Plausible signature of noncommutativity in type la supernovae with super-Chandrasekhar white dwarfs?

Banibrata Mukhopadhyay

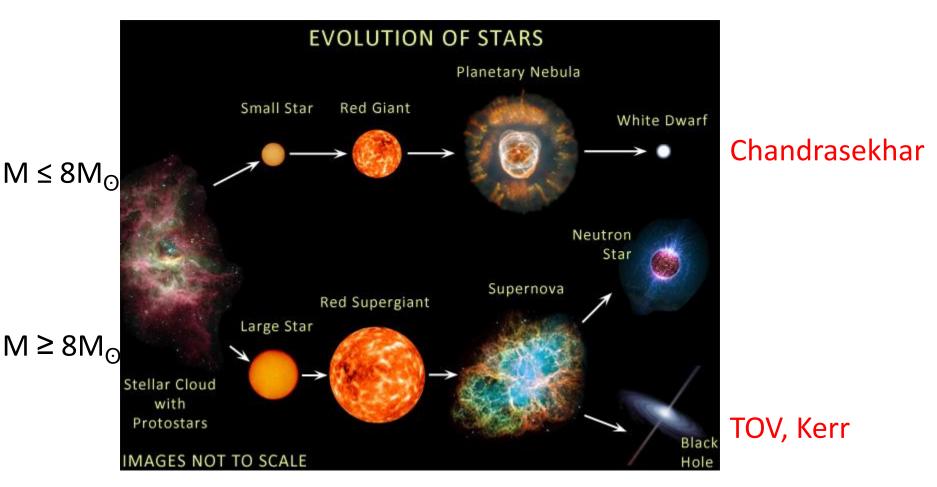
Department of Physics

Indian Institute of Science

Collaborators: Partha Nandy (SNBNCBS), Sayan Pal (SNBNCBS), Biswajit Chakraborty (SNBNCBS) and also Surajit Kalita (IISc)

International Conference on Noncommutative Geometry: Physical and Mathematical Aspects of Quantum Space Time and Matter SNBNCBS, November 27-30, 2018

Evolution of Stars



- □ In one of his celebrated papers, S. Chandrasekhar showed that maximum mass of a non-magnetized, non-rotating white dwarf \approx 1.44 solar mass \rightarrow Chandrasekhar limit
- □ Including effects of general relativity (GR), limit decreases to 1.4 solar mass

How to arrive at the Chandrasekhar mass-limit?

Gas pressure in white dwarfs is dominated by degenerate electrons



Figure 4. Band diagram of the conductor with (a) no potential applied, (b) negative potential applied (c) positive potential applied

- Electrons become degenerate when all the states of the system below the Fermi level are filled → arisen at high density, during collapse/contraction of the star → Pauli's exclusion principle restricts number of fermions (here electrons) in energy states
- We have to obtain the equation of state: pressure-density relation, of an electron degenerate gas

$$P_{\alpha} = \frac{\pi m_e^4 c^5}{3h^3} [x(2x^2 - 3)\sqrt{x^2 + 1} + 3\sinh^{-1} x] \quad \text{and} \quad \rho_{\alpha} = \frac{8\pi \mu_e m_H (m_e c)^3}{3h^3} x^3$$
where, $x = p_F / (m_e c)$

How to arrive at the Chandrasekhar mass-limit?

From Chandrasekhar's original paper:

In hydrostatic equilibrium:

Boundary Conditions:

 $\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right) = -4\pi G\rho$

 $P = K \rho^{\Gamma} \rightarrow Extreme relativistic limit$ $\frac{dP}{dr} = -\frac{GM_r}{r^2}\rho, \qquad \rho(r=0) = \rho_c$ with $\Gamma = 4/3$ 5.0 $\frac{dM_r}{dr} = 4\pi r^2 \rho \qquad \left(\frac{d\rho}{dr}\right)_{r=0} = 0$ Mass-radius relation 4.5 4.0 $M_{\rm Ch} = \frac{\sqrt{6}}{32\pi} \left(\frac{hc}{G}\right)^{3/2} \left(\frac{2}{\mu_{\rm c}}\right)^2 \frac{\xi_1^2 |\theta'(\xi_1)|}{m_{\rm cr}^2}$ $l_1 = \frac{I}{4\pi m \mu H} \left(\frac{3h^3}{2cG} \right) = 7.720\mu^{-1} \times 10^8 \text{ cm.}$ 3.5 R₁//₁→ $R\propto
ho_c^{rac{1-n}{2n}}~M\propto
ho_c^{rac{3-n}{2n}}~n=1/(\Gamma-1)$ 2.0 $R \propto M^{(1-n)/(3-n)}$ 1.5 1.0 Clearly for n=3, mass becomes independent 0.5 of density and radius becomes zero 0.2 0.3 0.40.5 0.6 0.80.91.0 0.1 $M/M_{2} \rightarrow$ M=1.44M

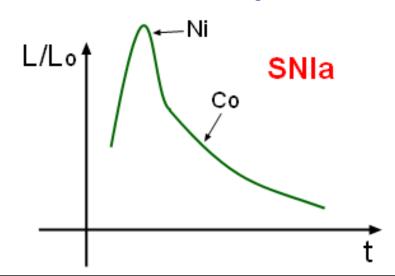
FIG. 2.-The full line curve represents the exact (mass-radius)-relation for the highly collapsed configurations. This curve tends asymptotically to the ---- curve as $M \rightarrow 0$.

Supernovae type Ia and its link to limiting mass of white dwarfs?

A supernova is an extremely luminous stellar explosion that involves the disruption of virtually an entire star.

Their optical spectra help in classifying them broadly in type I (no hydrogen lines in spectra) and II (show hydrogen lines in spectra).

Type Ia supernovae are believed to result from thermonuclear explosion of a carbon-oxygen white dwarf, when its mass approaches/exceeds the Chandrasekhar limit of 1.44 $M_{\odot} \rightarrow$ all look similar



DEM L238 EPLER'S SNR SN 1006

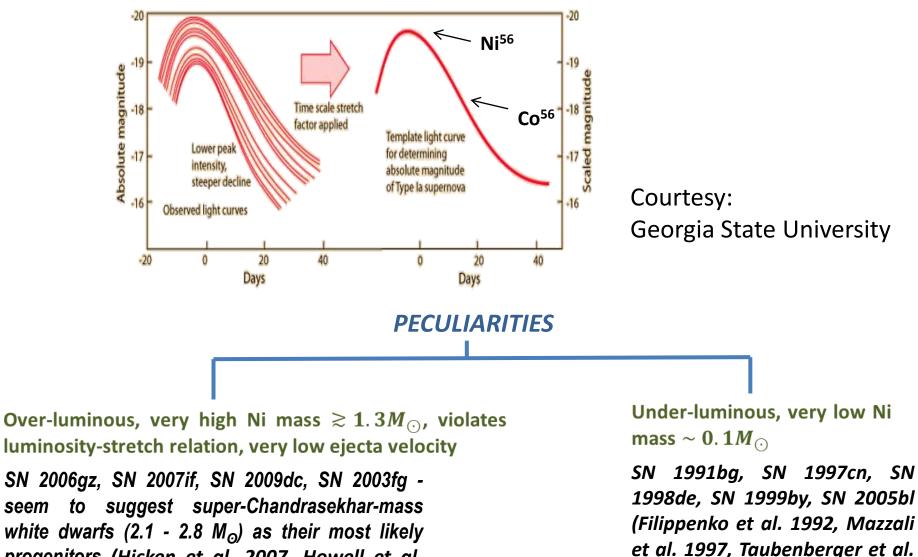
Chandra X-ray images of SN Ia

Type la supernovae are of great interest to astronomers because they have a characteristic light curve, which allows them to be used as standard candles and hence they help in investigating the expansion history of the Universe.

A long-standing puzzle in astronomy is the identification of supernova progenitors

Discovery of several peculiar over- and under-luminous type la supernovae provokes us to rethink the commonly accepted scenario of Chandrasekhar mass explosion of white dwarfs.

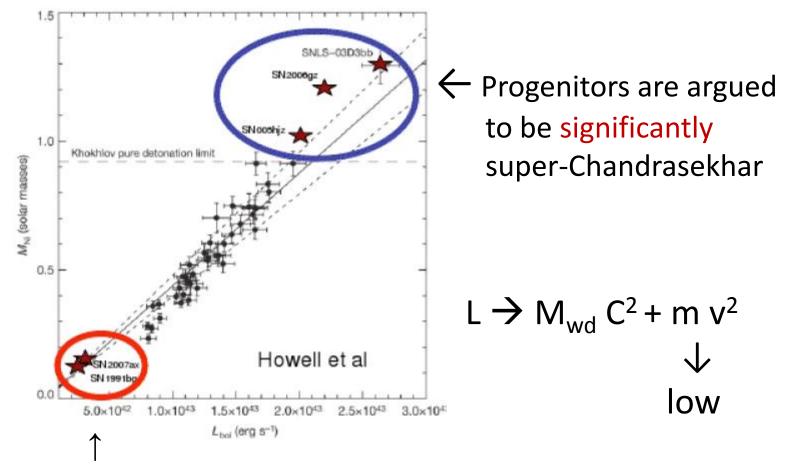
TYPE Ia SUPERNOVAE



progenitors (Hicken et al. 2007, Howell et al. 2006, Scalzo et al. 2010).

2008) – suggest sub-Chandrasekhar explosion

Highly over-luminous, peculiar, type Ia supernovae along with standard type Ia supernovae



Progenitors are argued to be significantly sub-Chandrasekhar

Courtesy: talk of Mansi Kasliwal

Possible Origin and Our Avenue

□ Since half a decade, we have been exploring progenitor of peculiar type Ia supernovae: Over-luminous and Underluminous → Violation of Chandrasekhar mass-limit

- Brings violation of Chandrasekhar's limit: super-Chandrasekhar white dwarfs in limelight
- After our initiation in 2012, various groups come forward with many plausible mechanisms to violate Chandrasekhar mass-limit significantly: by e.g. magnetic fields, modified gravity, modifying uncertainly principle, doubly special relativity
- Not free from uncertainties

Main Idea

Introducing phase-space noncommutativity in the X-Y plane: $[\hat{p}_x, \hat{p}_y] = i\eta$ NCHA Along with: $[\hat{x}, \hat{y}] = i\theta$ and $[\hat{x}_i, \hat{p}_j] = i\hbar\delta_{ij}$ $[\hat{x}_i, \hat{z}] = [\hat{p}_i, \hat{p}_z] = 0; \quad i, j = 1, 2$

In addition: HA $[x_i, p_j] = i\hbar \delta_{ij}; \quad [x, y] = 0 = [p_x, p_y]$ With Bopp-shift transformation

$$\hat{x}_{i} = x_{i} - \frac{1}{2\hbar}\theta_{ij}p_{j} + \frac{1}{2\hbar}\lambda_{ij}x_{j}, \quad \hat{p}_{i} = p_{i} + \frac{1}{2\hbar}\eta_{ij}x_{j} + \frac{1}{2\hbar}\lambda_{ij}p_{j}$$
$$\lambda_{ij} = \epsilon_{ij}\sqrt{-\theta\eta}$$

Hamiltonian/Energy

Dirac equation: $\hat{H}\psi = i\frac{\partial\psi}{\partial t} = E\psi$

 $(E - m_e c^2)\phi = \vec{\sigma}.\vec{p}c\ \chi$ and $(E + m_e c^2)\chi = \vec{\sigma}.\vec{p}c\ \phi$,

Hence

$$(E^2 - m_e^2 c^4)$$

$$= \left[A(p_x^2 + p_y^2) + B(x^2 + y^2) + C(xp_x + p_xx + yp_y + p_yy) + \frac{\eta}{\hbar}(yp_x - xp_y) + p_z^2 - \sigma_z\eta \right] c^2,$$

when
$$A = 1 + \frac{\lambda^2}{4\hbar^2}$$
, $B = \frac{\eta^2}{4\hbar^2}$ and $C = \frac{\eta\lambda}{4\hbar^2}$

Hamiltonian/Energy

In terms of appropriate ladder operators

$$a_{j} = \left(\frac{A}{2\hbar\sqrt{AB-C^{2}}}\right)^{\frac{1}{2}} \left(p_{j} + \frac{C}{A}x_{j} - i\frac{\sqrt{AB-C^{2}}}{A}x_{j}\right)$$

$$a_{j}^{\dagger} = \left(\frac{A}{2\hbar\sqrt{AB-C^{2}}}\right)^{\frac{1}{2}} \left(p_{j} + \frac{C}{A}x_{j} + i\frac{\sqrt{AB-C^{2}}}{A}x_{j}\right)$$

$$j=x,y$$
satisfying $[a_{x}, a_{x}^{\dagger}] = 1 = [a_{y}, a_{y}^{\dagger}]$ and $\hat{a}_{1} = \frac{a_{x} + ia_{y}}{\sqrt{2}}, \quad \hat{a}_{2} = \frac{a_{x} - ia_{y}}{\sqrt{2}}$

$$[a_{1}, a_{1}^{\dagger}] = 1 = [a_{2}, a_{2}^{\dagger}]$$

→ non-diagonal part of Hamiltonian $\hat{H}' = \eta (2a_1^{\dagger}a_1 + 1)$ $E^2 = p_z^2 c^2 + m_e^2 c^4 + 2m\eta c^2$

with m=0,1,2,...

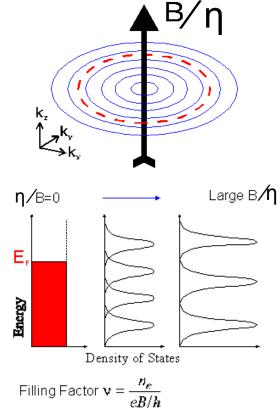
Approach: Equation of State

- ➢ We consider a relativistic, degenerate electron gas at zero temperature in the presence of noncommutativity, neglecting any form of interactions: relativistic corresponds to pc ≥ mc², zero temperature justifies as E_F >> k_BT ------ The energy states of a free electron are quantized into levels similar to the Landau orbitals in the presence of magnetic fields, which defines the motion of the electron in a plane perpendicular to the z-axis.
- Energy eigenstates for the Dirac equation in noncommutativity is given by

$$E^{2}(m) = p_{z}^{2}c^{2} + m_{e}^{2}c^{4} + 2m\eta c^{2}$$

Noncommutation effect modifies the density of states of the electrons as

$$\frac{2}{h^3} \int d^3 p_z \longrightarrow \int \frac{4\pi\eta}{h^3} dp_z$$



Proceeding is same as strong magnetic field effects: Landau quantization \rightarrow B/B_c is replaced by $\eta/(m_e^2)^2$

$$P = \sum_{m=0}^{m_{max}} \frac{2\pi m_e^4 c^5 \eta_D}{h^3} g_m \left[\epsilon_F x_F(m) - (1 + 2m\eta_D) \log \frac{\epsilon_F + x_F(m)}{\sqrt{1 + 2m\eta_D}} \right]$$

$$n_e = \sum_{m=0}^{m_{max}} \frac{4\pi m_e^3 c^3 \eta_D}{h^3} g_m x_F(m) \qquad \rho = \mu m_n n_e,$$
$$P = \frac{h^3}{2} \rho^2 = K_{nc} \rho^2 = K_{nc} \rho^{1+1/n}$$

At high enough density but with m=0 (ground level) $\rho = \rho_c = \frac{4\pi\mu m_n^2}{h^3}$

EoS

$$= \rho_c = \frac{4\pi\mu m_n m_e^3 c^3}{h^3} \eta_D^{3/2} \sqrt{2m_1}$$

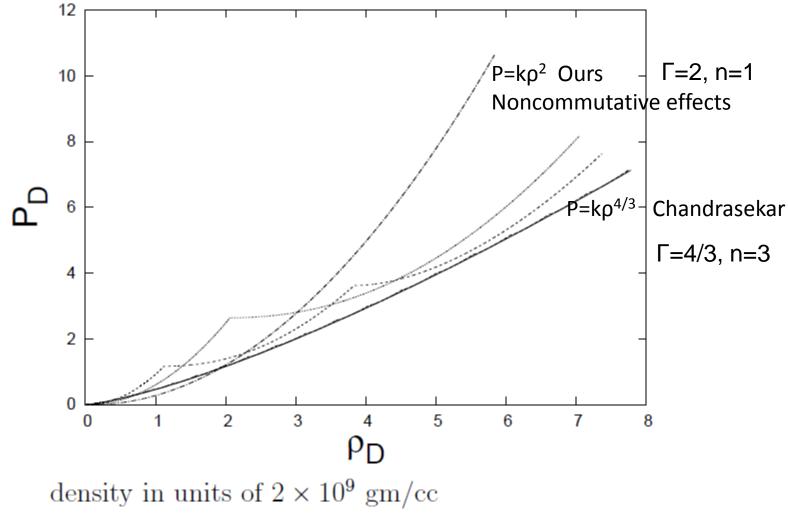
$$m < m_1 = (\epsilon_F^2 - 1)/2\eta_D \text{ with } m_1 < 1$$

$$\eta_D = \frac{\eta}{m_e^2 c^2}, \ \epsilon_F = \frac{E_F}{m_e c^2}, \ x_F(m) = \frac{p_F(m)}{m_e c}$$

For
$$\rho_c = 2 \times 10^{10}/V \text{ gm/cc}$$

 $\eta_D = \left(\frac{2 \times 10^{10} h^3}{4\pi \mu m_n m_e^3 c^3 \sqrt{2m_1} V}\right)^{2/3} \approx \frac{456}{(V\mu)^{2/3} m_1^{1/3}}$ Hence, for $\mu = 2$ and $V = 1$, $\eta_D > 287.3$

Effects of noncommutativity in Equation of State: Constant η \rightarrow Noncommuting length scale is similar to underlying Compton wavelength \rightarrow At $\eta \sim (m_e c)^2$ effects becoming important



pressure in units of $2.668 \times 10^{27} \text{ erg/cc}$

New Mass-limit

Following Lane-Emden formalism: balance and mass equations

 $\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right) = -4\pi G\rho, \qquad \rho = \rho_c \theta^n, \ r = a\xi \qquad a = \sqrt{K_{nc}/2\pi G},$

$$\frac{dM}{dr} = 4\pi r^2 \rho \quad M = 4\pi \left(\frac{n+1}{4\pi G}\right)^{3/2} \left(\frac{h^3}{8\pi\mu^2 m_n^2 m_e^2 c}\right)^{3/2} \rho_c^{3(1-n)/2n} \frac{4\sqrt{2m_1}\pi\mu m_n m_e^3 c^3}{h^3} I_n$$

where $I_n = \int_0^{\xi_1} \theta^n \xi^2 d\xi$, $\rho = \rho_c \theta^n$, $r = a\xi$

radius of the star $R = a\xi_1$ and $a = \sqrt{K_{nc}/2\pi G}$, when at $\xi = \xi_1$, $\theta = 0$

For
$$\Gamma = 2$$
, $n = 1$, $I_n = \pi$, $\xi_1 = \pi$ $M = \left(\frac{hc}{2G}\right)^{\frac{3}{2}} \frac{m_1^{1/2}}{\mu^2 m_n^2} = 2.58 M_{\odot}$,
 $R = \sqrt{\frac{\pi K_{nc}}{2G}}$. with $m_1 \approx 1$

For $K_{nc} < 1.5 \times 10^8$, R < 594.2 km

Comparison with Chandrasekhar

Combining hydrostatic
balance and mass equations
$$\frac{1}{r^2} \frac{d}{dr} \left(\frac{r^2}{\rho} \frac{dP}{dr} \right) = -4\pi G\rho,$$

 $\frac{dM}{dr} = 4\pi r^2 \rho$ $M \propto K^{3/2} \rho_c^{\frac{3-n}{2\pi}}, \quad R \propto K^{1/2} \rho_c^{\frac{1-n}{2\pi}} \quad P = K \rho^{\Gamma}$
For high density regime $K = K_{nc} \rightarrow \eta_D \rightarrow \rho_c^{-2/3}$ where $\eta_D = \eta/(m_e c)^2$
Mass is independent of ρ_c and radius $R = \sqrt{\frac{\pi K_{nc}}{2G}}$
Ours
 $\Gamma = 2$ and hence $n = 1$
 $M = \left(\frac{hc}{2G}\right)^{3/2} \frac{1}{(\mu_e m_H)^2} \approx \frac{10.312}{\mu_e^2} M_{\odot}, \qquad M_{Ch} = \frac{\sqrt{6}}{32\pi} \left(\frac{hc}{G}\right)^{3/2} \left(\frac{2}{\mu_e}\right)^2 \frac{\xi_1^2 |\theta'(\xi_1)|}{m_H^2}$
For $\mu_e = 2$ (carbon-oxygen white dwarf)
 $M \approx 2.58M_{\odot}.$
For $m_1 \rightarrow 1$ (just filled ground level)

Another approach: Varying η Equation of State

Surface and low density white dwarfs should follow commutating rule: η to decrease $\rightarrow \rho \downarrow \eta \downarrow$ keeping m₁<1

$$P = \frac{h^3}{8\pi\mu_e^2 m_n^2 m_e^2 c\eta_D} \rho^2 = K_{nc} \rho^2 = K_{nc} \rho^{1+1/n}$$

$$\rho = \rho_c = \frac{4\pi\mu_e m_n m_e^3 c^3}{h^3} \eta_D^{3/2} \sqrt{2m_1},$$

By eliminating η_D in adiabatic approximation

1 /0

$$P = K_{ncm} \rho^{4/3}, \text{ with } K_{ncm} = \frac{hc}{2} \left(\frac{m_1}{2\pi \mu_e^4 m_n^4} \right)^{1/3}$$
$$= 1.1 \times 10^{15} m_1^{1/3}$$

Another approach: Mass-limit

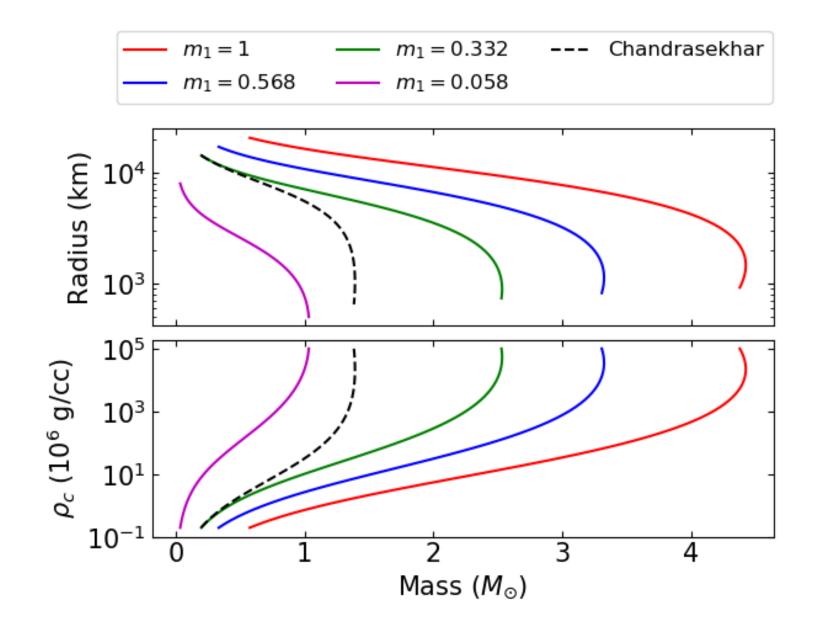
Following Lane-Emden formalism:

Assuming $\frac{1}{r^{2}} \frac{d}{dr} \left(\frac{r^{2}}{\rho} \frac{dP}{dr} \right) = -4\pi G\rho, \quad \rho = \rho_{c} \theta^{n} \quad r = a_{1}\xi, \quad a_{1} = \sqrt{K_{nc}/2\pi Gm_{1}^{1/3}}$ $P = K \rho^{\Gamma} \text{ with } \Gamma = 4/3$ $M = \int_{0}^{R} 4\pi r^{2} \rho dr \qquad M = 4\pi a_{1}^{3} \rho_{c} I_{n}, \text{ with } a_{1} = \left[\frac{K_{ncm} \rho_{c}^{-2/3}}{\pi Gm_{1}^{1/3}} \right]^{1/2}$ $= 2.38 M_{\odot} I_{n}$ $I_{n} = \int_{0}^{\xi_{1}} \theta^{n} \xi^{2} d\xi$

$$\frac{d}{d\xi} \left[\xi^2 \left(m_1^{1/3} \frac{d\theta}{d\xi} + \frac{\theta m_1^{-2/3}}{3(n+1)} \frac{dm_1}{d\xi} \right) \right] = -\xi^2 \theta^n,$$

hence $I_n = \left(\xi^2 m_1^{1/3} d\theta / d\xi \right)_{\xi_1}.$

Mass-Radius Relation: General Relativity TOV solution



Summary

- > Chandrasekhar-limit is "Sacrosanct", but the value of mass-limit is NOT
- > New, generic, mass limit of white dwarfs seems to be around 2.6M $_{\odot}$
- This violation may be due to non-commutative phase space at high density: Plausible observational signature of non-commutativity
- \succ Once the limiting mass is approached, the white dwarfs explode exhibiting over-luminous, peculiar type Ia supernovae: inferred exploding mass 2.3 2.8 M_{\odot}

> This suggests a second standard candl: many far reaching significance