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Types of spaces to be considered :

(1) Fuzzy sphere ($2) : [%i, %] = iNejuKe
(2 )Moyal Plane (R?): [%1, %] = i6

(3)Doubled Moyal Plane



For either kind of spaces ($2,R?) we look for an auxiliary
Hilbert space H. furnishing a representation of just the
coordinate algebra.

Then introduce H,, the so called 'Quantum Hilbert space’,as
the space of Hilbert- Schmidt operators 1(%;) acting on H.
having finite Hilbert-Schmidt norm:

() [1.s = /tr(@F (%) (%)) < oo;
(10, ¢) = tr(¢')




We identify A = H, = span {|.)(.|} — a =
algebra and
H = H.® C?> — The Hilbert space of "spinors”

They are the two of the three ingredients to

construct the respective spectral triples (A, D, H).
The second one is the Dirac operator.



The Dirac operator for R?

Here H.=Span{|n) := %|0>}; b= )Aq;\/% satisfying
[b,b] =1

Start with Non-commutative Heisenberg algebra (NCHA)

[Xi, Xi] = i0ej; [Xi, Pjl = idy; [P, Pj] =0

With the actions Xji(%) = 2(%); Prp(%) = Ley[&, v (%)]
B (0 P—iP

Then DM—01P1+02P2— <P1—|—IP2 0 ) acts on

¢ = (’¢1)) € Hy ® C?, by default
|¢2)

— [Dw, 7(a)]® = \/gl <(3'B ’§T> ,ﬂ(a)] ®



Spectral triple of Moyal plane

Thus one identifies

Do _ 2 (0 ib"\ so@,  [2 (0 b
M=Vo\-ib o “Vel\b o

This can also act on H. ® C? from the left so that finally one
has the spectral triple

2 bt
A=Hg H=H®C% DM:\/;<2 O> (1)

Pure states that we shall consider are
L. pm:=|m)(m|, m=0,1,2... harmonic oscillator states
2. p,i=|z)(z| = |z), z€ C

Eigen-spinors of Dy,

o= () mre = (L) )i m=1.230 @




Eigen-value equation of D :
Dlm))y = AE|m)) 1 AE ==£4/2", m=0,1,2,...
along-with orthogonality : 4+ ((m|n))+ = dmn; +((m|n))+ =0

as well as completeness relation

0|+Z( o+ (ml + [m)— —((m]) = Tyeme) (3)

We can introduce a projection operator:

N
Py =001+ 3 e sliol = (50 ) e Homms()
n=1,+
(@)

N
where Py = Y~ |m)(m| € Hq

m=o



Spectral triple of fuzzy sphere ($2)

Coordinate algebra : [X;, %] = ideuRe ; 1,j,k=1,2,3.

>ﬁ<’2|n, m) = r2|n, n3) = An(n + 1)|n, ns);
K3|n, n3) = Ans|n, n3)

Auxiliary space for the entire R3;

He = @HE") ; H(C") = Span{|n,n3) | nis fixed, —n < n3 < n}

n

Quantum Hilbert space for the fuzzy sphere of radius r,:

Hq = @7—[ n) = Span{|n, n3){n, ns| | n fixed, —n < n3, n§ < n}

Spectral triple is A = ’HE,”); H=H" o D= rij



Eigen-spinors:

In,n3))+ = f(n,n3)|n, n3) ® <01) +g(n,n3)|n,n3+1)® (10> ,

1 0
n )= —gln. ) nms) @ () + i) im0 (1)
where f(n, n3) = 4/ ";r:flrl, g(n,n3) = /3.3
o )\ﬁ3 = % , —n—1<n3<n, yielding (2n+2)-fold degeneracy

(n+1)

rn

° N\, =- , —n<ny <n-—1, yielding 2n-fold degeneracy.
3



Perelemov coherent state

2) = 5 |n,n) (9 =0)

|z| = tan (g) is stereographically projected coordinate.



Connes spectral distance

d(wr,w2) = sup wi(a) —wa(a)); B={ae A:|[D,7(a)]]lop <1}

Also |w(a) — /()] = [Tr((pw — pur)a)l = [(Bp, a)|; Bp € Hg = A

» We take w,w’ to be normal states, so that they can be
represented by density matrices w — p,,

» Let Vo ={aec A: ||[D,n(a)]||op = 0}, then
w(a) —w'(a) =0,V ae V, (certain irreducibility
condition)

» The optimal element a; should attain the supremum
value:

d(w,w) = |w(as) = w'(as)l; I[P, 7(as)]llop = 1



Towards an algorithm to compute finite distances

Basic ldea:-
Start with the Ball condition ||[D, 7 (a)]||op <1

1 . A _
Then |[allus < mmEm, ¢ [1allks =1

= SUPaeB'HaHHS S % 7S = /nf:aeB’H[IDﬂr(é\)]Hopa

Here B’ = {a € A|0 < ||[D, 7(a)]||op < 1} C B (A dense
subset)
Now splitting 4 = cos#Ap + sindAp, ; (Ap, Kp,) =0,

we have A A
s < Infyepo.x)[|cosO| ||[D, (Ap)]|lop + [sind] [[[D, 7(Ap )]l op]



Towards an algorithm to compute finite distances

1
d(p,p N Ap N =
(02 = MIAPlis: N = 4o D ()] + . ATl
(5)
A lower bound is reached when a; oc Ap
2
A
d(p,p) > VIR ; where a; = P (6)

— P, 7r(Ap)]Ho,: ID; 7 (Ap)]lop

In the following we shall be computing distances between pure
states given by coherent states and the discrete states.



Distances on $2 (discrete basis)

Infinitesimal distance (In n representation): For p, := |n3)(ns]

dn(pn3+17 pn3) = SU’FB) ]tr(pn3+1a) - tr(p,,3a)\
ac

1S, alllop
~ /n(n+1)—n3(ns + 1)

I'n

<
V/n(n+1) — n3(n3 +1)

(By Bessels Inequality)

(By lI[Vx: alllop < ra)

. A
This is also the lower bound!  [D, x(dp)] = ,1n< ama )
(— (n+1) — n3(n3 — 1) 0 0
A= 0 2¢/n(n+1) — n3(n3 +1) 0
=

0 0 —+/n(n+1) n3 + 1)(n3 + 2))




= D, 7(dp)lllop = 2 +/n(n+1) — n3(ns +1).
Further Tr(dp)® = 2, which yields

Ay/n(n+1)

dp(Whaa1,Wn,) = ) 7
( 3+1 3) \/n(n+1)_n3(n3+1) ( )
Finite distance (m3 — n3 > 2):
dn(Wimy, Wny) = sup |tr(pnska) — tr(pn,@)| ; where k = m3 — n3
aeB
k
= sup Z tr ((pn3+i - ,0n3+(i—1))7 a)
aeB ']

< Ek: L

— /n(n+1) = (n3 +i)(n3 +i—1)




Again this upper bound is reached by

m3—1 /m3—p
a= > (; \/n(,,+1)_(p+,-)(p+;—1)|p><pl)

p=n3

Z\/nn+1 (m+)(n3+i—1)
(8)

yielding  dp(Wms,wn;) =

Here the triangle inequality is saturated as

dn(wm3>wn3) = dn(wm3>wl3) + dn(wl3>wn3) for nz < /3 < ms

In particular, d,(N,S) = d,(pn, p—n) = E \/m
Examples:
di/2(N,S) = rijo; h(N,S) = V2r1;d3)5(N,S) = ( 2\[) 372

Only in the limit n — oo one gets lim 9(N.5)

n—o0 n

=T



Distances on $2 (coherent state basis)

Upper bound of finite distance:
Introduce a one parameter family of pure states

po = 10)(6] = U(8)|n)(n|UL(0) € Ho s Up(8) =2 (9)
e In terms of stereographic variable z, p, = py;
o w,(a)=tr(p.a); al =aecH
o Define W(t) = wx(a) = tr (pza), with t € [0, 1] then

0| [ 50 |

The RHS is the geodesic distance of commutative sphere.
And 7 any a € A =H{" (for n-finite) saturating the upper
bound.

dW(t)
<nrf. (1
3 dt < 6. (10)




Towards an actual computation

Ball condition in eigen-spinor basis:

1 [ O@ni2)x(@nt2) | A@ni2)x2n
[Daﬂ—(a)] - ( _ AT : 0 : ; (11)
n 2nx(2n42) | “(2n)x(2n)

where Aopi2)x2n = (20 + 1)1 ((n, n3|m(a)|n, ns))_ with
—n—1<n3<nandn—1<nj <n—1. Rectangular null
matrices stem from the degeneracy of the spectrum. =

12,7 (@I, = 112, 7D, ()] fop = 5144 p =

n n

AT Alop.

Clearly, it is convenient to deal with ||AAT||,, as it is of lower
dimension (2n x 2n).



n= % fuzzy sphere

The algebra element can be taken to be element of su(2)
algebra. a =37 € su(2); 3€ R3. Here ATA is just a number.

2 r
I[D, 7(a)]llop = T/z\é] <l=lal < 17/2,a solid sphere

Take two states py = pp—o = (3) (1 0) = ((1) 8) ; and

po = U(9) <(1)> (1 0) UT(e):%(lfC"se sin 0 >

sinf 1 — cosf
0 _gin?
u() = (C.Osg s'”92)

sin 3 COS 3

Tr(Ap) =0. Thus Ap =

= Ap' = Ap = py — po € su(2);
Z_) Z_)p = 1(sin6,0, =f-1) € R3



Finally
dy(wn,00) = sup_[wp(a) —wol@)| = sup |Tr,(Apa)
A< L2 a<izt
= sup |23 Kp‘ and the supremum is reached when 3 Kp
BEES

6o
d1(we,, wo) = r1 \/(Ap) + (Ap)3 = risin — X , No role forAp,

A family of p; = (1 — t)po + tpe; 0 < t <1 of mixed states
can be thought of interpolating pg and py.

di/2(po, pe) = triyo Sln(g) and di/2(pe, po) = (1 — t)r 2 sm(%)
satisfying

d(p07 pt) + d(pt7 p9) = d(p07 p9) (12)



n = 1 fuzzy sphere

Here ||[D, 7(a)]|lop = rn‘/ | ATA]|op. Writing

M := ATA = <M11 Mz

with matrix entries
M5, Mzz) ’

M11 = 3|30,1|2 + 2(80’0 — 31,1)2 + |30,_1 — 23170|2 + 6|£-]1’_1|27
Moy = 3|ao 1| +2(a00 — a_1.-1)* + |aro — 2a0,_1]> + 6a1_1°,
M, = \/5[331,—1(30,1 +a_10) + (20,0 — a1.1)(2a0—1 — a1)
+ (a00 — a-1,-1)(2a1,0 — 30,—1)]
The two eigen-values are
E.=3 ((Mn + May) £ /(M1 — Mx)? + 4|M12|2>-
Clearly, E, > E_ V a € B which means
inf [0 7(a)]p =

min(E;); a= Ap+ Apy.

rl



e Writing a;, = Ap + Ap, € su(3)

with Ap = e2|1)(1]e=0% — |1)(1].
8
e We write Ap, = > ¢\ ; Mis are Gell-Mann matrices.
i=1
e But orthogonality condition (Ap, Ap,) = 0 leaves us with 7
independent parameters.

e On computation, the distances for various angles of 6 gives
the following table obtained numerically and compared with

di :=v2rsin(%))



Data set for various distances corresponding to different angles

Angle (degree)

dl*/rl

d1/l‘1

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

0.1232568334
0.2455756079
0.3660254038
0.4836895253
0.5976724775
0.7071067812
0.8111595753
0.9090389553
1
1.0833504408
1.1584559307
1.2247448714
1.2817127641
1.3289260488
1.3660254038
1.3927284806
1.4088320528

0.1232518539
0.2455736891
0.3660254011
0.4836894308
0.5976724773
0.7071067811
0.8111595752
0.9090389553
0.9999999998
1.0833504407
1.1584559306
1.2247448713
1.2817127640
1.3289260487
1.3660254037
1.3927284806
1.4088320527




Moyal plane R?

e Upper bound d(po, p;) < V20|z|; p, = |z)(z| is obtained by
considering a 1-parameter family of pure states

Pz = |zt)(zt|; 0 < t <1, interpolating po and p,.

e In contrast to fuzzy sphere, this upper bound is reached by
a; = \/g (be~™™ + bfe™) € Multiplier algebra.

e It's enough to show

d(po, paz) = V20| dz|(trans.inv.) (13)

by taking dp = |dz)(dz| — |0)(0] = dz|0)(1] + dz|1)(0].



By observing that w(dp) = (a(’)p c?p) is a 5D matrix spanned by
10)), 1))+, 12))+.

and ||[Duy, Py7(as)|Pullop = 1 with N > 2
the corresponding optimal element is obtained by the lower
bound itself

d(p, pl) Z ”APHZHS _ @|dz|
1[D. 7(Ap)]lop

See (13) above..



Distances on doubled Moyal plane

Spectral triple:
A1 = Hq@Mg(C),HT = (HC®C2)®C2,DT =DyR1r+03RD;.

Pure states: Q) = p, ® wjwy = <(1) 8) W2 = (0 O>.

01
e One can construct orthonormal eigen-spinors for D+ and

verify Pythagoras theorem, reproducing earlier results of
dy (Q(12)7Q22)> = Ik dy (QSZ)?QSO)> = dM(pZapO) =V 29’2‘

2

{dh(Po®w1,Pz®w2)}2 = {dt(/)o®w1,ﬂo®w2)} +{dl(ﬂo®w17pz®w1)}2



Restricted Spectral Triple

For (A, #H, D), the restricted spectral

(A2, HP) D)) = (o, (A), m(p)H, 7(p)Dr(p)) is obtained
by the self adjoint projector p?> = p = p* € A through the map
a, A=A, A>3 a— ay(a) = pap

Here 7(p) indicates that the domain of 7 is restricted to 7|4

Now Ve, ws € P(AW), dP)(wy,ws) = d(wy 0 a,, w0 ay,),
provided [D, m(p)] =0

This indicates that 7(p) should be built out of the eigen
spinors of D.



rans 0 O 0
P(Tt(o) ) Py, = | >0< | 0) ®1, € Ar
(long) L o PN 0 )
PT(i) (N) T II'DN b2y wj = ( 0 PN—I) X Wi
Here w; = 10 Wy = 00
mloo) o1
With the first one , we reproduce the spectral triple for 2-point
space:
rans rans 0 0 0
'D(Tt(o) )AT'D(Tt(o) = (‘ >0< | 0) ® Ms(C)
rans 0
Ps-t(o) )HT = |O> ® C?
LD P = By 0 D,

With the second one , likewise , we reproduce the spectral
triple for one of the Moyal planes in the limit N— oo.



Impact of Higgs field

Change the triplet T — T where
ﬁT = (Hq ® Mz(C)) (%9 Mg(@) ) ‘]3; ﬁT\TJ = DT\TJ 4 \T;DT

so that the Dirac operator can be fluctuated. This gives rise to
gauge fields, along with Higgs field D+ — Dt + H;

H= co3® ag[Dg, b2]; c=abe Hq (14)

If ¢ is such that [c, p,] = 0 this gives rise to variation in the
transverse distance.

1

AGaa) (15)

di(p, @ w, p; @ wy) =



References

The talk is based on following two publications:

(1) "Revisiting Connes' finite spectral distance on
Non-commutative spaces: Moyal plane and Fuzzy sphere” ,
Int.J.Geom.Meth.Mod.Phys., 15 (2018) 1850204
Yendrenbam Chaoba Devi, Kaushlendra Kumar, BC, Fredrik
G. Scholtz

(2)" Spectral distances on the doubled Moyal plane using Dirac
eigenspinors”, Phys.Rev.D 97,(2018) 086019
Kaushelendra Kumar, BC

THANK YOU



