including
cosmological ones), and for f € C3°(M) as in figure with

ODsuppf
3 — _ 1 ¢
81 < S <=8, ($P<F, Fi=— o
2 6C 4
supp A(f) N J7(0O)
the future of Gy contains a trapped sur-
face.

51
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Localizability in a spherically symmetric spacetime

Backreaction and trapped surfaces
Theorem ([Doplicher, M., Pinamonti ’13])

For a large class of spherically symmetric (M, g,.,) and w (including
cosmological ones), and for f € C3°(M) as in figure with

O Dsuppf

1 Co
- S
6 supp A(f) N J7(0O)
the future of Gy contains a trapped sur-
face.

3 — _
$1 < 82 < 551, (522 <82, 8=

51

For a flat Friedmann-Robertson-Walker spacetime with metric
ds? = —df? + a(t)?[dr? + r?dQ?]

the limitation becomes r > a?t) = effective Planck length diverges near

the singularity, as argued by [Doplicher, '01]
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A cosmological application

The A\ — +oo limit of the S-matrix

We expect that near the Big Bang the effective Planck length diverges,
SO we prove

Theorem
To all perturbative orders

lim S(V)=¢€", Jlim Ry(F)=F
—00

A—00

(€' defined by pointwise product)
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A cosmological application

The A — +oo limit of the S-matrix
We expect that near the Big Bang the effective Planck length diverges,
SO we prove

Theorem
To all perturbative orders

lim S(V)=¢€", Jlim Ry(F)=F
—>00

A—00

(€' defined by pointwise product)

This suggest that:

@ near the Big Bang interactions should disappear

@ and correlations of free fields diverge
Thus there should remain no degrees of freedom at initial times.
Similar indications obtained in the Yang-Feldman approach
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A cosmological application

The A — +oo limit of the S-matrix
We expect that near the Big Bang the effective Planck length diverges,
SO we prove

Theorem
To all perturbative orders

lim S(V)=¢€", Jlim Ry(F)=F
—>00

A—00

(€' defined by pointwise product)

This suggest that:

@ near the Big Bang interactions should disappear

@ and correlations of free fields diverge
Thus there should remain no degrees of freedom at initial times.
Similar indications obtained in the Yang-Feldman approach
This could provide an alternative solution to the initial conditions
problem
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Conclusions

Conclusions and outlook
Summary:
@ pAQFT is an effective approach to the perturbative construction of
interacting observables in QFT
@ pAQFT can be modified to treat QFT on QST (or suitable
non-local QFT on ordinary spacetime) yielding unitary and
UV-finite S-matrix without renormalization
@ )\ — oo limit of S-matrix indicates that QFT on QST has zero
degrees of freedom at initial singularity
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Conclusions

Conclusions and outlook
Summary:

@ pAQFT is an effective approach to the perturbative construction of
interacting observables in QFT

@ pAQFT can be modified to treat QFT on QST (or suitable
non-local QFT on ordinary spacetime) yielding unitary and
UV-finite S-matrix without renormalization

@ )\ — oo limit of S-matrix indicates that QFT on QST has zero
degrees of freedom at initial singularity

Outlook:

@ There are indications that perturbative series for S-matrix is Borel
summable (in d = 4)

@ pAQFT is naturally adapted to curved spacetimes, yielding
generally covariant interacting theories, so it is natural to look for
generally covariant QFT on curved QST (free as a first step)

@ Initial conditions could be replaced by different asymptotics as
t—0
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