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Quantum Spacetime



Quantum Spacetime

Motivation



Principle of Gravitational Stability against localization of events:
“The gravitational field generated by the concentration of energy
required by the Heisenberg Uncertainty Principle to localize an event in
spacetime should not be so strong to hide the event itself to any distant
observer-distant compared to the Planck scale”

(Doplicher, Fredenhagen, Roberts - 1995)

e localization of events with extreme precision may cause
gravitational collapse: spacetime loses operational meaning

e Fate of locality?



The DFR spacetime uncertainty relations (Doplicher, Fredenhagen,
Roberts):

cAt(Az + Ay + Az) > )% (1)
AzAy + AzAz + AyAz > )% (2)

STUR (Tomassini, Viaggiu)

(Az)2(Ay)?(Az)? > 1205 (AzAy + AzAz + AyAz) (3)
(cAt)?(AzAy + AzAz + AyAz) > 12)% (4)

e “Small scale structure of Minkowski space”
e Original derivation: linearized gravity..

e Recent, stronger form (STUR) implies DFR uncertainty relations (L.
Tomassini, S. Viaggiu, 2011)



Quantum Spacetime

The DFR spacetime



[(I,uv qy] = i)\%Qm/

Covariance: o)
A,a
qp — q:A - AZQV + a,,

This implies:
Q/W = Qpr A A, (rank-2 tensor)

There are two invariants:
Q" and Q. (xQ)".

In the simplest model, the @), are central:

[Q;u/aQa] =0 Yu,rv,ae {0, 1,2,3}.

= Joint spectrum of the Q.

S =%, US_ ~ SL(2,C)/D.
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"Quantum Conditions”: Q@ =0, <4QW(*Q)‘“’> =1,

In terms of the spectral values, the quantum conditions become:

1 % - o !
Sowat = |l P Lo,
1
ZO’MV(*O‘)MV = &=+l

Joint spectrum of the @Q,,,:
Y=X,UX¥_=SL(2,C)/D,

with
Yy ={o(em)|e-m= =1, 5| =[]}

(15)

(16)



Commutation relations in Weyl form:

. . ) .
elauqﬂelﬁuqu = eféAPO‘uQuyﬂuel(a“rﬁ)qu

(17)

A Lorentz covariant (regular) representation can be explicitly constructed

as follows:
On T*R? consider the standard symplectic form

o — @2 7]]2
=\ 1, 0, )

Associated to oy we have generators satisfying the CCR:

[Qi, Pl =idij, [Qi,Qs]=0, [P,P;]=0 (i=1,2).

We regard the operators Q;, P; (i = 1,2) as acting on

H = L*R, d%)|

through the Schrodinger respresentation.



Rename these operators in the following way:
(XoaXlaX27X3)E(P17P2aQ1aQ2)' (21)

It then follows that
[XH, XY] =1i0§". (22)

Let .Z denote the Lorentz group, provided with the Haar measure dA.
Define the Hilbert space

Hy = LA(L,H) =2 L2 (£ x R? dA d>s). (23)
Elements W of 7 are maps
V. ¥ — H=L*R?d%)
A — W, (24)

The inner product is defined as

(U, @) 7, :zLdA(@A,©A>H. (25)



Quantum coordinate operators

Let U € 7, = L*(ZL,H). Recall that ¥, € H = L*(R?,d?s).

Define

(@MW), = AR XV Ty, (26)
as well as

(UA)D)5 =T, 15 (27)
=

Lorentz covariance of the quantum coordinate operators:

UA N g"UA) =AY g (28)

The above treatment can be easily generalized in order to obtain a set of
Poincaré covariant quantum coordinate operators.



The Moyal product

CCR — |[¢g,p] =1
Weyl form of the CCR:

eilongtazp) pi(Bra+B2p) — o — i (a1B2—azp1) ei((e1+B1)g+(az+82)p) (29)

Symplectic structure: o(a, 8) := o182 — azf31, a, 5 € R?

Weyl generators: W (a) := el(@1ata2p) ¢ (L?(R))

Weyl algebra: W (o)W (8) = e~ 27 (@AW (a + B)

e o(,8)=a-08, Ol =-0=07

Relation between (Weyl) CCR and Moyal product f % g7



FHK) = fk) = / &z e (z),

F@e) = i) = g [ The*g(a)
The idea of (Moyal-Weyl) quantization is the following (n = 2):
o f=F M) = flw) = 2m)72 [ dPue f(w).
e Replace exp(i(u1x1 + u2x2)) by W(u) = exp(i(u1q + usp)).
e As W(u) € U(L?*(R)), the resulting operator “f(q,p)" is best

understood as an operator 7(f), providing a representation of a
noncommutative algebra of functions (Moyal algebra).

e Define, for f in a suitable class, 7(f) := ﬁ [ PuW (u) f(u).

Moyal product
We want to define a product f x¢ g through the relation

7(f)m(g) = 7(f %o 9)- (30)

10



e In order to establish what is the star product, we need to compute
the product 7(f)7(g).

e The relation 7(f xo g) = w(f)m(g) then implies that 7 is an algebra
homomorphism.

Result:
1 2 2 — 2@\l e—iut
(F9)@) = Gz [ @u [ Etie—10usa+)
o 1 2 2 24 s)alz e—w@*lt
= (27r)2/d /dtf( +s)g(x + 1)

= (2;)2 /d2a/d2bf(a)g(b)e%a(a—x,b—x). (31)

11



The DFR algebra

Scalar quantum field on quantum spacetime

1 BE [ o i b
dla) = (27r)‘°’/2/2Ek(6 Wk @ g + ik ®a£), (32)
H = HRF, (33)

> Definition of interaction terms requires an algebra closed under the

product of the e?auk"’s,

More generally, if we try to quantize functions (say f, fe L'(R%)) using
the Weyl prescription

fla) = / d'kf (k)" (34)
we realize that we need to enlarge the space of functions to be quantized.

12



In the previous Moyal example, L!-functions f on phase space are
quantized to 7(f) = f(q,p).

In the DFR case, exponentials e?%*" do not form a closed algebra.

So we enlarge the class of functions to be quantized from L!(R*),
to Co(%, L1 (RY)).

The quantized functions will be denoted as f(Q, q).

Following the same idea as in the Moyal example, we can induce a
star product on Cp(3, L}(R?)).

It is fixed by the following condition:

Toer (f) Torr(9) = Torr(f % ). (35)

13



More explicitly:

> For f € Co(X, LY(R*)), consider the Fourier transform
f(o,k) = / dizf(o, x)e”Fua", (36)
R4

> Let Q" = [, 0""dE(o) denote the (joint) spectral resolution of the
QM's.
> Then, for functions f such that f, f € Co(X, L' (R*)), define

Tor(f) 1= /EdE@) /R4 d*kf(o, k)etnd”. (37)

(f*g)(o,x) d*a | d*bf(o,a)g(o,b)e? a2 b=2) (3g)

14



An equivalent expression in momentum space is given by the twisted

convolution "“x":

A 4L/ i pv gt
(> o) = [ Goaflo kil = K)ete"" e (39)

Star product vs. twisted convolution
For f,g € Co(X, L*(R*)) we have:

Frg=(fxgy=@2m)*(f x g)" (40)

Alternative point of view, of relevance for field theory

As in (34), to every function f with f, f € L'(R*) we can associate an
operator f(q fd4af e~ " Then, we want to make sense of

@) fule) = (fu x - x fa) (@) (41)

15



Example (n = 2):
fil@)f20q) = /d405/d4ﬂf1(a)fz(ﬂ)e*%auQ'“jBuefi(a+6)“q“
N /d4a [/d4a,f1(a/)f2(a—a’)eéan@wal e tond”
- /d40‘(f1 x f2)(Q, ) e " (42)
NS ARt 7
€z(&)

Repeating the process we can obtain a general expression for the twisted

convolution:

£1(@) -+ fula) = / dalfy x - x [)(Q a)e ot (43)

16



Integrals

[ #ar@a = [ r@ 2). (44)
/d4q F(Q,q) := /d4a: F(Q,x). (45)

/dt /qO_t dqF(Q,q) = /d4q F(Q,q). (46)

17



Using the twisted convolution, we can express both types of integration
by means of integral kernels:

fl(q)"'fn(q) = /d4x1---d4xnf1(x1)---fn(:rn)Cn(xl—x,...mn—x)
(47)
D (X1, X2y ... Ty t) 1= /d?’f Cpn((z1—z,...,2y — x)) (48)

0—¢

Non-locality from space integration

/d3q f1(q) -+ falq) =

0—¢

:/d4x1~-~d4xn9n(x1,...,xn;t)f1($1)"'fn(33n) (49)

18



Renormalization




Renormalization

Causality and the origin of UV
divergences



Dyson series

S = i (_ni!)n /dt1 /dtg---/dtnT(f/(tl)--V(tn))

o T(A(t1)A(t2)) = 0(t1 — t2) A(t1)A(ta) + 0(ta — t1) A(ta) A(t1)
e Non-relativistic QM: ok

QFT: V(t) = — [ BxLint(p(z), 00 ())

Problem: multiplication of distributions

19



Multiplication of distributions

Example

20



Multiplication of distributions

Example

o f(k) = [ f(z)e **da
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Multiplication of distributions

Example
o f(k) = [ f(z)e **da
o fxg(z)=[dyf(y)g(z —y)
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Multiplication of distributions

Example
o f(k) = [ f(z)e **da
o fxg(z)=[dyf(y)g(z —y)

o (foy=(2m) " fxg
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Multiplication of distributions

Example
— [ f@)e *eda
o [rgl@)=[dyfmg=—y)
o (foy=@m) " fxg
o O(k) = [dad(z)e** =1

20



Multiplication of distributions

Example
= [ f(@)e*dx
o fxg(z)=[dyf(y)g(z —y)
o (fgy=0m)"fxg
o O(k) = [dad(z)e** =1

o O(k) = lim_, [ O(z)e o~ rdy = — 1
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Multiplication of distributions

Example
= [ f(@)e*dx
o frg(x)=[dyf(y)g(z —y)
o (fgy=0m)"fxg
o O(k) = [dad(z)e** =1
o O(k) =lim,_,o [ O(x)e oo dy = — L

k—ie
o (“007)(k) = (2m) 718 % (k) = 5

20



Introduce switching functions:
Z /dtl/dtQ /dtT
p
n=0

Causality condition

g1 < g2 = S(g1+92)

V() g(t

= 5(92)5(91>

21



Generalization: Epstein-Glaser

Scattering matrix as operator valued distribution
= 1
S(g) - Z% E/dtl /dt2 o '/dtnTn(tla 000 7t’rb)g(t1) o 'g(tn)
Basic principles: COVARIANCE, CAUSALITY, UNITARITY

Causality condition, perturbatively:

{tl,...,tm} > {ﬁm+1,...,tn}:>

Tn(tla ce. 7tn) - Tm(tla ce 7tm)Tn—m(tm+17 ce. 7tn)

22



Example: QM

Define:
Ay(tit2) = —Ti(t)Th(ta),
Ry(t1,t2) = —Ti(t2)Ti(tr),
As(ti,t2) = As(ti,ta) + Ta(ts, ta),
Ro(ty,ta) = RL(ty,ta) + To(ty,ta).

Using the causality condition, we obtain:

t1 >ty = Ag(tl,tg) =

0,
t1 <ty = Rg(tl,tg):()

23



As y Ry: unknown, but with known support. A% y Rf: known.
Furthermore,
D2 2=R2—A2 ERIQ—Aé

Then, if t; > tq, A3 = 0, so that

Ry(t1,t2) = Ra(ti,t2) — 0= Da(t1,t2)
= Ré(ﬁl,tg) — Alz(tl,tg) = T1 (tl)Tl(tg) — Tl(tQ)Tl (tl)

On the other hand, if ¢; < ta, then Ry = 0. It follows that

RQ(t17 tQ) = 0(t1 — tg) (T1 (t1)T1 (tg) -1 (t2)T1 (t1)> .

24



From Ry we can now obtain T5, this leding to

To(t1,t2) = Ra(t1,ta) — Ro(t1,t2) = Ra(t1,te) + Ti(ta)T1(t1)
= 0t t2)( (t1)T1(t2) — Ti( tQ)Tl(t1)> + T (ta) Ty (t1)
= O(ty —t2)T1(t1)T1(t2) + (1 — O(ty — t2)) T (t2)T1(t1)
- 7(n@nie).

25



Renormalization

BPHZ vs. Dim.Reg.



1-loop contribution to 4-point function in ®* theory:

Dimensional regularization:

JF(p) B 92(u2)4—D / de 1 1
2 @2m)P ((p—k)2—m?2+i0T) (k2 —m2 +i07)
_ Z'g2,u/4_DF 2_2 /1 dz 47T,lt2 27D/2
3272 2/ Jo m? — p2z(1 — 2)
=

. 9 1 §
im.reg Zg 47TILL
T ) = 55 {_WE +/0 detn (M)]

26



1-loop contribution to 4-point function in ®* theory:

BPHZ:

27



2-loop contribution to 4-point function in ®* theory:

28



2-loop contribution to 4-point function in ®* theory:

b @

F= {07 {F}/ {71}7 {72}7 {’73}7 {Fv')/l}’ {F7’Y2}> {F773}}

29



3
Rr(p,k,q) = (1- t;%)SF <1 - Ztlo)"fi, Sﬁm) Ir(p, k, q)
i=1
1 1 1
= (1—-1¢2
( tp)((p—k—q)2—m2k2—m2q2—m2
1 1 1 1

Z—m22@2—m? [ —m2]2 k% — m?

- 1 1 )
(b —k— a7 —m? [(Ag— ah)? —m?2 )

30



Original, divergent integral: Ji#(p) = [ dk Ir(k,p).

Regularized expression (BPHZ): Jr(p) = [d*kd*q Rr(p, k,q)

Result:

2(1 — 2)(1 — z) + 2]m? > ‘

31



QFT on DFR spacetime

Scalar quantum field on quantum spacetime

Qs() _ # dSE(eiQLAkM(@ =L iq“k“® 1')
) = G | 28, a; + et ®ag),

fj — c%]@]:qs

32



Renormalization

Taylor subtraction for QFT on DFR
spacetime



BPHZ and noncommutative QFT

> The breakdown of (Poincaré) covariance/causality/locality at the
Planck scale is a common feature of QFT most models on

noncommutative spacetimes.

>> Given the strong implications of covariance and causality for
perturbative renormalization (Epstein-Glaser, BPHZ), one is naturally led
to question whether direct application of, say, Zimmermann's forest
formula, is justified from a physical point of view.

> Previous work by Blaschke, Garschall, Gieres, Heindl, Schweda and
Wohlgenannt (2013) show that straightforward application of the Taylor
subtraction operator in scalar QFT based on Moyal product (Euclidean
signature) does not work, due to UV/IR mixing.

> In contrast, our calculations appear to suggest that in the original
version of scalar QFT on DRF quantum spacetime the Taylor subtraction
works, and leads to the correct large scale limit.
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Examples




Examples

Fish diagram



2nd order 2-point function (®3)

Ir(k) Ap =0

34



2nd order 2-point function (®3)

Ir (k) Ap set at my-scale

||



2nd order 2-point function (®3)

Jr(p) = [ dk Ir(k, p)

" " " " " =25
00 02 0.4 06 08 o A(1077m)
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Large scale limit

Jr
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Examples

Sunrise diagram



2nd order 2-point function ($*)

Sunrise diagram



Large scale limit

Jr

—i9 —i8 =17 -16 —-15

loglo AP 39



Large scale limit, different masses

Jr

logo Ap
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Final remarks
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Final remarks

> The quantum spacetime model of Doplicher, Fredenhagen and Roberts
is a well-defined, conceptually appealing model, which is fully Poincaré
covariant.
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Final remarks

> The quantum spacetime model of Doplicher, Fredenhagen and Roberts
is a well-defined, conceptually appealing model, which is fully Poincaré
covariant.

> Upon application of localization states ( “partial trace over quantum
spacetime degrees of freedom”) we obtain non-nonlocal field theory
models.

>> Although the Feynman integrals for quantum fields on DFR spacetime
can be finite, the correct large scale limit requires renormalization.

> Taylor subtraction following BPHZ in commutative cn be applied to
DFR spacetime. This talk: explicit (numerical) computations.

>> Rigorous approach to renormalization: see next talk by G. Morsella!
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