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Least Action Principle

Huge simpli�cation: input symmetries → dynamics

But . . . How do you choose symmetries?

particle physics
cosmology (in�ation!)

Spectral Action Principle
[Ali Chamseddine, Alain Connes (1997)]

�The physical action only depends upon the spectrum of D.�

Tr
(
f(D/Λ)

)
+ 1

2 〈Jψ|D|ψ〉
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Choose A = C∞(M)⊗
(
C⊕H⊕M3(C)

)
and you get . . .

SB =

∫
M

√
gd4x

(
1

2κ2
0

R+ α0CµνρσC
µνρσ + γ0 + τ0R

?R?+

+
1

4
GiµνG

µνi +
1

4
F aµνF

µνa +
1

4
BµνBµν+

+
1

2
|DµH|2 − µ2

0|H|2 + λ0|H|4 − ξ0R|H|2
)

+O(Λ−1)

EH term + Weyl term + cosmological constant + topological term,

dynamical terms of SM bosons,

Higgs sector, coupling between Higgs and gravity.

But . . .

This requires Gilkey machinery . . .

The simplicity of Tr f(D/Λ) is deceiving . . .
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Spectral Action in Noncommutative Geometry
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Outline

1 The dwelling of the spectral action

Spectral triples

OP's

pdos

Dimension spectrum

Noncommutative integral

2 Residues, expansions, and all that

Spectral functions and their transforms

Asymptotic expansions

From heat traces to zeta functions

From zeta functions to heat traces

3 Spectral action and its �uctuations

Classes of cut-o� functions

Asymptotic expansion of the spectral action

Fluctuations of the spectral action

4 Summary
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Spectral Triples

(A,H,D) - spectral triple

A � unital involutive algebra

H � separable Hilbert space with π : A → B(H)

D � a (possibly unbounded) selfadjoint operator on H, such that

[D, π(a)] extends to a bounded operator on H for all a ∈ A,
D has a compact resolvent � i.e. (D − λ)−1 ∈ K(H) for λ /∈ spec(D).

Archetypical example

Let M be a compact spin Riemannian manifold and S be a spinor bundle over M .
Then, A = C∞(M), H = L2(M,S), D = D/ := −iγµ∇Sµ is a spectral triple.

De�ne D := D + P0, with P0 � projection on kerD.
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Finite-dimensionality and regularity

Finite-dimensionality

The triple is said of dimension p (or p-dimensional) when

p := inf {q ≥ 0 | Tr |D|−q <∞} <∞.

Can have 0-dimensional spectral triples with dimH =∞.
(vide: ST on standard Podle± sphere by L. D¡browski & A. Sitarz (2003))

Regularity

A spectral triple (A,H,D) is regular if

∀a ∈ A a, [D, a] ∈ ∩
n∈N

Dom δ′n, where δ′ := [|D| , ·].

δ′ gives a family of seminorms, commutatively: Aδ′ ' C∞(M).
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OP's

De�ne: δ(·) := [|D|, ·] and ∇(·) := [D2, ·].

Remark: Dom δ = Dom δ′ ⊂ B(H)

Introducing

OP0 := ∩
n∈N

Dom δn, OPr := {T ∈ L(H) | |D|−rT ∈ OP0} for r ∈ R.

When T ∈ OPr, we say that the order of T is (at most) r.

We have OPr ⊂ OPs when r ≤ s, OPr OPs ⊂ OPr+s

and δ(OPr) ⊂ OPr, ∇(OPr) ⊂ OPr+1.

Theorem [A. Connes, H. Moscovici (1995)]

Let T ∈ OP r for some r ∈ R. Then, for any z ∈ C and any N ∈ N

D2zTD−2z =

N∑
`=0

(
z
`

)
∇`(T ) |D|−2` +RN (z), RN (z) ∈ OP r−(N+1) .
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Pseudodi�erential calculus

P(A) := polynomial algebra generated by A, D, |D| and JAJ−1, if J exists.

Given a regular spectral triple (A,H,D), one de�nes

Ψ(A) :=
{
T ∈ L(H)

∣∣ ∀N ∈ N ∃P ∈ P(A), R ∈ OP−N , p ∈ N,
such that T = P |D|−p +R

}
.

T is smoothing if T ∈ OP−N for all N ∈ N, in which case T ∈ Ψ(A).

T ∈ Ψ(A) i� T −
∑
n Pn|D|d−n ∈ OP−N for all N , with Pn ∈ P(A).

The set Ψ(A) is a Z-graded involutive algebra with Ψk(A) := Ψ(A) ∩ OPk.
One also has ΨC(A) := {T |D|z |T ∈ Ψ(A), z ∈ C}.

Examples:

a[D, b]|D|−3[D2, c]D6 ∈ Ψ4(A).

P0 and f(|D|) for f ∈ S(R) are smoothing.
Michaª Eckstein (KCIK & CC) (Non)perturbative Spectral Action Kolkata, 30 Nov 2018 10 / 28
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Dimension spectrum � de�nitions

A regular spectral triple (A,H,D) of dimension p has a dimension spectrum Sd
if Sd ⊂ C is discrete and for any T ∈ Ψ0(A), the function

ζT,D(s) := Tr T |D|−s, de�ned for <(s) > p,

extends meromorphically to C with poles located in Sd.
We say that the dimension spectrum is of order k ∈ N∗ if all of the poles of
functions ζT,D are of the order at most k and simple when k = 1.

If (A,H,D) is not �nitely summable, then ζ1,D does not exist.

If (A,H,D) has an Sd, then ζT,D is meromorphic for any T ∈ ΨC(A).

The extension of ζT,D is in no relation with the extension of ζ1,D.
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Dimension spectrum � examples

(Almost-)commutative geometry

If d = dimM , then Sd(C∞(M), L2(M,S),D/ ) = d− N and it is simple.

Manifolds with conical singularities [J.-M. Lescure (2001)]

If d = dimM , then Sd(A,H,D) = d− N and of order 2.

Fractals [A. Connes, M. Marcolli (2008)]

For (A,H,D) on the ternary Cantor set, Sd is simple and

Sd =
log 2

log 3
− N + i

2π

log 3
Z

Standard Podle± sphere [M.E., B. Iochum, A. Sitarz (2014)]

For (Aq,Hq,Dq) on the standard Podle± sphere, Sd is of order 2 and

Sd = −N + i
2π

log q
Z

Michaª Eckstein (KCIK & CC) (Non)perturbative Spectral Action Kolkata, 30 Nov 2018 12 / 28



Dimension spectrum � examples

(Almost-)commutative geometry

If d = dimM , then Sd(C∞(M), L2(M,S),D/ ) = d− N and it is simple.

Manifolds with conical singularities [J.-M. Lescure (2001)]

If d = dimM , then Sd(A,H,D) = d− N and of order 2.

Fractals [A. Connes, M. Marcolli (2008)]

For (A,H,D) on the ternary Cantor set, Sd is simple and

Sd =
log 2

log 3
− N + i

2π

log 3
Z

Standard Podle± sphere [M.E., B. Iochum, A. Sitarz (2014)]

For (Aq,Hq,Dq) on the standard Podle± sphere, Sd is of order 2 and

Sd = −N + i
2π

log q
Z

Michaª Eckstein (KCIK & CC) (Non)perturbative Spectral Action Kolkata, 30 Nov 2018 12 / 28



Dimension spectrum � examples

(Almost-)commutative geometry

If d = dimM , then Sd(C∞(M), L2(M,S),D/ ) = d− N and it is simple.

Manifolds with conical singularities [J.-M. Lescure (2001)]

If d = dimM , then Sd(A,H,D) = d− N and of order 2.

Fractals [A. Connes, M. Marcolli (2008)]

For (A,H,D) on the ternary Cantor set, Sd is simple and

Sd =
log 2

log 3
− N + i

2π

log 3
Z

Standard Podle± sphere [M.E., B. Iochum, A. Sitarz (2014)]

For (Aq,Hq,Dq) on the standard Podle± sphere, Sd is of order 2 and

Sd = −N + i
2π

log q
Z

Michaª Eckstein (KCIK & CC) (Non)perturbative Spectral Action Kolkata, 30 Nov 2018 12 / 28



Dimension spectrum � examples

(Almost-)commutative geometry

If d = dimM , then Sd(C∞(M), L2(M,S),D/ ) = d− N and it is simple.

Manifolds with conical singularities [J.-M. Lescure (2001)]

If d = dimM , then Sd(A,H,D) = d− N and of order 2.

Fractals [A. Connes, M. Marcolli (2008)]

For (A,H,D) on the ternary Cantor set, Sd is simple and

Sd =
log 2

log 3
− N + i

2π

log 3
Z

Standard Podle± sphere [M.E., B. Iochum, A. Sitarz (2014)]

For (Aq,Hq,Dq) on the standard Podle± sphere, Sd is of order 2 and

Sd = −N + i
2π

log q
Z

Michaª Eckstein (KCIK & CC) (Non)perturbative Spectral Action Kolkata, 30 Nov 2018 12 / 28



Noncommutative integral

Let (A,H,D) be a regular p-dimensional spectral triple with a dimension
spectrum. For any T ∈ ΨC(A) and any k ∈ Z de�ne∫

−
[k]

T := Res
s=0

sk−1ζT,D(s),

∫
− T :=

∫
−

[1]

T = Res
s=0

ζT,D(s).

If the dimension spectrum of (A,H,D) is of order d, then for s in an open
neighbourhood of any z ∈ C we have the Laurent expansion

ζT,D(s) =

∞∑
k=−d

∫
−

[−k]

T |D|−z (s− z)k.

Remarks

Let (A,H,D) be of dimension p and have a Sd of order d, then:

If T ∈ Ψr(A), with r > p, then
∫ [k]

T = 0 for any k ≥ 1.∫ [d]
is a trace on ΨC(A).
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ζT,D(s) =

∞∑
k=−d

∫
−

[−k]

T |D|−z (s− z)k.

Remarks

Let (A,H,D) be of dimension p and have a Sd of order d, then:

If T ∈ Ψr(A), with r > p, then
∫ [k]

T = 0 for any k ≥ 1.∫ [d]
is a trace on ΨC(A).
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Spectral functions

T p :=
{
H ∈ L(H)

∣∣ H > 0 and ∀ε > 0 Tr H−p−ε <∞, but Tr H−p+ε =∞
}

Let H ∈ T p and K ∈ B(H):

Spectral zeta function:

ζK,H(s) := Tr KH−s =

∞∑
n=0

Tr(Pn(H)K)λn(H)−s, for <(s) > p.

Heat trace:

Tr Ke−tH :=

∞∑
n=0

Tr(Pn(H)K) e−tλn(H), for t > 0.

Γ(s)ζK,H(s)

Tr Ke−tH

TrKf(H/Λ)

M−1

M

L−1

L

Use:

Mellin transform M

Laplace transform L
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Heat traces from heat kernels � di�erential case

Theorem [Gilkey (2004)]

Let be a positive elliptic di�erential op H of order m acting on a vector bundle E
over a closed d-dimensional Riemannian manifold M and let K ∈ C∞(End(E))

TrKe−tH ∼
t↓0

∞∑
k=0

ak(K,H) t(k−d)/m.

Corollary [Gilkey (2004)]

ζK,H admits a meromorphic extension to C with (possibly removable) simple
poles at s = (d− k)/m for k ∈ N and

Res
s=(d−k)/m

(
Γ(s)ζK,H(s)

)
= ak(K,H).
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Heat traces from heat kernels � pseudodi�erential case

Theorem [Gilkey, Grubb, Seeley, . . . (?)]

If H ∈ Ψm(M,E) is positive, elliptic with m > 0, then

Tr e−tH ∼
t↓0

∞∑
k=0

ak(H) t(k−d)/m +

∞∑
`=0

b`(H) t` log t.

Corollary [Gilkey, Grubb (1998)]

ζH admits a meromorphic extension to C with at most double poles at
s = (d− k)/m for k ∈ N and

Res
s=(d−k)/m

(
Γ(s)ζK,H(s)

)
= ak(H), Res

s=−`

(
(s+ l)Γ(s)ζK,H(s)

)
= −b`(H)

But what f(t) ∼
t↓0

∞∑
n=0

ant
−d+n does really mean?
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Asymptotic expansions

Asymptotic scale

(ϕk)k is an asymptotic scale at x0 if, for any k

ϕk(x) 6= 0, for x 6= x0 and ϕk+1(x) = Ox0
(ϕk(x)).

(Extended) asymptotic expansion

Let (ϕk)k∈N be an asymptotic scale at x0 and g a complex function around x0.
The function g has an asymptotic expansion with respect to (ϕk)k if there
exists (ρk)k∈N such that

ρk(x) = Ox0
(ϕk(x)), g(x)−

N∑
k=0

ρk(x) = Ox0
(ϕN (x)), for any N ∈ N.

In this case, we write g(x) ∼
x→x0

∞∑
k=0

ρk(x).
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Convergent expansions

In general, the expansion TrKe−tH ∼
t↓0

∑∞
k=0 ρk(t) diverges for all t>0.

Convergent expansion Tr Ke−tH =
∑∞
k=0 ρk(t) +R∞(t), for t ∈ (0, T ).

Exact expansion Tr Ke−tH =
∑∞
k=0 ρk(t), for t ∈ (0, T ).

Examples from spheres

Let D/ n be the standard Dirac operator on Sn, then

divergent:

On S2 we have Tr e−tD/
2
2 ∼
t↓0

2t−1 − 4
∑∞
k=0

(−1)k

k!
B2k+2

2k+2 tk.

convergent, non-exact:

On S3 we have Tr e−tD/
2
3 =

√
π

2 t−3/2 −
√
π

4 t−1/2 +O0(e−1/t), for all t > 0.

exact:

On S1 we have Tr e−t |D/ 1|
2

= 2 t−1 − 2
∑∞
k=0

(−1)k

k!
B2k+2

k+1 tk, for t ∈ (0, 2π).
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From heat traces to zeta functions

Theorem [M.E., B. Iochum (2018)]

Let H ∈ T p,K ∈ B(H). Assume that

Tr Ke−tH ∼
t↓0

∞∑
k=0

ρk(t), with

ρk(t) :=
∑
z∈Xk

[ d∑
n=0

az,n(K,H) logn t
]
t−z,

Xk := {z ∈ X | − rk+1 < <(z) < −rk}
and

∑
is absolutely conv. ∀ t > 0, k ∈ N.

Then, ζK,H has a meromorphic extension
to C with poles of order at most d+ 1 and
P(ζK,H) ⊂ X and for any z ∈ X and n,

Res
s=z

(s− z)n Γ(s)ζK,H(s)

= (−1)nn! az,n(K,H).
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Classes of cut-o� functions

Tr Ke−tH
L−1

−−−−−−−−−−−−−−−→
inverse Laplace transform

TrKf(H/Λ)

Theorem [Bernstein]

f is completely monotone (f ∈ C∞((0,∞),R) and (−1)n f (n)(x) ≥ 0) if and
only if f(x) = L[φ](x) for all x > 0 for a unique non-negative measure φ on R+.

C := {f = f+ − f−, f± ∈ CM | f(x) ≥ 0, for x > 0},

C0 := {f = L[φ] ∈ C | ∀n ∈ N,
∫ ∞

0

snd |φ| (s) <∞},

Cp := {f ∈ C | f±(x) = O∞(x−p)}, Cp0 := C0 ∩ Cp, for p > 0.

Need f ∈ C, for f to be a Laplace transform.

Need f ∈ C0 to apply L−1 term by term in the expansion of Tr Ke−tH .

Need f ∈ Cp for Tr f(|D|/Λ) <∞.
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Asymptotic expansion of the spectral action

Theorem [M.E., B. Iochum (2018)]

Let (A,H,D) be a p-dimensional spectral triple and T ∈ B(H). Assume that,

Tr Te−t |D| ∼
t↓0

∑∞
k=0 ρk(t), ρk(t) =

∑
z∈Xk

[∑d
n=0 az,n(T, |D|) logn t

]
t−z

and the series de�ning ρk(t) is absolutely convergent for any t > 0 and any k ∈ N.

Then, for any f = L[φ] ∈ Cr0 with r > p,

Tr Tf(|D|/Λ) ∼
Λ→+∞

∞∑
k=0

ψk(Λ), w.r.t. the scale (Λ−rk)k,

with ψk(Λ) =
∑
z∈Xk

Λz
d∑

n=0

(−1)n logn Λ

d∑
m=n

(
m

m−n
)
az,m(T, |D|) fz,m−n ,

az,m(T, |D|) = (−1)m

m!

d+1∑
`=m

Γ`−m−1(z)

∫
−

[`]

T |D|−z,

fz,n :=
∫∞

0
s−z logn(s) dφ(s), Γj(z) := Res

s=z
(s− z)−j−1Γ(s).
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Spectral action on the standard Podle± sphere

The Podle± sphere algebra is generated, for some 0 < q < 1, by A = A∗, B, B∗

subject to the relations

AB = q2BA, AB∗ = q−2B∗A, BB∗ = q−2A(1−A), B∗B = A(1− q2A).

D¡browski�Sitarz spectral triple is equipped with Dq with the spectrum

µn(Dq) = c(q−n−1 − qn+1) and Mn(|Dq|) = 4(n+ 1), n ∈ N.

Theorem [M.E., B. Iochum, A. Sitarz (2014)]

Let f ∈ Cr0 for some r > 0 and denote κ := 2πi
log q . Then, for any t > 0,

S(Dq, f,Λ) =

∞∑
k=0

∑
j∈Z

2∑
n=0

a−2k+κj,n

n∑
m=0

(−1)n−m
(
n
m

)
× f−2k+κj,m (log Λ)n−m Λ−2k+κj .
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Fluctuations of geometry

The spectral triples (A,H,D) and (A,H,DA), with DA = D + A are
equivalent for a suitable A = A∗ ∈ B(H).

Theorem [A. Connes, A. Chamseddine (2006)]

Let (A,H,D) be regular and let A ∈ Ψ0(A). Then, ∀N ∈ N∗, s ∈ C,

|DA|−s = |D|−s +

N∑
n=1

Kn(Y, s)|D|−s mod OP−(N+1)−<(s),

with Kn(Y, s) ∈ Ψ−n(A).

Corollary

Let (A,H,D) be a regular p-dimensional spectral triple with a dimension
spectrum and let A ∈ Ψ0(A). Then, (A,H,DA) will also be regular,
p-dimensional and possessing a dimension spectrum.

The existence of an asymptotic expansion for Tr e−t|D| does not, in general,
imply one for Tr e−t|DA|.
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Fluctuations of spectral action

Theorem [A. Connes, M. Marcolli (2008), M.E., B. Iochum (2018)]

Let (A,H,D) be regular p-dimensional with a simple dimension spectrum and let
A ∈ Ψ0(A). Assume, moreover, that

Tr e−t|DA| =
∑
α∈Sd+ aα(|DA|) t−α + a0(|DA|) + O0(1),

where the, possibly in�nite, series over α is absolutely convergent for all t > 0.

Then, for any f ∈ Cr0 with r > p,

Tr f(|DA| /Λ) =
∑

α∈Sd+

Λα
∫ ∞

0

xα−1f(x)dx

bp−<(α)c∑
n=0

∫
− Pn(α,D,D−1,A) |D|−α

+ f(0)
[
ζD(0) +

p∑
k=1

(−1)k

k

∫
−(AD−1)k

]
+ O∞(1),

where Pn ∈ Ψ−n(A) are polynomials in all variables and of degree n in A:

P0 = 1, P1 = −αAD−1, P2 = α
4 (α+ 2)(AD−1)2 + α2

4 A2D−2, . . .
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Summary

Given an asymptotic expansion for a heat trace one obtains

a meromorphic extension of the corresponding zeta function,
an asymptotic expansion of the spectral action for a class of cut-o�s.

Such an expansion might

have terms log-periodic oscillating with energy,
have terms proportional to (log Λ)n for any n ∈ N,
be convergent and exact for some range of energies.

One needs to study the �uctuations of geometry

but this does not (usually) come for free. . .

Homework: What does it tell us about physics?

Thank you for your attention!
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