New Results from $S U(2)$ and $S U(3)$ Gauge Matrix Models

Sachindeo Vaidya

Centre for High Energy Physics, Indian Institute of Science, Bangalore, India

Current Developments in Quantum Field Theory and Gravity SNBNCBS, Kolkata
3 December 2018

Introduction

(1) Pure Yang-Mills Theory

(2) Quantization and Spectrum of YM Matrix Model

(3) Variation Estimate of Energies
a Comparison with Lattice Data
(5) Including Quarks

- Born-Oppenheimer Approximation
(7) Fermion Energies
(3) Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Quantization and Spectrum of YM Matrix Model

Variation Estimate of Energies
4 Comparison with Lattice Data
(5. Including Quarks
(6) Born-Oppenheimer Approximation
(7) Fermion Energies
(8) Quantum Phases of $S U(2)$ Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Quantization and Spectrum of YM Matrix Model
(3) Variation Estimate of Energies
(4) Comparison with Lattice Data
(5) Including Quarks
a Born-Oppenheimer Approximation
(7) Fermion Energies
(3) Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Quantization and Spectrum of YM Matrix Model
(3) Variation Estimate of Energies
(4) Comparison with Lattice Data
(5) Including Quarks
(6) Born-Oppenheimer Approximation
(7) Fermion Energies
(8) Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Quantization and Spectrum of YM Matrix Model
(3) Variation Estimate of Energies

4 Comparison with Lattice Data
(5) Including Quarks
(6) Born-Oppenheimer Approximation
(7) Fermion Energies
8. Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Quantization and Spectrum of YM Matrix Model
(3) Variation Estimate of Energies

4 Comparison with Lattice Data
(5) Including Quarks

6 Born-Oppenheimer Approximation
(7) Fermion Energies

Introduction

(1) Pure Yang-Mills Theory
(2) Quantization and Spectrum of YM Matrix Model
(3) Variation Estimate of Energies

4 Comparison with Lattice Data
(5) Including Quarks
(6) Born-Oppenheimer Approximation
(7) Fermion Energies
(8) Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Quantization and Spectrum of YM Matrix Model
(3) Variation Estimate of Energies
(4) Comparison with Lattice Data
(5) Including Quarks
(6) Born-Oppenheimer Approximation
(7) Fermion Energies
(8) Quantum Phases of $S U(2)$ Yang-Mills-Dirac Theory

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, hadron masses,
- Recall that the $\operatorname{SU}(N)$ Yang-Mills action is

- The gauge symmetry $A_{\mu} \mapsto u A_{\mu} u^{-1}+u \partial_{\mu} u^{-1}, u(x) \in S U(N)$ is actually a redundancy.
- The configuration space $\mathcal{C}=$ All gauge fields \mathcal{A} modulo all gauge transformations \mathcal{G}.

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, hadron masses,
- Recall that the $S U(N)$ Yang-Mills action is

- The gauge symmetry $A_{\mu} \mapsto u A_{\mu} u^{-1}+u \partial_{\mu} u^{-1}, u(x) \in S U(N)$ is actually a redundancy.
- The configuration space $\mathcal{C}=$ All gauge fields \mathcal{A} modulo all gauge transformations \mathcal{G}.

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, hadron masses,
- Recall that the $S U(N)$ Yang-Mills action is

$$
S_{Y M}=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]
$$

- The gauge symmetry $A_{\mu} \mapsto u A_{\mu} u^{-1}+u \partial_{\mu} u^{-1}, u(x) \in S U(N)$ is actually a redundancy.
- The configuration space $\mathcal{C}=$ All gauge fields \mathcal{A} modulo all gauge transformations \mathcal{G}.

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, hadron masses,
- Recall that the $S U(N)$ Yang-Mills action is

$$
S_{Y M}=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]
$$

- The gauge symmetry $A_{\mu} \mapsto u A_{\mu} u^{-1}+u \partial_{\mu} u^{-1}, u(x) \in S U(N)$ is actually a redundancy.
- The configuration space $\mathcal{C}=$ All gauge fields \mathcal{A} modulo all gauge transformations \mathcal{G}.

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, hadron masses,
- Recall that the $S U(N)$ Yang-Mills action is

$$
S_{Y M}=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]
$$

- The gauge symmetry $A_{\mu} \mapsto u A_{\mu} u^{-1}+u \partial_{\mu} u^{-1}, u(x) \in S U(N)$ is actually a redundancy.
- The configuration space $\mathcal{C}=$ All gauge fields \mathcal{A} modulo all gauge transformations \mathcal{G}.

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above!
Approximation by a simpler model? Many suggestions

- Chiral Lagrangians, Nambu-Jona-Lasinio model
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, AdS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations.
S. Vaidya (IISc)

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

```
Gauge theory is difficult because of all the above!
Approximation by a simpler model? Many suggestions
    - Chiral Lagrangians, Nambu-Jona-Lasinio model
    - Lattice QCD: Discretize space-time, work with holonomies.
    - String theory, AdS/CFT: approximate finite N by infinity.
    - Perhaps other approaches, with their own successes/limitations.
```


Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

$$
\begin{aligned}
& \text { Gauge theory is difficult because of all the above! } \\
& \text { Approximation by a simpler model? Many suggestions ... } \\
& \text { - Chiral Lagrangians, Nambu-Jona-Lasinio model ... } \\
& \text { - Lattice QCD: Discretize space-time, work with holonomies. } \\
& \text { - String theory, AdS/CFT: approximate finite } N \text { by infinity. } \\
& \text { - Perhaps other approaches, with their own successes/limitations. }
\end{aligned}
$$

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above!
Approximation by a simpler model? Many suggestions

- Chiral Lagrangians, Nambu-Jona-Lasinio model
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, AdS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations.

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above!
Approximation by a simpler model? Many suggestions

- Chiral Lagrangians, Nambu-Jona-Lasinio model
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, AdS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations.

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above! Approximation by a simpler model? Many suggestions ...

- Chiral Lagrangians, Nambu-Jona-Lasinio model
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, \triangle dS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations.

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above! Approximation by a simpler model? Many suggestions ...

- Chiral Lagrangians, Nambu-Jona-Lasinio model ...
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, AdS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations.

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above! Approximation by a simpler model? Many suggestions ...

- Chiral Lagrangians, Nambu-Jona-Lasinio model ...
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, AdS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations.

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above! Approximation by a simpler model? Many suggestions ...

- Chiral Lagrangians, Nambu-Jona-Lasinio model ...
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, AdS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations

Why is Yang-Mills Difficult?

- Gauge symmetry: nonholonomic constraints.
- The configuration space \mathcal{C} has non-trivial topology.
- Non-Abelian makes it non-linear: $\left[A_{\mu}, A_{\nu}\right]^{2}$ term.
- It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above! Approximation by a simpler model? Many suggestions ...

- Chiral Lagrangians, Nambu-Jona-Lasinio model ...
- Lattice QCD: Discretize space-time, work with holonomies.
- String theory, AdS/CFT: approximate finite N by infinity.
- Perhaps other approaches, with their own successes/limitations.

Another Approximation: Matrix Models

- Look at Yang-Mills on $S^{3} \times \mathbb{R}$.
- Restrict to a subset \mathcal{M} of gauge fields: keep only the left-invariant ones.
- Remarkably, these form a finite-dimensional space $M_{3 . N^{2}-1}(\mathbb{R})$.
- Gauge group \mathcal{G} is also now finite-dimensional: ad $\operatorname{SU}(N)$.
- This approximation captures (some of) the constraints, nonlinearity, and underlying topology!
- $\mathcal{C}=\mathcal{M} /$ ad $S U(N)$.
- We will study this model both at strong coupling (g large) as well as weak coupling $(g \rightarrow 0)$.

Another Approximation: Matrix Models

- Look at Yang-Mills on $S^{3} \times \mathbb{R}$.
- Restrict to a subset \mathcal{M} of gauge fields: keep only the left-invariant ones.
- Remarkably, these form a finite-dimensional space $M_{3, N^{2}-1}(\mathbb{R})$.
- Gauge group \mathcal{G} is also now finite-dimensional: ad $\operatorname{SU}(N)$.
- This approximation captures (some of) the constraints, nonlinearity, and underlying topology!
- $\mathcal{C}=\mathcal{M} / \operatorname{ad} \operatorname{SU}(N)$.
- We will study this model both at strong coupling (g large) as well as weak coupling ($g \rightarrow 0$).

Another Approximation: Matrix Models

- Look at Yang-Mills on $S^{3} \times \mathbb{R}$.
- Restrict to a subset \mathcal{M} of gauge fields: keep only the left-invariant ones.
- Remarkably, these form a finite-dimensional space $M_{3, N^{2}-1}(\mathbb{R})$.
- Gauge group \mathcal{G} is also now finite-dimensional: ad $\operatorname{SU}(N)$.
- This approximation captures (some of) the constraints, nonlinearity, and underlying topology!
- $\mathcal{C}=\mathcal{M} /$ ad $\operatorname{SU}(N)$.
- We will study this model both at strong coupling (g large) as well as weak coupling $(g \rightarrow 0)$.

Another Approximation: Matrix Models

- Look at Yang-Mills on $S^{3} \times \mathbb{R}$.
- Restrict to a subset \mathcal{M} of gauge fields: keep only the left-invariant ones.
- Remarkably, these form a finite-dimensional space $M_{3, N^{2}-1}(\mathbb{R})$.
- Gauge group \mathcal{G} is also now finite-dimensional: ad $\operatorname{SU}(N)$.
- This approximation captures (some of) the constraints, nonlinearity, and underlying topology!
- $\mathcal{C}=\mathcal{M} / \mathrm{ad} \operatorname{SU}(N)$.
- We will study this model both at strong coupling (g large) as well as weak coupling ($g \rightarrow 0$)

Another Approximation: Matrix Models

- Look at Yang-Mills on $S^{3} \times \mathbb{R}$.
- Restrict to a subset \mathcal{M} of gauge fields: keep only the left-invariant ones.
- Remarkably, these form a finite-dimensional space $M_{3, N^{2}-1}(\mathbb{R})$.
- Gauge group \mathcal{G} is also now finite-dimensional: ad $\operatorname{SU}(N)$.
- This approximation captures (some of) the constraints, nonlinearity, and underlying topology!
- We will study this model both at strong coupling (g large) as well as weak coupling ($g \rightarrow 0$)

Another Approximation: Matrix Models

- Look at Yang-Mills on $S^{3} \times \mathbb{R}$.
- Restrict to a subset \mathcal{M} of gauge fields: keep only the left-invariant ones.
- Remarkably, these form a finite-dimensional space $M_{3, N^{2}-1}(\mathbb{R})$.
- Gauge group \mathcal{G} is also now finite-dimensional: ad $\operatorname{SU}(N)$.
- This approximation captures (some of) the constraints, nonlinearity, and underlying topology!
- $\mathcal{C}=\mathcal{M} / \operatorname{ad} \operatorname{SU}(N)$.
- We will study this model both at strong coupling (g large) as well as weak coupling ($g \rightarrow 0$)

Another Approximation: Matrix Models

- Look at Yang-Mills on $S^{3} \times \mathbb{R}$.
- Restrict to a subset \mathcal{M} of gauge fields: keep only the left-invariant ones.
- Remarkably, these form a finite-dimensional space $M_{3, N^{2}-1}(\mathbb{R})$.
- Gauge group \mathcal{G} is also now finite-dimensional: ad $\operatorname{SU}(N)$.
- This approximation captures (some of) the constraints, nonlinearity, and underlying topology!
- $\mathcal{C}=\mathcal{M} / \operatorname{ad} \operatorname{SU}(N)$.
- We will study this model both at strong coupling (g large) as well as weak coupling ($g \rightarrow 0$).

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$.
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i c}=0$.
- DONE (well, almost!)

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i c}=0$.
- DONE (well, almost!)

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i c}=0$.
- DONE (well, almost!)

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i c}=0$.
- DONE (well, almost!)

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$.
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i C}=0$.
- DONE (well, almost!).

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$.
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i c}=0$.

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$.
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i c}=0$.
- DONE

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):

- Start with the Maurer-Cartan form Ω of $\operatorname{SU}(N)$.
- Pullback of Ω to to S^{3} gives the left-invariant gauge field $M_{i a}$, $i=1,2,3 ; a=1, \cdots N^{2}-1$.
- Pullback of the Maurer-Cartan equation gives the curvature $F_{i j}^{a}=-\epsilon_{i j k} M_{k a}+f_{a b c} M_{j b} M_{k c}$.
- Chromoelectric field $E_{i a}=d M_{i a} / d t$. Chromomagnetic field $B_{i a}=\epsilon_{i j k} F_{j k}^{a} / 2$.
- Lagrangian $L=\frac{1}{2 g^{2}}\left(E_{i a} E_{i a}-B_{i a} B_{i a}\right)$.
- Gauss law constraint $G_{a}=f_{a b c} E_{i b} M_{i c}=0$.
- DONE (well, almost!).

Configuration space YM Matrix Model

- The \mathcal{C} for pure $S U(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} S U(N)$.
- $\operatorname{dim}(C)$ is $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} \operatorname{SU}(N)$.
- Those transforming according to the trivial representation are colorless, while those transforming nontrivially are coloured.

Configuration space YM Matrix Model

- The \mathcal{C} for pure $\operatorname{SU}(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} \operatorname{SU}(N)$.
- $\operatorname{dim}(\mathcal{C})$ is $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $A d S U(N)$.
- Those transforming according to the trivial representation are colorless, while those transforming nontrivially are coloured.

Configuration space YM Matrix Model

- The \mathcal{C} for pure $\operatorname{SU}(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} S U(N)$.
- $\operatorname{dim}(\mathcal{C})$ is $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} S U(N)$.
- Those transforming according to the trivial representation are colorless, while those transforming nontrivially are coloured.

Configuration space YM Matrix Model

- The \mathcal{C} for pure $S U(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad~} S U(N)$.
- $\operatorname{dim}(\mathcal{C})$ is $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} S U(N)$.
- Those transforming according to the trivial representation are colorless, while those transforming nontrivially are coloured.

Quantization of the Matrix Model

- The dynamical variables: $M_{i a}$ and and $p_{i a}$ (the Legendre transform of $\frac{d M_{i a}}{d t}=E_{i a}$).
- Quantisation: $\left[M_{i a}, D_{j b}\right]=i \delta_{i j} \delta_{a b}$.
- The Hamiltonian is

- The overall factor of R comes from dimensional analysis.
- The physical states $\left|\psi_{\text {nhys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {nhys }}\right\rangle=0$.

Quantization of the Matrix Model

- The dynamical variables: $M_{i a}$ and and $p_{i a}$ (the Legendre transform of $\frac{d M_{i a}}{d t}=E_{i a}$).
- Quantisation: $\left[M_{i a}, p_{j b}\right]=i \delta_{i j} \delta_{a b}$.
- The Hamiltonian is

- The overall factor of R comes from dimensional analysis.
- The physical states $\left|\psi_{\text {nhys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$.

Quantization of the Matrix Model

- The dynamical variables: $M_{i a}$ and and $p_{i a}$ (the Legendre transform of $\frac{d M_{i a}}{d t}=E_{i a}$).
- Quantisation: $\left[M_{i a}, p_{j b}\right]=i \delta_{i j} \delta_{a b}$.
- The Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} p_{i a} p_{i a}}{2}+B_{i a} B_{i a}\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The physical states $\left|\psi_{\text {phys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$.

Quantization of the Matrix Model

- The dynamical variables: $M_{i a}$ and and $p_{i a}$ (the Legendre transform of $\frac{d M_{i a}}{d t}=E_{i a}$).
- Quantisation: $\left[M_{i a}, p_{j b}\right]=i \delta_{i j} \delta_{a b}$.
- The Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} p_{i a} p_{i a}}{2}+B_{i a} B_{i a}\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The physical states $\left|\psi_{\text {phys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$

Quantization of the Matrix Model

- The dynamical variables: $M_{i a}$ and and $p_{i a}$ (the Legendre transform of $\frac{d M_{i a}}{d t}=E_{i a}$).
- Quantisation: $\left[M_{i a}, p_{j b}\right]=i \delta_{i j} \delta_{a b}$.
- The Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} p_{i a} p_{i a}}{2}+B_{i a} B_{i a}\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The physical states $\left|\psi_{\text {phys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$.

Energy Spectrum

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$ $\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)$
- Perturbation theory is not analytic at $g=0$.
- We estimate the energies by variational calculation instead.
- Choose colorless eigenstates of H_{0} as trial wavefunctions, organized by this spin.
- Energies depend on g, R, and possibly an overall additive constant C (zero point eneray): $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.

Energy Spectrum

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$ $\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)$
- Perturbation theory is not analytic at $g=0$.
- We estimate the energies by variational calculation instead.
- Choose colorless eigenstates of H_{0} as trial wavefunctions, organized by this spin.
- Energies depend on g, R, and possibly an overall additive constant c (zero point energy): $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.

Energy Spectrum

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$ $\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)$
- Perturbation theory is not analytic at $g=0$.
- We estimate the energies by variational calculation instead.
- Choose colorless eigenstates of H_{0} as trial wavefunctions, organized by this spin.
- Energies depend on g, R and possibly an overall additive constant c (zero point energy): $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.

Energy Spectrum

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$ $\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)$
- Perturbation theory is not analytic at $g=0$.
- We estimate the energies by variational calculation instead.
- Choose colorless eigenstates of H_{0} as trial wavefunctions, organized by this spin.
- Energies depend on g, R, and possibly an overall additive constant c (zero point energy): $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.

Energy Spectrum

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$

$$
\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)
$$

- Perturbation theory is not analytic at $g=0$.
- We estimate the energies by variational calculation instead.
- Choose colorless eigenstates of H_{0} as trial wavefunctions, organized by this spin.
- Energies depend on g, R, and possibly an overall additive constant c (zero point energy): $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.

Energy Spectrum

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$ $\frac{1}{R}\left(-\frac{g}{2} \epsilon_{j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)$
- Perturbation theory is not analytic at $g=0$.
- We estimate the energies by variational calculation instead.
- Choose colorless eigenstates of H_{0} as trial wavefunctions, organized by this spin.
- Energies depend on g, R, and possibly an overall additive constant c (zero point energy): $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.

Energy Spectrum

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$ $\frac{1}{R}\left(-\frac{g}{2} f_{i j} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)$
- Perturbation theory is not analytic at $g=0$.
- We estimate the energies by variational calculation instead.
- Choose colorless eigenstates of H_{0} as trial wavefunctions, organized by this spin.
- Energies depend on g, R, and possibly an overall additive constant c (zero point energy): $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.

Energy Difference Ratios

- Remarkably, we find that the ratios of energy differences become independent of g for large g.

Energy Difference Ratios

- Remarkably, we find that the ratios of energy differences become independent of g for large g.

Ratios of mass differences $\frac{\mathcal{E}(X)-\mathcal{E}\left(0^{+}\right)}{\mathcal{E}\left(2^{+}\right)-\mathcal{E}\left(0^{+}\right)}$as a function of g. (The black, blue and red curves represent spin-0, spin-1 and spin-2 levels respectively.)

- $X\left(J^{C}\right)=2^{+}, 0^{+}, 2^{+}, 0^{*+}, 1^{-}, 2^{*+}, 1^{-}, 0^{*+}, 2^{-}$.

Renormalization Group Equation

- Neither R nor the bare coupling g are directly measurable.
- For sensible results as $R \rightarrow \infty$, make g a function of R such that all energies have well-defined values in this limit.
- Make $g=g(R)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(R)$.

Renormalization Group Equation

- Neither R nor the bare coupling g are directly measurable.
- For sensible results as $R \rightarrow \infty$, make g a function of R such that all energies have well-defined values in this limit.
- Make $g=g(R)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(R)$.

Renormalization Group Equation

- Neither R nor the bare coupling g are directly measurable.
- For sensible results as $R \rightarrow \infty$, make g a function of R such that all energies have well-defined values in this limit.
- Make $g=g(R)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(R)$.

Renormalization Group Equation

- Neither R nor the bare coupling g are directly measurable.
- For sensible results as $R \rightarrow \infty$, make g a function of R such that all energies have well-defined values in this limit.
- Make $g=g(R)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(R)$.

Integrated Renormalization Group Equation

- In practice it is easier to make $R(g)=\frac{\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]}{m\left(2^{+}\right)-m\left(0^{+}\right)}$.
$R(g)$ versus g.

- Here we have used $m\left(2^{+}\right)-m\left(0^{+}\right)=460 \mathrm{MeV}$.
- Actual numerical values of masses also need asymptotic $c(R) / R$.
- Fix the physical mass of our lowest glueball to be within the range predicted by lattice simulations ($1580-1840 \mathrm{MeV}$).
- Choosing 1050 MeV for asymptotic $c(R) / R$, we get the best fit with lattice predictions.
- Actual numerical values of masses also need asymptotic $c(R) / R$.
- Fix the physical mass of our lowest glueball to be within the range predicted by lattice simulations ($1580-1840 \mathrm{MeV}$).
- Choosing 1050 MeV for asymptotic $c(R) / R$, we get the best fit with lattice predictions.
- Actual numerical values of masses also need asymptotic $c(R) / R$.
- Fix the physical mass of our lowest glueball to be within the range predicted by lattice simulations ($1580-1840 \mathrm{MeV}$).
- Choosing 1050 MeV for asymptotic $c(R) / R$, we get the best fit with lattice predictions.

Glueball states J^{C}	Physical masses from matrix model (MeV)	Physical masses from lattice QCD (MeV)
0^{+}	1757.08^{\dagger}	1580-1840
2^{+}	2257.08^{\dagger}	2240-2540
0^{+}	2681.45	2405-2715
0*+	3180.82	2360-2980
1^{-}	3235.41	2810-3150
2^{+}	3054.97	2850-3230
0*+	3568.02	3400-3880
1^{-}	3535.66	3600-4060
2^{*+}	3435.75	3660-4120
2^{-}	4050.14	3765-4255

$$
\dagger \equiv \text { (input) }
$$

$\square \equiv$ Lattice $\bullet \equiv$ Matrix Model. $\quad 0^{++}$and 2^{++}are used in Matrix Model input.
For 0^{*++}, lattice has poor statistics near the continuum limit, so finite volume effects are substantial.
For 2^{*++}, lattice has large errors due to the presence of two other glueball states in the vicinity.
THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.

Adding Fermions

- But you ask: What about the quarks?
- We will consider massless fundamental fermions (quarks!) coupled to the $S U(2)$ matrix model.
- The fundamental fermion $\lambda_{\alpha a} \equiv \lambda_{A}$ couples to the gauge field via

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.

Adding Fermions

- But you ask: What about the quarks?
- We will consider massless fundamental fermions (quarks!) coupled to the $S U(2)$ matrix model.
- The fundamental fermion $\lambda_{\alpha a} \equiv \lambda_{A}$ couples to the gauge field via

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.

Adding Fermions

- But you ask: What about the quarks?
- We will consider massless fundamental fermions (quarks!) coupled to the $S U(2)$ matrix model.
- The fundamental fermion $\lambda_{\alpha a} \equiv \lambda_{A}$ couples to the gauge field via

$$
H^{f f} \equiv\left(-\left(\lambda_{A}\right)^{\dagger} \lambda_{A}-\frac{1}{2}\left(\tau_{b}\right)_{A C}\left(\lambda_{A}\right)^{\dagger} \sigma_{i} \lambda_{C} M_{i b}\right)=\left(\lambda_{A}\right)^{\dagger} \mathcal{H}_{A B}^{f f} \lambda_{B}
$$

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.

Adding Fermions

- But you ask: What about the quarks?
- We will consider massless fundamental fermions (quarks!) coupled to the $S U(2)$ matrix model.
- The fundamental fermion $\lambda_{\alpha a} \equiv \lambda_{A}$ couples to the gauge field via

$$
H^{f f} \equiv\left(-\left(\lambda_{A}\right)^{\dagger} \lambda_{A}-\frac{1}{2}\left(\tau_{b}\right)_{A C}\left(\lambda_{A}\right)^{\dagger} \sigma_{i} \lambda_{C} M_{i b}\right)=\left(\lambda_{A}\right)^{\dagger} \mathcal{H}_{A B}^{f f} \lambda_{B}
$$

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- Then the effective Hamiltonian is simply

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

$$
\Phi=\operatorname{Tr}\left[P_{n}\left(\partial_{i a} H^{f f}\right) Q_{n}\left(\frac{1}{H-E_{n}}\right)^{2} Q_{n}\left(\partial_{i a} H^{f f}\right) P_{n}\right], \quad Q_{n}=\mathbf{1}-P_{n}
$$

- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- Φ (or $\left.g_{/ J}\right)$ is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.
- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

$$
\begin{aligned}
G_{I J} & =\frac{1}{g_{0}} \operatorname{Tr}\left[P\left(\partial_{I} P\right)\left(\partial_{J} P\right) P\right]=g_{I J}+\frac{i}{2} F_{I J} \\
\Phi & =\delta_{I J} g_{I J}
\end{aligned}
$$

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- Φ (or $a_{l, 1}$) is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.
- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

$$
\begin{aligned}
G_{I J} & =\frac{1}{g_{0}} \operatorname{Tr}\left[P\left(\partial_{l} P\right)\left(\partial_{J} P\right) P\right]=g_{I J}+\frac{i}{2} F_{I J} \\
\Phi & =\delta_{l J} g_{I J}
\end{aligned}
$$

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- $\Phi\left(\right.$ or $\left.g_{I J}\right)$ is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.
- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

$$
\begin{aligned}
G_{I J} & =\frac{1}{g_{0}} \operatorname{Tr}\left[P\left(\partial_{l} P\right)\left(\partial_{J} P\right) P\right]=g_{I J}+\frac{i}{2} F_{I J} \\
\Phi & =\delta_{I J} g_{I J}
\end{aligned}
$$

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- $\Phi\left(\right.$ or $\left.g_{I J}\right)$ is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- For the 1-fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} C_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle$, the equation $H^{f f}\left|\psi^{(1)}\right\rangle=E\left|\psi^{(1)}\right\rangle$ becomes:

- We therefore investigate

$$
\operatorname{det}\left(\mathcal{H}_{A B}^{f f}-\lambda \mathbb{I}\right)=0
$$

the eigenvalue equation for a 4×4 matrix.

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- For the 1-fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} c_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle$, the equation $H^{f f}\left|\psi^{(1)}\right\rangle=E\left|\psi^{(1)}\right\rangle$ becomes:

$$
\mathcal{H}_{A B}^{f f} C_{B}=E c_{A}, \quad \mathcal{H}^{f f}=-\frac{1}{2} \sigma_{i} \otimes \tau_{a} M_{i a}
$$

- We therefore investigate

$$
\operatorname{det}\left(\mathcal{H}_{A B}^{f f}-\lambda I\right)=0
$$

the eigenvalue equation for a 4×4 matrix.

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- For the 1-fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} c_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle$, the equation $H^{f f}\left|\psi^{(1)}\right\rangle=E\left|\psi^{(1)}\right\rangle$ becomes:

$$
\mathcal{H}_{A B}^{f f} C_{B}=E c_{A}, \quad \mathcal{H}^{f f}=-\frac{1}{2} \sigma_{i} \otimes \tau_{a} M_{i a}
$$

- We therefore investigate

$$
\operatorname{det}\left(\mathcal{H}_{A B}^{f f}-\lambda \mathbb{I}\right)=0
$$

the eigenvalue equation for a 4×4 matrix.

Fundamental Fermions

- The characteristic equation (with $x=\frac{E}{\left(\frac{1}{3} \operatorname{Tr} M^{\top} M\right)^{1 / 2}}$) is

$$
x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}=0
$$

where

$$
\mathbf{g} \equiv \frac{\operatorname{det} M}{\left(\frac{1}{3} \operatorname{Tr}\left(M^{T} M\right)\right)^{3 / 2}}, \quad \mathbf{h} \equiv \frac{1}{16}\left[\frac{2 \operatorname{Tr}\left(M^{T} M\right)^{2}}{\left(\frac{1}{3} \operatorname{Tr}\left(M^{T} M\right)\right)^{2}}-9\right]
$$

- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us an unexpected identity obeyed by 3×3 real matrices:

- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us an unexpected identity obeyed by 3×3 real matrices:
- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us an unexpected identity obeyed by 3×3 real matrices:
- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us an unexpected identity obeyed by 3×3 real matrices:

$$
27 \mathbf{g}^{2}-54 \mathbf{g}^{4}+162 \mathbf{h}-432 \mathbf{g}^{2} h-576 \mathbf{h}^{2}+512 \mathbf{h}^{3} \geq 0
$$

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- The effective potential shows a divergent behaviour whenever the ground state degeneracy jumps.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- The effective potential shows a divergent behaviour whenever the ground state degeneracy jumps.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- The effective potential shows a divergent behaviour whenever the ground state degeneracy jumps.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- The effective potential shows a divergent behaviour whenever the ground state degeneracy jumps.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- The effective potential shows a divergent behaviour whenever the ground state degeneracy jumps.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?

- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential

where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.
- The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:

- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential
$\Phi_{\text {bulk }}^{(2)}=\frac{6}{\mathbf{f}^{2}} \frac{-x_{1}^{6}+5 x_{1}^{4}+4(9 / 16-\mathbf{h})\left(1-7 x_{1}^{2} / 3\right)}{\left(3 x_{1}^{4}-6 x_{1}^{2}+4(9 / 16-\mathbf{h})\right)^{2}}, \quad \mathbf{f}^{2}=\frac{1}{3} \operatorname{Tr} M^{\top} M$.
where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.
- The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:
- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential
$\Phi_{\text {bulk }}^{(2)}=\frac{6}{\mathbf{f}^{2}} \frac{-x_{1}^{6}+5 x_{1}^{4}+4(9 / 16-\mathbf{h})\left(1-7 x_{1}^{2} / 3\right)}{\left(3 x_{1}^{4}-6 x_{1}^{2}+4(9 / 16-\mathbf{h})\right)^{2}}, \quad \mathbf{f}^{2}=\frac{1}{3} \operatorname{Tr} M^{T} M$.
where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.
The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:

- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential

$$
\Phi_{\text {bulk }}^{(2)}=\frac{6}{\mathbf{f}^{2}} \frac{-x_{1}^{6}+5 x_{1}^{4}+4(9 / 16-\mathbf{h})\left(1-7 x_{1}^{2} / 3\right)}{\left(3 x_{1}^{4}-6 x_{1}^{2}+4(9 / 16-\mathbf{h})\right)^{2}}, \quad \mathbf{f}^{2}=\frac{1}{3} \operatorname{Tr} M^{\top} M
$$

where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.

- The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:

$$
\Phi_{\text {edge }}^{(2)}=\frac{2}{9 \mathbf{f}^{2}} \frac{9-6 x_{1}^{2}+5 x_{1}^{4}}{x_{1}^{2}\left(1-x_{1}^{2}\right)^{2}} \rightarrow \frac{2}{9 a^{2}} \frac{1}{\left(1+x_{1}\right)^{2}}
$$

- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edae $B C$, the dynamics is governed by $\phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region ABC.
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge BC, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region ABC.
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region $A B C$
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region ABC.
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region $A B C$.

Scalar potential for 2 Weyl fermions

- There are therefore three distinct phases of $\operatorname{SU}(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B gauge symmetry is broken and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.
- There are therefore three distinct phases of $S U(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B, gauge symmetry is broken, and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.
- There are therefore three distinct phases of $\operatorname{SU}(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B, gauge symmetry is broken, and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.
- There are therefore three distinct phases of $S U(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B, gauge symmetry is broken, and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.
- For massless Dirac fermions, the situation is similar.
- Now, we can identify four distinct phases.
- There is also a color-spin locked phase, corresponding to the corner B.
- For massless Dirac fermions, the situation is similar.
- Now, we can identify four distinct phases.
- There is also a color-spin locked phase, corresponding to the corner B.
- For massless Dirac fermions, the situation is similar.
- Now, we can identify four distinct phases.
- There is also a color-spin locked phase, corresponding to the corner B.

Summary I

- A natural reduction of $S U(N) \mathrm{YM}$ on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- Good agreement with lattice predictions for glueball masses.

Summary I

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- Good aqreement with lattice predictions for glueball masses.

Summary I

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- Good agreement with lattice predictions for glueball masses.

Summary I

- A natural reduction of $S U(N) \mathrm{YM}$ on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- Good agreement with lattice predictions for glueball masses.

Summary I

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- Good agreement with lattice predictions for glueball masses.

Summary II

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)

Summary II

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)

Summary II

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)

Summary II

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)

Ongoing Work and Outlook

- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ_{t}.
- Relation between χ_{t} and the mass of η^{\prime}.

A much deeper puzzle: why does this model work so well?

Ongoing Work and Outlook

- Investigate the glueball spectrum for $S U(4), S U(5), S U(6), \cdots$.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ t.
- Relation between χ_{t} and the mass of η^{\prime}.

A much deener puzzle: why does this model work so well?

Ongoing Work and Outlook

- Investigate the glueball spectrum for $S U(4), S U(5), S U(6), \cdots$.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ_{t}.
- Relation between χ_{t} and the mass of η^{\prime}.

A much deeper puzzle: why does this model work so well?

Ongoing Work and Outlook

- Investigate the glueball spectrum for $S U(4), S U(5), S U(6), \cdots$.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ_{t}.
- Relation between χ_{t} and the mass of η^{\prime}.

A much deeper puzzle: why does this model work so well?

This is joint work with

- Nirmalendu Acharyya, AP Balachandran, Mahul Pandey, Sambuddha Sanyal, G. Mohankarthik
- Lattice data is taken from Morningstar and Peardon, Phys. Rev D 56, 4043 (1997); Chen et al Phys. Rev D. 73014516 (2006).

$$
A_{i a}=\frac{1}{\sqrt{2}}\left(M_{i a}+\frac{\partial}{\partial M_{i a}}\right), \quad A_{i a}^{\dagger}=\frac{1}{\sqrt{2}}\left(M_{i a}-\frac{\partial}{\partial M_{i a}}\right) \Longrightarrow\left[A_{i a}, A_{j b}^{\dagger}\right]=\delta_{i a} \delta_{j b}
$$

- The oscillator vacuum is $\langle M \mid 0\rangle=\frac{1}{\pi^{6}} e^{-\frac{\operatorname{Tr}\left(M^{T} M\right)}{2}}$
- Spin-0:

$$
\begin{aligned}
& \left|\psi_{1}^{0}\right\rangle=|0\rangle \\
& \left|\psi_{2}^{0}\right\rangle=A_{i a}^{\dagger} A_{i a}^{\dagger}|0\rangle \\
& \left|\psi_{3}^{0}\right\rangle=\epsilon_{i j k} f_{a b c} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger}|0\rangle \\
& \left|\psi_{4}^{0}\right\rangle=A_{i a}^{\dagger} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j b}^{\dagger}|0\rangle \\
& \left|\psi_{5}^{0}\right\rangle=A_{i a}^{\dagger} A_{i b}^{\dagger} A_{j a}^{\dagger} A_{j b}^{\dagger}|0\rangle \\
& \left|\psi_{6}^{0}\right\rangle=d_{a b e} d_{c d e} A_{i a}^{\dagger} A_{i b}^{\dagger} A_{j c}^{\dagger} A_{j d}^{\dagger}|0\rangle \\
& \left|\psi_{7}^{0}\right\rangle=\epsilon_{i j k} f_{a b c} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger} A_{l d}^{\dagger} A_{l d}^{\dagger}|0\rangle \\
& \left|\psi_{8}^{0}\right\rangle=\epsilon_{i j k} f_{a b c} d_{a_{1} b_{1} e} d_{a_{2} c e} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{k a_{1}}^{\dagger} A_{l b_{1}}^{\dagger} A_{l a_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{9}^{0}\right\rangle=A_{i a}^{\dagger} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger} A_{k c}^{\dagger}|0\rangle \\
& \left|\psi_{10}^{0}\right\rangle=A_{i a}^{\dagger} A_{i b}^{\dagger} A_{j b}^{\dagger} A_{j c}^{\dagger} A_{k c}^{\dagger} A_{k a}^{\dagger}|0\rangle \\
& \left|\psi_{11}^{0}\right\rangle=\epsilon_{i j k} \epsilon_{I m n} A_{i a}^{\dagger} A_{l a}^{\dagger} A_{j b}^{\dagger} A_{m b}^{\dagger} A_{k c}^{\dagger} A_{n c}^{\dagger}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left|\psi_{13}^{0}\right\rangle=d_{a b c} d_{d e f} A_{i a}^{\dagger} A_{i d}^{\dagger} A_{j b}^{\dagger} A_{j e}^{\dagger} A_{k c}^{\dagger} A_{k f}^{\dagger}|0\rangle \\
& \left|\psi_{14}^{0}\right\rangle=d_{b_{1} c_{1} d} d_{b_{2} c_{2} d} A_{i a}^{\dagger} A_{i a}^{\dagger} A_{j b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k b_{2}}^{\dagger} A_{k c_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{15}^{0}\right\rangle=\epsilon_{i_{1} j_{1} k_{1}} f_{a_{1} b_{1} c_{1}} \epsilon_{i_{2} j_{2} k_{2}} f_{a_{2} b_{2} c_{2}} d_{c_{1} d_{1} e} d_{c_{2} d_{2} e} A_{1_{1} a_{1}}^{\dagger} A_{j_{1} b_{1}}^{\dagger} A_{k_{1} d_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{j_{2} b_{2}}^{\dagger} A_{k_{2} d_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{16}^{0}\right\rangle=d_{a b c} d_{a d_{1} e_{1}} d_{a d_{2} e_{2}} d_{a d_{3} e_{3}} A_{i d_{1}}^{\dagger} A_{i e_{1}}^{\dagger} A_{j d_{2}}^{\dagger} A_{j e_{2}}^{\dagger} A_{k d_{3}}^{\dagger} A_{k e_{3}}^{\dagger}|0\rangle
\end{aligned}
$$

- $f_{a b c}$ and $d_{a b c}$ are the structure constants of $S U(3)$.

$$
\begin{aligned}
& \left|\psi_{1}^{1}\right\rangle=d_{a b c} A_{j b}^{\dagger} A_{j c}^{\dagger} A_{i a}^{\dagger}|0\rangle \\
& \left|\psi_{2}^{1}\right\rangle=\epsilon_{j k l} d_{a b_{1} c_{1}} f_{a b_{2} c_{2}} A_{i b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k b_{2}}^{\dagger} A_{l c_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{3}^{1}\right\rangle=d_{a c e} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger} A_{k e}^{\dagger}|0\rangle \\
& \left|\psi_{4}^{1}\right\rangle=d_{a c e} A_{i b}^{\dagger} A_{j b}^{\dagger} A_{j a}^{\dagger} A_{k c}^{\dagger} A_{k e}^{\dagger}|0\rangle \\
& \left|\psi_{5}^{1}\right\rangle=d_{a c e} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j c}^{\dagger} A_{k e}^{\dagger} A_{k b}^{\dagger}|0\rangle \\
& \left|\psi_{6}^{1}\right\rangle=d_{a b c} f_{b c_{1} b_{2}} f_{c c_{2} b_{1}} A_{i a}^{\dagger} A_{j b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k b_{2}}^{\dagger} A_{k c_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{7}^{1}\right\rangle=\epsilon_{j k l} d_{a b c} f_{a d e} A_{i b}^{\dagger} A_{j c}^{\dagger} A_{k d}^{\dagger} A_{l e}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}|0\rangle \\
& \left|\psi_{8}^{1}\right\rangle=\epsilon_{j k l} d_{a b_{1} c_{1}} f_{a_{2} b_{2}} A_{i a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k a_{2}}^{\dagger} A_{l b_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{9}^{1}\right\rangle=\epsilon_{i j k} d_{a b_{1} c_{1}} d_{a_{2} b_{2}} A_{j a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{k c_{1}}^{\dagger} A_{l a_{2}}^{\dagger} A_{l b_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{10}^{1}\right\rangle=\epsilon_{i j k} d_{a b_{1} c_{1}} f_{b b_{2} c_{2}} A_{1_{1} b_{1}}^{\dagger} A_{1_{1} c_{1}}^{\dagger} A_{l a}^{\dagger} A_{l b}^{\dagger} A_{j b_{2}}^{\dagger} A_{k c_{2}}^{\dagger}|0\rangle
\end{aligned}
$$

Spin-2

$$
\begin{aligned}
& \left|\psi_{1}^{2}\right\rangle=\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{2}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}\left(A_{i a_{2}}^{\dagger} A_{j i_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{i a_{2} a_{2}}^{\dagger} A_{j a_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{3}^{2}\right\rangle=\left(A_{i a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{j b_{1}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{l b_{1}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{4}^{2}\right\rangle=d_{a b c} d_{a d e} A_{i_{1} b}^{\dagger} A_{i_{1} c}^{\dagger}\left(A_{i d}^{\dagger} A_{j e}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l d}^{\dagger} A_{l e}^{\dagger}\right)|0\rangle \\
& \left|\psi_{5}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{6}^{2}\right\rangle=\frac{1}{2} d_{a b c}\left(\epsilon_{i k l} A_{j a_{1}}^{\dagger} A_{k a_{1}}^{\dagger}+\epsilon_{j k l} A_{i a_{1}}^{\dagger} A_{k a_{1}}^{\dagger}\right) A_{l a}^{\dagger} A_{m b}^{\dagger} A_{m c}^{\dagger}|0\rangle \\
& \left|\psi_{7}^{2}\right\rangle=\frac{1}{2} d_{a b c}\left(\epsilon_{i k l} A_{j a}^{\dagger}+\epsilon_{j k l} A_{i a}^{\dagger}\right) A_{k b}^{\dagger} A_{l a_{1}}^{\dagger} A_{m a_{1}}^{\dagger} A_{m c}^{\dagger}|0\rangle \\
& \left|\psi_{8}^{2}\right\rangle=\epsilon_{k l m} f_{a b c} d_{d a_{1} a} d_{d a_{2} b_{2}} A_{k a_{1}}^{\dagger} A_{l b}^{\dagger} A_{m c}^{\dagger}\left(A_{i a_{2}}^{\dagger} A_{j b_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{9}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} a_{2}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{10}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} a_{1}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{11}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{a b_{2} c_{2}} A_{i_{1} b_{1}}^{\dagger} A_{i_{1} c_{1}}^{\dagger} A_{i_{2} b_{2}}^{\dagger} A_{i_{2} c_{2}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{12}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}\left(A_{i a_{2}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger} A_{j b_{2}}^{\dagger}-A_{l_{2}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger} A_{l b_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{13}^{2}\right\rangle=d_{a_{2} b_{2}} d_{a c_{2} e_{2}} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger}\left(A_{i c_{2}}^{\dagger} A_{j d_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l c_{2}}^{\dagger} A_{l d_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{14}^{2}\right\rangle=\frac{1}{2}\left(\epsilon_{i k l} A_{j b}^{\dagger} A_{k b}^{\dagger}+\epsilon_{j k l} A_{i b}^{\dagger} A_{k b}^{\dagger}\right) \epsilon_{m n p} d_{a b_{1} c_{1} f_{b b_{2} c_{2}} A_{l b_{1}}^{\dagger} A_{m c_{1}}^{\dagger} A_{n b_{2}}^{\dagger} A_{p c_{2}}^{\dagger}|0\rangle} \\
& \left|\psi_{15}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{a b_{2} c_{2}} A_{l b_{1}}^{\dagger} A_{l c_{1}}^{\dagger} A_{m b_{2}}^{\dagger} A_{m c_{2}}^{\dagger}\left(\frac{1}{2}\left(A_{i a}^{\dagger} A_{j b}^{\dagger}+A_{j a}^{\dagger} A_{i b}^{\dagger}\right)-\frac{1}{3} \delta_{i j} A_{l a_{2}}^{\dagger} A_{l c_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{16}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{b b_{2} c_{2}} A_{i_{1} a}^{\dagger} A_{i_{1} b}^{\dagger} A_{j_{1} b_{1}}^{\dagger} A_{j_{1} c_{1}}^{\dagger}\left(A_{i a}^{\dagger} A_{j b}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l b}^{\dagger}\right)|0\rangle \\
& \left|\psi_{17}^{2}\right\rangle=d_{a a_{2} b_{2}} d_{b c_{2} a_{1}} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{2}}^{\dagger} A_{j_{1} b_{2}}^{\dagger} A_{j_{1} c_{2}}^{\dagger}\left(A_{i a}^{\dagger} A_{j b}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l b}^{\dagger}\right)|0\rangle \\
& \left|\psi_{18}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{a_{2} b_{2}} f_{b b_{2} c_{2}} A_{i_{1} b_{1}}^{\dagger} A_{i_{1} c_{1}}^{\dagger} A_{i_{2} c_{2}}^{\dagger} A_{i_{2} d_{2}}^{\dagger}\left(A_{i a_{2}}^{\dagger} A_{j e_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a_{2}}^{\dagger} A_{l e_{2}}^{\dagger}\right)|0\rangle
\end{aligned}
$$

New Identities

We discovered some (new?) identities involving 3×8 matrices:

$$
\begin{aligned}
\operatorname{Tr}\left(M^{T} M D_{a} M^{T} M D_{a}\right) & =-\frac{1}{2} \operatorname{Tr}\left(M^{T} M D_{a}\right) \operatorname{Tr}\left(M^{T} M D_{a}\right) \\
& +\frac{2}{3} \operatorname{Tr}\left(M^{T} M M^{T} M\right)+\frac{1}{3} \operatorname{Tr}\left(M^{T} M\right)^{2} \\
\epsilon_{i j k} f_{a b c} M_{i a} M_{j b}\left(M M^{T} M\right)_{k c} & =\frac{1}{3} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c} \operatorname{Tr}\left(M^{T} M\right)
\end{aligned}
$$

where $\left(D_{a}\right)_{b c} \equiv d_{a b c}$.

