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Types of spaces to be considered :

(1) Fuzzy sphere (S2
∗) : [x̂i , x̂j ] = iλεijk x̂k

(2 )Moyal Plane (R2
∗): [x̂1, x̂2] = iθ

(3)Doubled Moyal Plane



Basic Idea

For either kind of spaces (S2
∗,R

2
∗) we look for an auxiliary

Hilbert space Hc furnishing a representation of just the
coordinate algebra.

Then introduce Hq, the so called ’Quantum Hilbert space’,as
the space of Hilbert- Schmidt operators ψ(x̂i) acting on Hc

having finite Hilbert-Schmidt norm:

||ψ(x̂i)||H.S =
√
tr(ψ†(x̂i)ψ(x̂i)) <∞;

(ψ, φ) := tr(ψ†φ)



We identify A = Hq = span {|.〉〈.|} −→ a ∗
algebra and
H = Hc

⊗
C2 −→ The Hilbert space of ”spinors”

They are the two of the three ingredients to
construct the respective spectral triples (A,D,H).
The second one is the Dirac operator.



The Dirac operator for R2
∗

Here Hc=Span{|n〉 := (b†)n√
n!
|0〉}; b = x̂1+i x̂2√

2θ
satisfying

[b, b†] = 1

Start with Non-commutative Heisenberg algebra (NCHA)
[X̂i , X̂j ] = iθεij ; [X̂i , P̂j ] = iδij ; [P̂i , P̂j ] = 0

With the actions X̂iψ(x̂i) = x̂iψ(x̂i); P̂iψ(x̂i) = 1
θ
εij [x̂j , ψ(x̂i)]

Then DM = σ1P1 + σ2P2 =

(
0 P1 − iP2

P1 + iP2 0

)
acts on

Φ =

(
|φ1)
|φ2)

)
∈ Hq ⊗ C2, by default

⇒ [DM , π(a)]Φ =

√
2

θ

[(
0 i b̂†

−i b̂ 0

)
, π(a)

]
Φ



Spectral triple of Moyal plane

Thus one identifies

DM =

√
2

θ

(
0 i b̂†

−i b̂ 0

)
SO(2)−−−→=

√
2

θ

(
0 b̂†

b̂ 0

)
This can also act on Hc ⊗C2 from the left so that finally one

has the spectral triple

A = Hq; H = Hc ⊗ C2; DM =

√
2

θ

(
0 b̂†

b̂ 0

)
(1)

Pure states that we shall consider are

1. ρm := |m〉〈m|, m = 0, 1, 2... harmonic oscillator states

2. ρz := |z〉〈z | = |z), z ∈ C
Eigen-spinors of DM

|0〉〉 :=

(
|0〉
0

)
, |m〉〉± :=

1√
2

(
|m〉

± |m − 1〉

)
; m = 1, 2, 3, ... (2)



Continued...

Eigen-value equation of D :

D‖m〉〉± = λ±m|m〉〉±; λ±m = ±
√

2m
θ , m = 0, 1, 2, ...

along-with orthogonality : ±〈〈m|n〉〉± = δmn; ±〈〈m|n〉〉∓ = 0

as well as completeness relation

|0〉〉〈〈0|+
∞∑

m=1

(
|m〉〉+ +〈〈m|+ |m〉〉− −〈〈m|

)
= 1Hq⊗M2(C) (3)

We can introduce a projection operator:

PN = |0〉〉〈〈0|+
N∑

n=1,±
|n〉〉± ±〈〈n| =

(
PN 0
0 PN−1

)
∈ Hq⊗Md

2 (C),

(4)

where PN =
N∑

m=o
|m〉〈m| ∈ Hq



Spectral triple of fuzzy sphere (S2
∗)

Coordinate algebra : [x̂i , x̂j ] = iλεijk x̂k ; i , j , k = 1, 2, 3.

~̂x2|n, n3〉 = r 2
n |n, n3〉 = λn(n + 1)|n, n3〉;

x̂3|n, n3〉 = λn3|n, n3〉
Auxiliary space for the entire R3

∗;

Hc =
⊕
n

H(n)
c ; H(n)

c = Span{|n, n3〉 | n is fixed, − n ≤ n3 ≤ n}

Quantum Hilbert space for the fuzzy sphere of radius rn:

Hq =
⊕
n

H(n)
q ; H(n)

q = Span{|n, n3〉〈n, n′3| | n fixed, −n ≤ n3, n
′
3 ≤ n}

Spectral triple is A = H(n)
q ;H = H(n)

c ⊗ C2,D = 1
rn
~J ⊗ ~σ



Continued...

Eigen-spinors:

|n, n3〉〉+ := f (n, n3) |n, n3〉 ⊗
(

1
0

)
+ g(n, n3) |n, n3 + 1〉 ⊗

(
0
1

)
,

|n, n′3〉〉− := −g(n, n′3) |n, n3〉 ⊗
(

1
0

)
+ f (n, n′3) |n, n3 + 1〉 ⊗

(
0
1

)
,

where f (n, n3) =
√

n+n3+1
2n+1 , g(n, n3) =

√
n−n3
2n+1 .

• λ+
n3

= n
rn
, − n − 1 ≤ n3 ≤ n, yielding (2n+2)-fold degeneracy

• λ−
n′3

= − (n+1)
rn

, − n ≤ n′3 ≤ n− 1, yielding 2n-fold degeneracy.



Perelemov coherent state

|z〉 = e
θ

2λ
(x̂−−x̂+)|n, n〉 (ϕ = 0)

|z | = tan
(
θ
2

)
is stereographically projected coordinate.



Connes spectral distance

d(ω1, ω2) = sup
a∈B
|ω1(a)− ω2(a)|; B = {a ∈ A : ‖[D, π(a)]‖op ≤ 1}

Also
∣∣ω(a)− ω′(a)

∣∣ = |Tr((ρω − ρω′)a)| = |(∆ρ, a)|; ∆ρ ∈ Hq = A

I We take ω, ω′ to be normal states, so that they can be
represented by density matrices ω → ρω

I Let V0 = {a ∈ A : ‖[D, π(a)]‖op = 0}, then
ω(a)− ω′(a) = 0 , ∀ a ∈ V0, (certain irreducibility
condition)

I The optimal element as should attain the supremum
value:

d(ω, ω′) = |ω(as)− ω′(as)|; ‖[D, π(as)]‖op = 1



Towards an algorithm to compute finite distances

Basic Idea:-
Start with the Ball condition ||[D, π(a)]||op ≤ 1

Then ||a||HS ≤ 1
||[D,π(â)]||op ; ||â||HS = 1

⇒ Supa∈B′||a||HS ≤ 1
s

; s = Infa∈B′||[D, π(â)]||op,
Here B ′ = {a ∈ A|0 < ||[D, π(a)]||op ≤ 1} ⊂ B (A dense
subset)

Now splitting â = cosθ∆̂ρ + sinθ ˆ∆ρ⊥ ; (∆̂ρ, ∆̂ρ⊥) = 0,
we have
s ≤ Infθ∈[0,π

2
)[|cosθ| ||[D, π(∆̂ρ)]||op + |sinθ| ||[D, π(∆̂ρ⊥)]||op]



Towards an algorithm to compute finite distances

d(ρ, ρ′) = N‖∆ρ‖2
HS; N =

1

inf
∆ρ⊥
‖[D, π(∆ρ)] + [D,∆ρ⊥]‖op

(5)
A lower bound is reached when as ∝ ∆ρ

d(ρ, ρ′) ≥ ‖∆ρ‖2
H.S

‖[D, π(∆ρ)]‖op
; where as =

∆ρ

‖[D, π(∆ρ)]‖op
(6)

In the following we shall be computing distances between pure
states given by coherent states and the discrete states.



Distances on S2
∗ (discrete basis)

Infinitesimal distance (In n representation): For ρn := |n3〉〈n3|

dn(ρn3+1, ρn3) = sup
a∈B
|tr(ρn3+1a)− tr(ρn3a)|

≤ ‖[J−, a]‖op√
n(n + 1)− n3(n3 + 1)

(By Bessels Inequality)

≤ rn√
n(n + 1)− n3(n3 + 1)

(By ‖[J±, a]‖op ≤ rn)

This is also the lower bound! [D, π(dρ)] = 1
rn

(
0 A

−A† 0

)
A =

−
√

n(n + 1)− n3(n3 − 1) 0 0

0 2
√

n(n + 1)− n3(n3 + 1) 0

0 0 −
√

n(n + 1)− (n3 + 1)(n3 + 2)





Continued...

⇒ ‖[D, π(dρ)]‖op = 2
rn

√
n(n + 1)− n3(n3 + 1).

Further Tr(dρ)2 = 2, which yields

dn(ωn3+1, ωn3) =
λ
√

n(n + 1)√
n(n + 1)− n3(n3 + 1)

. (7)

Finite distance (m3 − n3 ≥ 2):

dn(ωm3 , ωn3) = sup
a∈B
|tr(ρn3+ka)− tr(ρn3a)| ; where k = m3 − n3

= sup
a∈B

∣∣∣∣∣
k∑

i=1

tr
(
(ρn3+i − ρn3+(i−1)), a

)∣∣∣∣∣
≤

k∑
i=1

rn√
n(n + 1)− (n3 + i)(n3 + i − 1)

.



Continued...

Again this upper bound is reached by

as =
m3−1∑
p=n3

(
m3−p∑
i=1

rn√
n(n+1)−(p+i)(p+i−1)

|p〉〈p|
)

yielding dn(ωm3 , ωn3) =
k∑

i=1

rn√
n(n + 1)− (n3 + i)(n3 + i − 1)

.

(8)

Here the triangle inequality is saturated as

dn(ωm3 , ωn3) = dn(ωm3 , ωl3) + dn(ωl3 , ωn3) for n3 ≤ l3 ≤ m3

In particular, dn(N, S) = dn(ρn, ρ−n) =
2n∑
k=1

rn√
k(2n+1−k)

.

Examples:

d1/2(N,S) = r1/2; d1(N, S) =
√

2 r1; d3/2(N, S) =
(

1
2 + 2

√
3

3

)
r3/2.

Only in the limit n→∞ one gets lim
n→∞

dn(N,S)
rn

= π



Distances on S2
∗ (coherent state basis)

Upper bound of finite distance:
Introduce a one parameter family of pure states

ρθ ≡ |θ〉〈θ| = UF (θ)|n〉〈n|U†F (θ) ∈ Hn ; UF (θ) = e−iθJ2 (9)

• In terms of stereographic variable z , ρz = ρθ;

• ωz(a) = tr (ρza) ; a† = a ∈ H(n)
q

• Define W (t) = ωzt(a) = tr (ρzta), with t ∈ [0, 1] then

|ωz(a)− ω0(a)| =

∣∣∣∣∫ 1

0

dW (t)

dt
dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣dW (t)

dt

∣∣∣∣dt ≤ rnθ. (10)

The RHS is the geodesic distance of commutative sphere.

And @ any a ∈ A = H(n)
q (for n-finite) saturating the upper

bound.



Towards an actual computation

Ball condition in eigen-spinor basis:

[D, π(a)] =
1

rn

(
0(2n+2)×(2n+2) A(2n+2)×2n

− A†2n×(2n+2) 0(2n)×(2n)

)
, (11)

where A(2n+2)×2n = (2n + 1)+〈〈n, n3|π(a)|n, n′3〉〉− with
−n − 1 ≤ n3 ≤ n and n − 1 ≤ n′3 ≤ n − 1. Rectangular null
matrices stem from the degeneracy of the spectrum. ⇒

‖[D, π(a)]‖2
op = ‖[D, π(a)]†[D, π(a)]‖op =

1

r2
n

‖AA†‖op =
1

r2
n

‖A†A‖op.

Clearly, it is convenient to deal with ‖AA†‖op as it is of lower
dimension (2n × 2n).



n = 1
2 fuzzy sphere

The algebra element can be taken to be element of su(2)
algebra. a = ~a · ~σ ∈ su(2); ~a ∈ R3. Here A†A is just a number.

‖[D, π(a)]‖op =
2

r1/2
|~a| ≤ 1⇒ |~a| ≤

r1/2

2
, a solid sphere

Take two states ρN = ρθ=0 =

(
1
0

)(
1 0

)
=

(
1 0
0 0

)
, and

ρθ = U(θ)

(
1
0

)(
1 0

)
U†(θ) =

1

2

(
1 + cos θ sin θ

sin θ 1− cos θ

)

U(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
⇒ ∆ρ† = ∆ρ = ρθ − ρ0 ∈ su(2);

Tr(∆ρ) = 0. Thus ∆ρ =
−→
∆ρ · ~σ;

−→
∆ρ = 1

2
(sin θ, 0, cos θ−1

2
) ∈ R3



Continued...

Finally

d 1
2
(ωθ, ω0) = sup

|~a|≤
r1/2

2

|ωθ(a)− ω0(a)| = sup
|~a|≤

r1/2
2

∣∣∣TrH(n)
q

(∆ρa)
∣∣∣

= sup
|~a|≤

r1/2
2

∣∣∣2~a · ~∆ρ∣∣∣ and the supremum is reached when ~a ∝ ~∆ρ

d 1
2
(ωθ0 , ω0) = r 1

2

√
(∆ρ)2

1 + (∆ρ)2
3 = r 1

2
sin

θ0

2
,No role for∆ρ⊥

A family of ρt = (1− t)ρ0 + tρθ; 0 ≤ t ≤ 1 of mixed states
can be thought of interpolating ρ0 and ρθ.
d1/2(ρ0, ρt) = tr1/2 sin

(
θ
2

)
and d1/2(ρt , ρθ) = (1− t)r1/2 sin

(
θ
2

)
satisfying

d(ρ0, ρt) + d(ρt , ρθ) = d(ρ0, ρθ) (12)



n = 1 fuzzy sphere

Here ‖[D, π(a)]‖op = 1
rn

√
‖A†A‖op. Writing

M := A†A =

(
M11 M12

M∗12 M22

)
, with matrix entries

M11 = 3|a0,1|2 + 2(a0,0 − a1,1)2 + |a0,−1 − 2a1,0|2 + 6|a1,−1|2,
M22 = 3|a0,−1|2 + 2(a0,0 − a−1,−1)2 + |a1,0 − 2a0,−1|2 + 6|a1,−1|2,
M12 =

√
2
[
3a1,−1(a0,1 + a−1,0) + (a0,0 − a1,1)(2a0,−1 − a1,0)

+ (a0,0 − a−1,−1)(2a1,0 − a0,−1)
]

The two eigen-values are

E± = 1
2

(
(M11 + M22)±

√
(M11 −M22)2 + 4|M12|2

)
.

Clearly, E+ ≥ E− ∀ a ∈ B which means

inf
a∈B
‖[D, π(a)]‖op = 1

r1

√
min(E+); a = ∆ρ + ∆ρ⊥



Continued...

• Writing as = ∆ρ + ∆ρ⊥ ∈ su(3)

with ∆ρ = e iθĴ2|1〉〈1|e−iθĴ2 − |1〉〈1|.

• We write ∆ρ⊥ =
8∑

i=1

ciλi ; λ′is are Gell-Mann matrices.

• But orthogonality condition (∆ρ,∆ρ⊥) = 0 leaves us with 7
independent parameters.

• On computation, the distances for various angles of θ gives
the following table obtained numerically and compared with
d∗1 :=

√
2r1 sin

(
θ
2

)
)



Data set for various distances corresponding to different angles

Angle (degree) d∗1 /r1 d1/r1
10 0.1232568334 0.1232518539
20 0.2455756079 0.2455736891
30 0.3660254038 0.3660254011
40 0.4836895253 0.4836894308
50 0.5976724775 0.5976724773
60 0.7071067812 0.7071067811
70 0.8111595753 0.8111595752
80 0.9090389553 0.9090389553
90 1 0.9999999998

100 1.0833504408 1.0833504407
110 1.1584559307 1.1584559306
120 1.2247448714 1.2247448713
130 1.2817127641 1.2817127640
140 1.3289260488 1.3289260487
150 1.3660254038 1.3660254037
160 1.3927284806 1.3927284806
170 1.4088320528 1.4088320527



Moyal plane R2
∗

• Upper bound d(ρ0, ρz) ≤
√

2θ|z |; ρz = |z〉〈z | is obtained by
considering a 1-parameter family of pure states
ρzt = |zt〉〈zt|; 0 ≤ t ≤ 1, interpolating ρ0 and ρz .

• In contrast to fuzzy sphere, this upper bound is reached by

as =
√

θ
2

(
be−iα + b†e iα

)
∈ Multiplier algebra.

• It’s enough to show

d(ρ0, ρdz) =
√

2θ|dz |(trans.inv .) (13)

by taking dρ = |dz〉〈dz | − |0〉〈0| = dz̄ |0〉〈1|+ dz |1〉〈0|.



Continued..

By observing that π(dρ) =

(
dρ 0
0 dρ

)
is a 5D matrix spanned by

|0〉〉, |1〉〉±, |2〉〉±.

and ‖[DM ,PNπ(as)]PN‖op = 1 with N ≥ 2
the corresponding optimal element is obtained by the lower
bound itself

d(ρ, ρ′) ≥ ‖∆ρ‖2
H.S

‖[D, π(∆ρ)]‖op
=
√

2θ|dz |

See (13) above..



Distances on doubled Moyal plane

Spectral triple:

AT = Hq⊗Md
2 (C),HT = (Hc⊗C2)⊗C2,DT = DM⊗12+σ3⊗D2.

Pure states: Ω
(z)
i = ρz ⊗ ωi ;ω1 =

(
1 0
0 0

)
, ω2 =

(
0 0
0 1

)
.

• One can construct orthonormal eigen-spinors for DT and

verify Pythagoras theorem, reproducing earlier results of

dt
(

Ω
(z)
1 ,Ω

(z)
2

)
= 1
|Λ| , dl

(
Ω

(z)
i ,Ω

(0)
i

)
= dM(ρz , ρ0) =

√
2θ|z |

{
dh(ρ0⊗ω1, ρz⊗ω2)

}2
=
{
dt(ρ0⊗ω1, ρ0⊗ω2)

}2
+
{
dl(ρ0⊗ω1, ρz⊗ω1)

}2



Restricted Spectral Triple

For (A,H,D), the restricted spectral
(Aρ,H(ρ),D(ρ)) = (α(ρ)(A), π(ρ)H, π(ρ)Dπ(ρ)) is obtained
by the self adjoint projector ρ2 = ρ = ρ∗ ∈ A through the map
αρ : A → A; A 3 a 7−→ αρ(a) = ρaρ

Here π(ρ) indicates that the domain of π is restricted to π|H(ρ)

Now ∀ω1, ω2 ∈ P(A(ρ)), d (ρ)(ω1, ω2) = d(ω1 ◦ αρ, ω2 ◦ αρ),
provided [D, π(ρ)] = 0

This indicates that π(ρ) should be built out of the eigen
spinors of D.



Example

P
(trans)
T (0) := P0 ⊗ 12 =

(
|0〉〈0| 0

0 0

)
⊗ 12 ∈ AT

P
(long)
T (i) (N) := PN ⊗ ωi =

(
PN 0
0 PN−1

)
⊗ ωi

Here ω1 =

(
1 0
0 0

)
, ω2 =

(
0 0
0 1

)
With the first one , we reproduce the spectral triple for 2-point
space:

P
(trans)
T (0) ATP

(trans)
T (0) =

(
|0〉〈0| 0

0 0

)
⊗Md

2 (C)

P
(trans)
T (0) HT =

(
|0〉
0

)
⊗ C2

P
(trans)
T (0) DTP

(trans)
T (0) = P0 ⊗D2

With the second one , likewise , we reproduce the spectral
triple for one of the Moyal planes in the limit N→∞.



Impact of Higgs field

Change the triplet T → T̃ where

H̃T = (Hq ⊗M2(C))⊗Md
2 (C) 3 Ψ̃; D̃T Ψ̃ = DT Ψ̃ + Ψ̃DT

so that the Dirac operator can be fluctuated. This gives rise to
gauge fields, along with Higgs field DT → DT + H ;

H = cσ3 ⊗ a2[D2, b2]; c = ab ∈ Hq (14)

If c is such that [c , ρz ] = 0 this gives rise to variation in the
transverse distance.

dt(ρz ⊗ ω1, ρz ⊗ ω2) =
1

|Λ(x1, x2)|
(15)
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