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IMAGES NOT TO SCALE
1 In one of his celebrated papers, S. Chandrasekhar showed that maximum
mass of a non-magnetized, non-rotating white dwarf = 1.44 solar mass 2>

Chandrasekhar limit
4 Including effects of general relativity (GR), limit decreases to 1.4 solar mass




How to arrive at the Chandrasekhar

mass-limit?
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all the states of the system below the

Fermi level are filled = arisen at high density, during
collapse/contraction of the star = Pauli’s exclusion
principle restricts number of fermions (here electrons)

in energy states

1 We have to obtain the equation of state: pressure-density

relation, of an electron degenerate gas
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How to arrive at the Chandrasekhar mass-limit?

From Chandrasekhar’s original paper:
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Supernovae type la and its link to
limiting mass of white dwarfs?

Chandra X-ray images of SN la

A supernova is an extremely luminous stellar explosion
that involves the disruption of virtually an entire star.

Their optical spectra help in classifying them broadly in
type | (no hydrogen lines in spectra) and Il (show
hydrogen lines in spectra).

Type la supernovae are believed to result from
thermonuclear explosion of a carbon-oxygen white
dwarf, when its mass approaches/exceeds the
Chandrasekhar limit of 1.44 M = all look similar
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Co Type la supernovae are of great interest to
/ astronomers because they have a characteristic
light curve, which allows them to be used as
standard candles and hence they help in
- investigating the expansion history of the
i Universe.

A long-standing puzzle in astronomy is the identification of supernova progenitors




Discovery of several peculiar over- and
under-luminous type la supernovae
provokes us to rethink the commonly
accepted scenario of Chandrasekhar
mass explosion of white dwarfs.



TYPE la SUPERNOVAE
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Over-luminous, very high Ni mass = 1.3M, violates
luminosity-stretch relation, very low ejecta velocity

SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg -
seem to suggest super-Chandrasekhar-mass
white dwarfs (2.1 - 2.8 My) as their most likely
progenitors (Hicken et al. 2007, Howell et al.

2006, Scalzo et al. 2010).

Under-luminous, very low Ni
mass ~ 0. 1M,

SN 1991bg, SN 1997cn, SN
1998de, SN 1999by, SN 2005bl
(Filippenko et al. 1992, Mazzali
et al. 1997, Taubenberger et al.
2008) - suggest sub-
Chandrasekhar explosion



Highly over-luminous, peculiar, type la supernovae
along with standard type la supernovae

"~} &< Progenitors are argued
/ to be significantly
super-Chandrasekhar
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Progenitors are argued to be
significantly sub-Chandrasekhar
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Possible Origin and Our Avenue

1 Since half a decade, we have been exploring progenitor
of peculiar type la supernovae: Over-luminous and Under-
luminous = Violation of Chandrasekhar mass-limit

J Brings violation of Chandrasekhar’s limit:
super-Chandrasekhar white dwarfs in limelight

1 After our initiation in 2012, various groups come forward
with many plausible mechanisms to violate Chandrasekhar
mass-limit significantly: by e.g. magnetic fields, modified
gravity, modifying uncertainly principle, doubly special
relativity

J Not free from uncertainties



Main Idea

Introducing phase-space noncommutativity in
the X-Y plane: [p.,p,] =tn NCHA
Along with: [z, 9] = if and [z,,p,] = ihd;;

In addition: HA"

With Bopp-shift transformation
1

1 . 1 1
0iip; + 2—]1)\3'.3'173‘; Pi = Di + 2—h'ni.jilfj + 2—71)\?;3'1):;

)\?;j — €V —97’}

-T?t:-’l??:—%



Hamiltonian/Energy

Dirac equation: 5,
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ot
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Hamiltonian/Energy

In terms of appropriate ladder operators
) o)
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— non-diagonal part of Hamiltonian
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Approach: Equation of State

» We consider a relativistic, degenerate electron gas at zero temperature in the presence
of noncommutativity, neglecting any form of interactions: relativistic corresponds to
pc 2 mc?, zero temperature justifies as Eg >> kgT ------- The energy states of a
free electron are quantized into levels similar to the Landau orbitals in the presence of
magnetic fields, which defines the motion of the electron in a plane perpendicular to

the z-axis.
B/ N

> Energy eigenstates for the Dirac equation in
noncommutativity is given by a»
2

E?(m) = p*c® +mZc* + 2mnc?

» Noncommutation effect modifies the density
of states of the electrons as

2 dEP ‘ J‘ 4 s 77 dpz Density of States

Filling Factor v =
e ;’:




Proceeding is same as strong magnetic field effects:
Landau quantization = B/B,_ is replaced by n/(m_c)?
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Effects of noncommutativity in Equation of State: Constant n
= Noncommuting length scale is similar to underlying Compton
wavelength = At n ~ (m_c)? effects becoming important
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New Mass-limit N |
Combining hydrostatic

Following Lane-Emden formalism: balance and mass equations
Assuming
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Comparison with Chandrasekhar

Combining hydrostatic 1 d /r2dP ]
( ) = —4dnGp,
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Another approach: Varying n
Equation of State

Surface and low density white dwarfs should follow
commutating rule: n to decrease - p| n| keeping m,<1
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Another approach: Mass-limit

Following Lane-Emden formalism:
Assuming
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Mass-Radius Relation: General Relativity TOV solution

— m =1 — m =0.332 -== (Chandrasekhar
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Summary

» Chandrasekhar-limit is “Sacrosanct”, but the value of mass-limit is NOT

> New, generic, mass limit of white dwarfs seems to be around 2.6M,

» This violation may be due to non-commutative phase space at high
density: Plausible observational signature of non-commutativity

> Next step should be to introduce z-directional non-commutativity and/or
fuzzy sphere/disk = T. R. Govindarajan

» Once the limiting mass is approached, the white dwarfs explode
exhibiting over-luminous, peculiar type la supernovae: inferred
exploding mass 2.3 -2.8 Mg

» This suggests a second standard candl: many far reaching significance



