Minimally Twisting Spectral Triples to go beyond standard model

Devashish Singh, Pierre Martinetti

Dipartimento di Matematica Università degli Studi di Genova, Italia

"International Conference on Noncommutative Geometry: Physical and Mathematical Aspects of Quantum Space-Time and Matter" 27-30 November, 2018

ション ふゆ マ キャット しょう くしゃ

Minimal twist of a closed Riemannian manifold

- the flat case
- the curved case

Minimal twist of the two-point space of electrodynamics

ション ふゆ く は く は く む く む く し く

- the non-twisted case
- the twisted case

The fermionic action of a twisted spectral triple

- generalities
- in case of the two-point space

Almost commutative geometry

An almost commutative geometry $M \times F$ is the product spectral triple of a canonical triple with a finite spectral triple (A_F, H_F, D_F) , given by

$$(\mathcal{A} = C^{\infty}(M) \otimes A_F, \mathcal{H} = L^2(S, M) \otimes H_F, D = \mathcal{A} \otimes \mathbb{I}_F + \gamma_M \otimes D_F).$$

- ▶ For standard model, we set $A_F = A_{SM} := \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$, which acts on the Hilbert space $H_F = \mathbb{C}^{96}$ of elementary fermions.
- ▶ D_F is a 96 × 96 matrix, acting on H_F , with its entries being masses of elementary fermions, CKM matrix, and neutrino mixing parameters.
- ▶ Further, J_M , J_F , and $J := J_M \otimes J_F$, respectively, denote the real structures on the Hilbert spaces $L^2(S, M)$, H_F , and \mathcal{H} .
- And similarly, γ_M , γ_F , and $\gamma := \gamma_M \otimes \gamma_F$, respectively, denote the gradings on these Hilbert spaces.
- ▶ Fermionic fields are the (Grassmannian) elements of the Hilbert subspace

$$\mathcal{H}^+ := \{ \psi \mid \gamma \psi = \psi, \ \psi \in \mathcal{H} \}.$$

▶ Bosonic fields arise as a connection 1-form ω , obtained via fluctuations of the metric given by $D \rightarrow D_{\omega} := D + \omega + J\omega J^{-1}$, where the generalized 1-form is

$$\omega = \omega^* \in \Omega_D^1(\mathcal{A}) := \{ \sum_j a_j [D, b_j] : a_j, b_j \in \mathcal{A} \}.$$

▶ Particularly, for an almost commutative geometry, it takes the form

$$\omega = \gamma_M \otimes \phi + \gamma^\mu \otimes A_\mu$$
, and $D_\omega = \partial \otimes \mathbb{I}_F + \gamma^\mu \otimes B_\mu + \gamma^5 \otimes \Phi$,

where $\phi \in A_F$ is a scalar field on M and the 1-form $A_{\mu} \in \mathfrak{u}(A_F)$ are the gauge fields. Further, we define

$$B_{\mu} := \mathsf{ad}(A_{\mu}) = A_{\mu} - J_F A_{\mu} J_F^{-1}$$
 and $\Phi := D_F + \phi + J_F \phi J_F^{-1}$.

The spectral action is a functional of the gauge field, given by

$$S[\omega] := \operatorname{Tr} f\left(\frac{D_{\omega}}{\Lambda}\right),$$

where f is a smooth approximation of the characteristic function of the interval [0, 1] and Λ is a real cutoff parameter.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Twisting the geometry to build models beyond SM

- ▶ **Remarks:** The Higgs mass problem, vacuum instability, the desert hypothesis, and extending the Standard Model...
- ► Twist was introduced by Connes and Moscovici (2008),¹ for purely mathematical reasons, before the detection of Higgs (2012).
- One replaces the boundedness of the commutator [D, a] with the boundedness of the twisted commutator, for some $\rho \in Aut(\mathcal{A})$,

$$[D,a]_{\rho} := Da - \rho(a)D, \quad (\forall a \in \mathcal{A}).$$

▶ For an almost commutative geometry, the *twisted fluctuation*,

$$D \to D_{\rho} := D + \omega_{\rho} + J \omega_{\rho} J^{-1},$$

generates a vector field X_{μ} and a scalar field σ .

• The interpretation of X_{μ} is yet to be understood well. σ cures the Higgs mass problem for NCG, and is also anticipated by particle physicists to resolve the vacuum instability of Higgs.

¹A. Connes and H. Moscovici, *Type III and spectral triples*, Traces in number theory, geo. and quantum fields, Aspects Math. E38 (2008), no. Friedt. Vieweg, Wiesbaden, 57-71.

Other approaches:

- ▶ T. Brzezinski, N. Ciccoli, L. Dabrowski, and A. Sitarz, *Twisted reality* condition for Dirac operators, Math. Phys. Anal. Geo. (2016) 19.
- A.H. Chamseddine, A. Connes, W.D. van Suijlekom. Inner fluctuations in noncommutative geometry without first order condition. J. Geom. Phy. 73 (2013) 222?234.
- A. H. Chamseddine, A. Connes, W.D. van Suijlekom, Beyond the spectral standard model: emergence of Pati-Salam unification. JHEP 11 (2013) 132.

ション ふゆ マ キャット しょう くしゃ

Minimal twist of a closed Riemannian manifold²

Minimal twist

A minimal twist of a given spectral triple $(\mathcal{A}, \mathcal{H}, D)$ by a unital C^* -algebra \mathcal{B} is a twisted spectral triple $(\mathcal{A} \otimes \mathcal{B}, \mathcal{H}, D)_{\rho}$ with $\rho \in \operatorname{Aut}(\mathcal{A} \otimes \mathcal{B})$ such that $\pi(a \otimes \mathbb{I}_{\mathcal{B}}) = \pi_0(a), \forall a \in \mathcal{A}$, where π and π_0 denote the representations for $(\mathcal{A} \otimes \mathcal{B}, \mathcal{H}, D)_{\rho}$ and $(\mathcal{A}, \mathcal{H}, D)$, respectively.

Minimal twist by grading

Given a graded spectral triple $(\mathcal{A}, \mathcal{H}, D; \gamma)$, one can decompose its Hilbert space into eigenspaces of the grading $\gamma: \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$, and furnish a representation for the algebra $\mathcal{A} \otimes \mathbb{C}^2 \ni (a, a')$ on \mathcal{H} given by

$$\pi(a,a') := p_{+}\pi_{0}(a) + p_{-}\pi_{0}(a') = \begin{pmatrix} \pi_{+}(a) & 0\\ 0 & \pi_{-}(a') \end{pmatrix},$$

where $p_{\pm} := \frac{1}{2}(\mathbb{I} \pm \gamma)$ denote the projections on the eigenspaces of γ , and $\pi_{\pm}(a) := p_{\pm}\pi_0(a)|_{\mathcal{H}_{\pm}}$ denote the restrictions on \mathcal{H}_{\pm} of the initial representation π_0 of \mathcal{A} on \mathcal{H} .

* The term 'minimal' refers to the fact that fermionic structure of the theory is untouched.

²[Landi, Martinetti] On twisting real spectral triples by algebra automorphisms (2016), Gauge transformations for twisted spectral triples (2017) $\rightarrow 4$ $\Rightarrow 4$ $\Rightarrow 5$ $\Rightarrow 5$ $\Rightarrow 5$ $\Rightarrow 5$

The case of a flat Riemannian manifold³

$$\pi(f,g) = \begin{pmatrix} f \mathbb{I}_{2^{m-1}} & 0 \\ 0 & g \mathbb{I}_{2^{m-1}} \end{pmatrix}, \quad \pi(\rho(f,g)) = \begin{pmatrix} g \mathbb{I}_{2^{m-1}} & 0 \\ 0 & f \mathbb{I}_{2^{m-1}} \end{pmatrix}.$$

▶ The twisted 1-form ω_{ρ} , given by $\sum_{j} a_{j}[\partial, b_{j}]_{\rho}$, is of the form:

$$\omega_{\rho} := -i\gamma^{\mu} Z_{\mu}, \quad \text{where} \quad Z_{\mu} := \begin{pmatrix} f' \partial_{\mu} g \mathbb{I}_2 & 0_2 \\ 0_2 & f \partial_{\mu} g' \mathbb{I}_2 \end{pmatrix},$$

for some $(f, f'), (g, g') \in C^{\infty}(M) \otimes \mathbb{C}^2$. The *self-adjoint* twisted fluctuation of the free Dirac operator \mathcal{J} associated to the commutative manifold M, is parametrized by a vector field $f_{\mu} \in C^{\infty}(M, \mathbb{R})$ as

where $X := -i\gamma^{\mu}X_{\mu}$ with $X_{\mu} = f_{\mu}\gamma^{5}$.

³[Devastato, Martinetti] Twisted spectral triple for the Standard Model and spontaneous breaking of the Grand Symmetry (2014).

Theorem (Gilkey's theorem⁴)

Given a differential operator P, acting on sections of a vector bundle V on a compact Riemannian manifold M of dimension m with metric g, with leading symbol given by the metric tensor. Thus, locally one has

$$P = -(g^{\mu\nu}I\partial_{\mu}\partial_{\nu} + A^{\mu}\partial_{\mu} + B),$$

where $g^{\mu\nu}$ plays the role of the inverse metric, I is the identity matrix, and A_{μ} and B are endomorphisms of the bundle V. It can be uniquely written in the form

$$P = \nabla^* \nabla - E$$

where ∇ is a connection on V, with $\nabla^* \nabla$ the connection Laplacian, and E is an endomorphism of V. Let $\Gamma^{\rho}_{\mu\nu}$ be the Christoffel symbols of the Levi-Civita connection of the metric g.

We set $\Gamma^{\rho} := g^{\mu\nu}\Gamma^{\rho}_{\mu\nu}$. The explicit formulae for the connection ∇ and the endomorphism E are then of the form

$$\nabla_{\mu} = \partial_{\mu} + \omega'_{\mu}, \quad \omega'_{\mu} = \frac{1}{2} g_{\mu\nu} (A^{\mu} + \Gamma^{\nu} \cdot \mathrm{id}),$$

with id the identity endomorphism of V, and

$$E = B - g^{\mu\nu} (\partial_{\mu}\omega'_{\nu} + \omega'_{\mu}\omega'_{\nu} - \Gamma^{\rho}_{\mu\nu}\omega'_{\rho}).$$

⁴P. Gilkey, Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem (1984).

The case of a curved Riemannian manifold

- The free Dirac operator is $\partial^{S} = -i\gamma^{\mu}\nabla^{S}_{\mu}$, where $\nabla^{S}_{\mu} = \partial_{\mu} + \omega^{S}_{\mu}$.
- Its twisted fluctuation is $\partial^X = -i\gamma^{\mu}\nabla^X_{\mu}$, where $\nabla^X_{\mu} = \partial_{\mu} + \omega^X_{\mu}$ and $\omega^X_{\mu} := \omega^S_{\mu} + X_{\mu}$, with $X_{\mu} = f_{\mu}\gamma^5$ for some $f_{\mu} \in C^{\infty}(M)$.

$$(\not{\!\!\partial}^X)^2 = -(g^{\mu\nu}\partial_\mu\partial_\nu + \alpha^\mu\partial_\mu + \beta),$$

where $\alpha^\mu = \{i\not{\!\!X}, \gamma^\mu\} + 2g^{\mu\nu}\omega^S_\nu - \Gamma^\mu$ and $\beta = -\not{\!\!\partial}\psi^X - (\psi^X)^2.$

$$E = \beta - (g^{\mu\nu}\nabla_{\mu} - \Gamma^{\nu})\omega_{\nu},$$

where $\nabla_{\mu} = \partial_{\mu} + \omega_{\mu}$ and

• Denoting $\Delta_{\mu} := X_{\mu} - \rho(X_{\mu})$, one has

$$\omega_{\mu} = \omega_{\mu}^{X} - \frac{1}{2} \gamma^{\lambda} \gamma_{\mu} \Delta_{\lambda} \quad \Leftrightarrow \quad \psi = \psi^{X} + A.$$

$$E = \frac{1}{2} \gamma^{\mu} \gamma^{\nu} \left(F_{\mu\nu}^{X} + \mathcal{D}_{\nu}^{X} \Delta_{\mu}^{X} + \Delta_{\mu} \Delta_{\nu} \right) - \frac{1}{2} \Gamma^{\mu} \Delta_{\mu},$$

where $F_{\mu\nu}^{X} = \nabla_{\mu}^{X} \omega_{\nu}^{X} - \nabla_{\nu}^{X} \omega_{\mu}^{X}$ and $\mathcal{D}_{\mu}^{X} = \partial_{\mu} + [\omega_{\mu}^{X}, \cdot].$

U(1)-gauge theory from the two-point space⁵

The simplest nontrivial example of an almost commutative geometry is the two-point space, which describes the U(1)-gauge theory of electrodynamics,

$$M \times F_{ED} := \left(C^{\infty}(M) \otimes \mathbb{C}^2, L^2(S, M) \otimes \mathbb{C}^4, \not \! \partial \otimes \mathbb{I}_4 + \gamma^5 \otimes D_F \right),$$

where $A_F = \mathbb{C}^2$, $H_F = \mathbb{C}^4 = \text{Span}\{e_L, \bar{e}_R, \bar{e}_L, e_R\}$, and

$$D_F = \begin{pmatrix} \begin{smallmatrix} 0 & d & 0 & 0 \\ \bar{d} & 0 & 0 & 0 \\ 0 & 0 & d & \bar{d} \\ 0 & 0 & d & 0 \end{pmatrix}, \quad J_F = \begin{pmatrix} \begin{smallmatrix} 0_2 & \mathbb{I}_2 \\ \mathbb{I}_2 & 0_2 \end{pmatrix} cc, \quad \gamma_F = \begin{pmatrix} \begin{smallmatrix} \mathbb{I}_2 & 0_2 \\ 0_2 & -\mathbb{I}_2 \end{pmatrix}.$$

The algebra act via the representation

$$\pi_0(f,g) = \begin{pmatrix} \pi_M(f)\mathbb{I}_2 & 0_2\\ 0_2 & \pi_M(g)\mathbb{I}_2 \end{pmatrix}, \quad \forall f,g \in C^\infty(M),$$

with $(\pi_M(f)\psi)(x) = f(x)\psi(x), \forall \psi \in L^2(S, M)$. And, the fluctuation of the metric gives

$$D_{\omega} = D + \gamma^{\mu} Y_{\mu} \otimes \gamma_F$$
, where $Y_{\mu} \in C^{\infty}(M, \mathbb{R})$.

⁵K. van den Dungen, W. van Suijlekom. *Electrodynamics from Noncommutative Geometry*, (2011).

Minimal twist of the 2-point space

►
$$\mathcal{A} = C^{\infty}(M) \otimes \mathbb{C}^2 = C^{\infty}(M) \oplus C^{\infty}(M)$$
, and the grading is

$$\gamma^5 \otimes \gamma_F = \begin{pmatrix} \mathbb{I}_2 & 0_2 \\ 0_2 & -\mathbb{I}_2 \end{pmatrix} \otimes \begin{pmatrix} \mathbb{I}_2 & 0_2 \\ 0_2 & -\mathbb{I}_2 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \mathbb{I}_2 & 0_2 \\ 0_2 & -\mathbb{I}_2 \end{pmatrix} \otimes \mathbb{I}_2 & 0_8 \\ 0_8 & \begin{pmatrix} -\mathbb{I}_2 & 0_2 \\ 0_2 & \mathbb{I}_2 \end{pmatrix} \otimes \mathbb{I}_2 \end{pmatrix}$$

▶ The representation of minimal twist $\mathcal{A} \otimes \mathbb{C}^2 \ni (a, a')$ on \mathcal{H} is given by

$$\pi(a,a') = \begin{pmatrix} {}^{f\mathbb{I}_2 & 0_2}_{0_2 f'\mathbb{I}_2} \rangle_{\otimes \mathbb{I}_2} & 0_8 \\ 0_8 & {}^{g'\mathbb{I}_2 & 0_2}_{0_2 g\mathbb{I}_2} \rangle_{\otimes \mathbb{I}_2} \end{pmatrix} = {}^{\pi_0(f,f') \otimes \mathbb{I}_2 & 0_8 \\ 0_8 & \pi_0(g',g) \otimes \mathbb{I}_2} \end{pmatrix}.$$

▶ The free part. The self-adjoint twisted inner fluctuation of $\partial \otimes \mathbb{I}_4$ of $M \times F_{ED}$ is of the form

$$\omega_M + J\omega_M J^{-1} = \gamma^\mu Y_\mu \otimes \gamma_F - i\gamma^\mu X_\mu \otimes \mathbb{I}_4,$$

parametrized by two real fields $Y_{\mu}, X_{\mu} \in C^{\infty}(M, \mathbb{R})$ defined as $Y_{\mu} := \Im(z_{\mu}), X_{\mu} := \Re(z_{\mu})\gamma^{5}$, for some $z_{\mu} \in C^{\infty}(M, \mathbb{C})$.

▶ The finite part Self-adjoint $\omega_F + J\omega_F J^{-1}$ is of the form $\phi \otimes D_F$, where

$$\phi = \begin{pmatrix} \varphi_1 \mathbb{I}_2 & 0_2 \\ 0_2 & \varphi_2 \mathbb{I}_2 \end{pmatrix}, \text{ for some } \varphi_1, \varphi_2 \in C^{\infty}(M, \mathbb{R}).$$

うして ふゆう ふほう ふほう ふしつ

The fermionic $action^6$

► For the unitary $R = \gamma_E^0 \otimes \mathbb{I}_4 \in \mathcal{B}(\mathcal{H})$ implementing the twist ρ on $\mathcal{H} = L^2(M, S) \otimes \mathbb{C}^4$, a generic vector $\xi \in \mathcal{H}_R := \{\psi \in \mathsf{Dom}(D) : R\psi = \psi\}$ is of the form

$$\xi = \psi_1 \otimes e_L + \psi_2 \otimes \bar{e}_R + \psi_3 \otimes \bar{e}_L + \psi_4 \otimes e_R,$$

where $\psi_k \in L^2(M, S)$ is a four-component Dirac spinor of the form $\psi_k = \begin{pmatrix} u_k \\ u_k \end{pmatrix}$ with a two-component Weyl spinor $u_k \in L^2(M, S)^{\pm}$ and $\{e_L, \bar{e}_R, \bar{e}_L, e_R\}$ is the orthonormal basis for the finite dimensional Hilbert space $\mathcal{H}_F = \mathbb{C}^4$.

► We restrict the fermionic action S^F to the Hilbert subspace \mathcal{H}_R , on which the bilinear form $(J\psi, D\phi)_{\rho}$ is necessarily anti-symmetric. We notice that

$$(J\psi, D\phi)_{\rho} := (J\psi, RD\phi) = (R^{\dagger}J\psi, D\phi) = \epsilon^{\prime\prime\prime}(JR^{\dagger}\psi, D\phi) = \epsilon^{\prime\prime\prime}(J\psi, D\phi).$$

Thus, $(J\xi, D\xi)_{\rho}$ differs from $(J\xi, D\xi)$ by a sign factor of ϵ''' .

⁶[Devastato, Fransworth, Lizzi, Martinetti] Lorentz signature and twisted spectral triples (2018).

▶ One has

• The fermionic action S^F of the minimally twisted two-point space of electrodynamics is given by

$$S^{F} = \frac{1}{4} \langle J\tilde{\xi}, D_{\rho}\tilde{\xi} \rangle = \bar{u}_{1}^{\dagger}\sigma_{2} \left(\sigma_{j}\partial_{j} - if_{0}\mathbb{I}_{2}\right) u_{3} + \bar{u}_{2}^{\dagger}\sigma_{2} \left(\sigma_{j}\partial_{j} - if_{0}\mathbb{I}_{2}\right) u_{4} - \left(1 + \frac{\varphi_{1} - \varphi_{2}}{2}\right) \left(\bar{d}\bar{u}_{1}^{\dagger}\sigma_{2}u_{4} + d\bar{u}_{2}^{\dagger}\sigma_{2}u_{3}\right).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Comparing S^F with the Dirac Lagrangian (in Minkowski spacetime),

$$\mathcal{L}_M = i\Psi_L^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\Psi_L + i\Psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\Psi_R - m(\Psi_L^{\dagger}\Psi_R + \Psi_R^{\dagger}\Psi_L),$$

and identifying the spinors as

$$i\Psi_L^{\dagger} = \bar{u}_1^{\dagger}\sigma_2, \quad \Psi_L = u_3, \quad i\Psi_R^{\dagger} = \bar{u}_2^{\dagger}\sigma_2, \quad \Psi_R = -u_4$$

that is $\Psi = \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix} = \begin{pmatrix} u_3 \\ -u_4 \end{pmatrix}$, and $\Psi^{\dagger} = (\Psi_L^{\dagger}, \Psi_R^{\dagger}) = -i(\bar{u}_1^{\dagger}\sigma_2, \bar{u}_2^{\dagger}\sigma_2)$, such identification gives us the following constraint:

$$\partial_0 \Psi = \partial_0 \left(\begin{smallmatrix} \Psi_L \\ \Psi_R \end{smallmatrix} \right) = -if_0 \left(\begin{smallmatrix} u_3 \\ u_4 \end{smallmatrix} \right) = -if_0 \left(\begin{smallmatrix} \Psi_L \\ -\Psi_R \end{smallmatrix} \right) = -if_0 \gamma_M^0 \Psi,$$

which is nothing but the Dirac equation for a free spin-1/2 particle at rest: $\partial_t \Psi = -i(E/\hbar)\gamma_M^0 \Psi$, where $f_0 = E/\hbar$, and, the solution is

$$\Psi(t) = \begin{pmatrix} \psi_L(0)e^{-iEt/\hbar} \\ \psi_R(0)e^{+iEt/\hbar} \end{pmatrix}.$$

Further, if we set d := -ik for some $k \in \mathbb{R}$, then the mass term is

$$m = k(1 + \frac{\varphi_1 - \varphi_2}{2}).$$

◆□▶ ◆圖▶ ◆目▶ ◆目▶ 目 のへで

Conclusions:

- ► The twisted fluctuation of a 4D-manifold parametrized by a real vector field $X_{\mu} = f_{\mu}\gamma^5$ is a purely geometric quantity.
- ► In case of a curved background, it couples with the curvature via the Christoffel symbols, i.e. $\Gamma^{\mu}(X_{\mu} \rho(X_{\mu}))$.
- ▶ Starting with a Riemannian twisted spectral triple, requiring that the fermionic action obey twisted gauge transformations, one ends up naturally with a fermionic action that is Lorentzian.

うして ふゆう ふほう ふほう ふしつ

THANKS FOR YOUR TIME AND ATTENTION!