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Pure Yang-Mills Theory

Review of YM Theory

What are the physical states of QCD?
Wide implications: confinement, chiral symmetry breaking, color
superconductivity, hadron masses, . . ..
Recall that the SU(N) Yang-Mills action is

SYM = − 1
2g2

∫
d4x Tr FµνFµν , Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]

The gauge symmetry Aµ 7→ uAµu−1 + u∂µu−1, u(x) ∈ SU(N) is
actually a redundancy.
The configuration space C = All gauge fields A modulo all gauge
transformations G.
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Pure Yang-Mills Theory

Why is Yang-Mills Difficult?

Gauge symmetry: nonholonomic constraints.
The configuration space C has non-trivial topology.
Non-Abelian makes it non-linear: [Aµ,Aν ]2 term.
It is an infinite-dimensional dynamical system.

Gauge theory is difficult because of all the above!
Approximation by a simpler model? Many suggestions · · ·

Chiral Lagrangians, Nambu-Jona-Lasinio model · · ·
Lattice QCD: Discretize space-time, work with holonomies.
String theory, AdS/CFT: approximate finite N by infinity.
Perhaps other approaches, with their own successes/limitations.
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Pure Yang-Mills Theory

Another Approximation: Matrix Models

Look at Yang-Mills on S3 × R.
Restrict to a subsetM of gauge fields: keep only the left-invariant
ones.
Remarkably, these form a finite-dimensional space M3,N2−1(R).
Gauge group G is also now finite-dimensional: ad SU(N).
This approximation captures (some of) the constraints,
nonlinearity, and underlying topology!
C =M/ad SU(N).
We will study this model both at strong coupling (g large) as
well as weak coupling (g → 0).
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Pure Yang-Mills Theory

Construction of the Matrix Model

The construction is simple and elegant (Narasimhan-Ramadas 1980):
Start with the Maurer-Cartan form Ω of SU(N).
Pullback of Ω to to S3 gives the left-invariant gauge field Mia,
i = 1,2,3; a = 1, · · ·N2 − 1.
Pullback of the Maurer-Cartan equation gives the curvature
F a

ij = −εijkMka + fabcMjbMkc .
Chromoelectric field Eia = dMia/dt . Chromomagnetic field
Bia = εijkF a

jk/2.

Lagrangian L = 1
2g2 (EiaEia − BiaBia).

Gauss law constraint Ga = fabcEibMic = 0.
DONE (well, almost!).
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Pure Yang-Mills Theory

Configuration space YM Matrix Model

The C for pure SU(N) is M3,N2−1(R)/Ad SU(N).

dim(C) is 3(N2 − 1)− (N2 − 1) = 2(N2 − 1) (not so at fixed points).
Wavefunctions are sections of vector bundles on C that transform
according to representations of Ad SU(N).
Those transforming according to the trivial representation are
colorless, while those transforming nontrivially are coloured.
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Quantization and Spectrum of YM Matrix Model

Quantization of the Matrix Model

The dynamical variables: Mia and and pia (the Legendre transform
of dMia

dt = Eia).
Quantisation: [Mia,pjb] = iδijδab.
The Hamiltonian is

H =
1
R

(
g2piapia

2
+ BiaBia

)
=

1
R

−g2

2

∑
i,a

∂2

∂M2
ia

+ V (M)


The overall factor of R comes from dimensional analysis.
The physical states |ψphys〉 are given by Ga|ψphys〉 = 0.
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ia

+ V (M)


The overall factor of R comes from dimensional analysis.
The physical states |ψphys〉 are given by Ga|ψphys〉 = 0.
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Variation Estimate of Energies

Energy Spectrum

H = H0 + 1
R Vint (M) = 1

R

(
−1

2
∂2

∂M2
ia

+ 1
2MiaMia

)
+

1
R

(
−g

2 εijk fabcMiaMjbMkc + g2

4 fabc fadeMibMjcMidMje

)
Perturbation theory is not analytic at g = 0.
We estimate the energies by variational calculation instead.
Choose colorless eigenstates of H0 as trial wavefunctions,
organized by this spin.
Energies depend on g, R, and possibly an overall additive

constant c (zero point energy): En[s] = f (s)n (g)+c(R)
R

Energy differences depend on g and R, but not on c.
Ratios of energy differences depend only on g.
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Variation Estimate of Energies

Energy Difference Ratios

Remarkably, we find that the ratios of energy differences become
independent of g for large g.

Ratios of mass differences E(X)−E(0+)

E(2+)−E(0+)
as a function of g. (The black, blue and red curves represent spin-0, spin-1 and spin-2

levels respectively.)

0 5 10 15 20 25

1

2

3

4

X (JC) = 2+,0+,2+,0∗+,1−,2∗+,1−,0∗+,2−.
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Variation Estimate of Energies

Renormalization Group Equation

Neither R nor the bare coupling g are directly measurable.
For sensible results as R →∞, make g a function of R such that
all energies have well-defined values in this limit.
Make g = g(R) by fixing E0[2]− E0[0] to the observed (lattice)
value.
This is our integrated renormalization group equation g(R).
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Variation Estimate of Energies

Integrated Renormalization Group Equation

In practice it is easier to make R(g) = E0[2]−E0[0]
m(2+)−m(0+) .

R(g) versus g.

0 5 10 15 20 25

0

1

2

3

Here we have used m(2+)−m(0+) = 460 MeV.
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Comparison with Lattice Data

Actual numerical values of masses also need asymptotic c(R)/R.
Fix the physical mass of our lowest glueball to be within the range
predicted by lattice simulations (1580− 1840 MeV).
Choosing 1050 MeV for asymptotic c(R)/R, we get the best fit
with lattice predictions.
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Comparison with Lattice Data

Glueball Physical masses Physical masses
states from matrix model from lattice QCD

JC (MeV) (MeV)

0+ 1757.08† 1580 - 1840

2+ 2257.08† 2240 - 2540

0+ 2681.45 2405 - 2715

0∗+ 3180.82 2360 - 2980

1− 3235.41 2810 - 3150

2+ 3054.97 2850 - 3230

0∗+ 3568.02 3400 - 3880

1− 3535.66 3600 - 4060

2∗+ 3435.75 3660 - 4120

2− 4050.14 3765 - 4255

† ≡ (input)
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Comparison with Lattice Data

Glueball Masses (MeV)
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1500

2500

4500

3500

� ≡ Lattice • ≡ Matrix Model. 0++ and 2++ are used in Matrix Model input.

For 0∗++, lattice has poor statistics near the continuum limit, so finite volume
effects are substantial.
For 2∗++, lattice has large errors due to the presence of two other glueball
states in the vicinity.
THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE
PREDICTIONS FOR GLUEBALL MASSES.
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Including Quarks

Adding Fermions

But you ask: What about the quarks?
We will consider massless fundamental fermions (quarks!)
coupled to the SU(2) matrix model.
The fundamental fermion λαa ≡ λA couples to the gauge field via

H ff ≡
(
−(λA)†λA −

1
2

(τb)AC(λA)†σiλCMib

)
= (λA)†Hff

ABλB.

The first term is curvature term on S3. We ignore it henceforth, it
only contributes an additive constant to the energy.
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Born-Oppenheimer Approximation

The total Hamiltonian is H = HYM + H ff .
Solve HψE = EψE .
We look at g << 1, but rather than do perturbation theory,
quantize in two steps:
First treat the gauge field as a (background) fixed field and
quantize the fermions.
Then quantize the gauge field.
This is same as Born-Oppenheimer in, say, molecular physics:
"Slow" nuclear variables↔ gauge field Mia.
"Fast" electronic variables↔ fermions.
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Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn

(
1

H − En

)2

Qn(∂iaH ff )Pn

]
, Qn = 1− Pn

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 18 / 38



Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn

(
1

H − En

)2

Qn(∂iaH ff )Pn

]
, Qn = 1− Pn

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 18 / 38



Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn

(
1

H − En

)2

Qn(∂iaH ff )Pn

]
, Qn = 1− Pn

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 18 / 38



Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn

(
1

H − En

)2

Qn(∂iaH ff )Pn

]
, Qn = 1− Pn

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 18 / 38



Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn

(
1

H − En

)2

Qn(∂iaH ff )Pn

]
, Qn = 1− Pn

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 18 / 38



Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn

(
1

H − En

)2

Qn(∂iaH ff )Pn

]
, Qn = 1− Pn

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 18 / 38



Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn
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H − En
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Born-Oppenheimer Approximation

The scalar potential Φ is versatile, appears in diverse settings.
Related to the real part of the quantum geometric tensor

GIJ =
1
g0

Tr[P(∂IP)(∂JP)P] = gIJ +
i
2

FIJ ,

Φ = δIJgIJ

gIJ is a Riemannian metric, a measure of distance between pure
states represented by projectors P(xI) and P(xI + dxI).
For adiabatic evolution, it is a measure of operator fidelity between
the adiabatic Hamiltonian and the true Hamiltonian.
Φ (or gIJ ) is used to hunt for quantum phase transitions (QPTs), as
the latter often defy the standard Landau-Ginzburg paradigm.
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Fermion Energies

Φ for YM fermions

We will compute Φ for fundamental fermions coupled to the
Yang-Mills field Mia.
For the 1-fermion states |ψ(1)〉 =

∑
A cA(M)(λA)†|0〉, the equation

H ff |ψ(1)〉 = E |ψ(1)〉 becomes:

Hff
ABcB = EcA, Hff = −1

2
σi ⊗ τaMia

We therefore investigate

det(Hff
AB − λI) = 0,

the eigenvalue equation for a 4× 4 matrix.
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Fermion Energies

Fundamental Fermions

The characteristic equation (with x = E
( 1

3 TrMT M)1/2 ) is

x4 − 3
2

x2 − gx + h = 0

where

g ≡ det M(1
3Tr(MT M)

)3/2 , h ≡ 1
16

[
2Tr(MT M)2(1
3Tr(MT M)

)2 − 9

]
.
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Fermion Energies

Since Hff is manifestly Hermitian, it has only real roots.
The conditions for this come from Sylvester’s theorem: one
condition is that the discriminant ∆ of x4 − 3

2x2 − gx + h must be
non-negative.
This gives us an unexpected identity obeyed by 3× 3 real
matrices:

27g2 − 54g4 + 162h− 432g2h − 576h2 + 512h3 ≥ 0
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Fermion Energies

Any 3× 3 matrix lies inside the bounded region.
At the top corner, the degeneracy structure is (2,2).
At the two corners at the bottom, the degeneracy structure is
(3,1).

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 23 / 38



Fermion Energies

Any 3× 3 matrix lies inside the bounded region.
At the top corner, the degeneracy structure is (2,2).
At the two corners at the bottom, the degeneracy structure is
(3,1).

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 23 / 38



Fermion Energies

Any 3× 3 matrix lies inside the bounded region.
At the top corner, the degeneracy structure is (2,2).
At the two corners at the bottom, the degeneracy structure is
(3,1).

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 23 / 38



Fermion Energies

Any 3× 3 matrix lies inside the bounded region.
At the top corner, the degeneracy structure is (2,2).
At the two corners at the bottom, the degeneracy structure is
(3,1).

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 23 / 38



Fermion Energies

Actually, the theory with a single fermion is has a gauge anomaly.
The physical theory has two fermions (with either chirality).
The effective potential shows a divergent behaviour whenever the
ground state degeneracy jumps.
The edges/corners are places where fermion eigenmodes
condense.
Could these be quantum phases of Yang-Mills-Dirac theory?
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Fermion Energies

2 Weyl fermions

Inside ABC A AB

BC

AC

B C(0,0)
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Fermion Energies

The characteristic polynomial of the two fermion Hamiltonian is

P2(x) = x6 − 3x4 + 4x2
(

9
16
− h

)
− g2 = 0

This gives us the effective potential

Φ
(2)
bulk =

6
f2

−x6
1 + 5x4

1 + 4(9/16− h)(1− 7x2
1/3)

(3x4
1 − 6x2

1 + 4(9/16− h))2
, f2 =

1
3

TrMT M.

where x1(g,h) is the smallest root of P2.
The ground state degeneracy changes from 1 to 2 at the edge
BC, and to 3 at the corner B. At the edge BC:

Φ
(2)
edge =

2
9f2

9− 6x2
1 + 5x4

1

x2
1 (1− x2

1 )2
→ 2

9a2
1

(1 + x1)2

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 26 / 38



Fermion Energies

The characteristic polynomial of the two fermion Hamiltonian is

P2(x) = x6 − 3x4 + 4x2
(

9
16
− h

)
− g2 = 0

This gives us the effective potential

Φ
(2)
bulk =

6
f2

−x6
1 + 5x4

1 + 4(9/16− h)(1− 7x2
1/3)

(3x4
1 − 6x2

1 + 4(9/16− h))2
, f2 =

1
3

TrMT M.

where x1(g,h) is the smallest root of P2.
The ground state degeneracy changes from 1 to 2 at the edge
BC, and to 3 at the corner B. At the edge BC:

Φ
(2)
edge =

2
9f2

9− 6x2
1 + 5x4

1

x2
1 (1− x2

1 )2
→ 2

9a2
1

(1 + x1)2

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 26 / 38



Fermion Energies

The characteristic polynomial of the two fermion Hamiltonian is

P2(x) = x6 − 3x4 + 4x2
(

9
16
− h

)
− g2 = 0

This gives us the effective potential

Φ
(2)
bulk =

6
f2

−x6
1 + 5x4

1 + 4(9/16− h)(1− 7x2
1/3)

(3x4
1 − 6x2

1 + 4(9/16− h))2
, f2 =

1
3

TrMT M.

where x1(g,h) is the smallest root of P2.
The ground state degeneracy changes from 1 to 2 at the edge
BC, and to 3 at the corner B. At the edge BC:

Φ
(2)
edge =

2
9f2

9− 6x2
1 + 5x4

1

x2
1 (1− x2

1 )2
→ 2

9a2
1

(1 + x1)2

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 26 / 38



Fermion Energies

The characteristic polynomial of the two fermion Hamiltonian is

P2(x) = x6 − 3x4 + 4x2
(

9
16
− h

)
− g2 = 0

This gives us the effective potential

Φ
(2)
bulk =

6
f2

−x6
1 + 5x4

1 + 4(9/16− h)(1− 7x2
1/3)

(3x4
1 − 6x2

1 + 4(9/16− h))2
, f2 =

1
3

TrMT M.

where x1(g,h) is the smallest root of P2.
The ground state degeneracy changes from 1 to 2 at the edge
BC, and to 3 at the corner B. At the edge BC:

Φ
(2)
edge =

2
9f2

9− 6x2
1 + 5x4

1

x2
1 (1− x2

1 )2
→ 2

9a2
1

(1 + x1)2

S. Vaidya (IISc) MatrixYM, Glueballs, Mass Spectrum Kolkata, December 2018 26 / 38



Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Finally we can also compute

Φ
(2)
corner =

1
a2

We see that the Hilbert space for gauge dynamics has split into 3
regions:

Inside the bulk, it is governed by Φ
(2)
bulk , which diverges as we

approach the edge BC or the corner B.

On the edge BC, the dynamics is governed by Φ
(2)
edge, which

diverges as we approach the corner B.

At the corner B, the dynamics is governed by Φ
(2)
corner .

The effective scalar potential is not analytic in the full region ABC.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Scalar potential for 2 Weyl fermions
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

There are therefore three distinct phases of SU(2) gauge theory
(with Weyl fermions).
These are superselected: states in one phase cannot be obtained
as superpositions of states from other sectors.
At the corner B, gauge symmetry is broken, and gets locked with
rotations.
We can identify the phase as color-spin locked phase. These are
known to exist in 3-color QCD.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

For massless Dirac fermions, the situation is similar.
Now, we can identify four distinct phases.
There is also a color-spin locked phase, corresponding to the
corner B.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Summary I

A natural reduction of SU(N) YM on S3 × R to a matrix model.
It captures the non-trivial topological character of the full gauge
bundle.
The canonical quantisation can be carried out, and the spectrum
of the full Hamiltonian can be estimated variationally.
In the large R limit, the eigenvalues tend to non-trivial asymptotic
values provided g(R) is chosen appropriately (our RG
prescription).
Good agreement with lattice predictions for glueball masses.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Summary II

The effective potential induced by the fermions has interesting
singularity structure, suggestive of quantum phases.
The singularities of the effective potential arise from fermion
eigenvalue repulsion.
the SU(N) matrix model is amenable to large N computations
(only preliminary results).
What are the quantum phases of 3-color QCD? (in progress, with
Mahul Pandey)
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Ongoing Work and Outlook

Investigate the glueball spectrum for SU(4),SU(5),SU(6), · · · .
Include fermions (quarks), and try to get the masses of light
hadrons.
Include the θ-term, and compute topological susceptibility χt .
Relation between χt and the mass of η′.

A much deeper puzzle: why does this model work so well?
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Relation between χt and the mass of η′.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

This is joint work with
Nirmalendu Acharyya, AP Balachandran, Mahul Pandey,
Sambuddha Sanyal, G. Mohankarthik
Lattice data is taken from
Morningstar and Peardon, Phys. Rev D 56, 4043 (1997);
Chen et al Phys. Rev D. 73 014516 (2006).
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Variational States

Aia =
1
√

2

(
Mia +

∂

∂Mia

)
, A†ia =

1
√

2

(
Mia −

∂

∂Mia

)
=⇒ [Aia, A†jb ] = δiaδjb

The oscillator vacuum is 〈M|0〉 = 1
π6 e−

Tr(MT M)
2

Spin-0:

|ψ0
1〉 = |0〉
|ψ0

2〉 = A†iaA†ia|0〉
|ψ0

3〉 = εijk fabcA†iaA†jbA†kc |0〉
|ψ0

4〉 = A†iaA†iaA†jbA†jb|0〉
|ψ0

5〉 = A†iaA†ibA†jaA†jb|0〉
|ψ0

6〉 = dabedcdeA†iaA†ibA†jcA†jd |0〉
|ψ0

7〉 = εijk fabcA†iaA†jbA†kcA†ld A†ld |0〉
|ψ0

8〉 = εijk fabcda1b1eda2ceA†iaA†jbA†ka1
A†lb1

A†la2
|0〉

|ψ0
9〉 = A†iaA†iaA†jbA†jbA†kcA†kc |0〉
|ψ0

10〉 = A†iaA†ibA†jbA†jcA†kcA†ka|0〉
|ψ0

11〉 = εijk εlmnA†iaA†laA†jbA†mbA†kcA†nc |0〉
|ψ0

12〉 = εi1 j1k1
fa1b1c1

εi2 j2k2
fa2b2c2

A†i1a1
A†j1b1

A†k1c1
A†i2a2

A†j2b2
A†k2c2

|0〉

|ψ0
13〉 = dabcddef A†iaA†id A†jbA†jeA†kcA†kf |0〉
|ψ0

14〉 = db1c1d db2c2d A†iaA†iaA†jb1
A†jc1

A†kb2
A†kc2
|0〉

|ψ0
15〉 = εi1 j1k1

fa1b1c1
εi2 j2k2

fa2b2c2
dc1d1edc2d2eA†i1a1

A†j1b1
A†k1d1

A†i2a2
A†j2b2

A†k2d2
|0〉

|ψ0
16〉 = dabcdad1e1

dad2e2
dad3e3

A†id1
A†ie1

A†jd2
A†je2

A†kd3
A†ke3
|0〉

fabc and dabc are the structure constants of SU(3).
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Variational States

Spin-1

|ψ1
1〉 = dabcA†jbA†jcA†ia|0〉
|ψ1

2〉 = εjkl dab1c1
fab2c2

A†ib1
A†jc1

A†kb2
A†lc2
|0〉

|ψ1
3〉 = daceA†iaA†jbA†jbA†kcA†ke|0〉
|ψ1

4〉 = daceA†ibA†jbA†jaA†kcA†ke|0〉
|ψ1

5〉 = daceA†iaA†jbA†jcA†keA†kb|0〉
|ψ1

6〉 = dabc fbc1b2
fcc2b1

A†iaA†jb1
A†jc1

A†kb2
A†kc2
|0〉

|ψ1
7〉 = εjkl dabc fadeA†ibA†jcA†kd A†leA†i1a1

A†i1a1
|0〉

|ψ1
8〉 = εjkl dab1c1

faa2b2
A†ia1

A†i1a1
A†i1b1

A†jc1
A†ka2

A†lb2
|0〉

|ψ1
9〉 = εijk dab1c1

daa2b2
A†ja1

A†i1a1
A†i1b1

A†kc1
A†la2

A†lb2
|0〉

|ψ1
10〉 = εijk dab1c1

fbb2c2
A†i1b1

A†i1c1
A†laA†lbA†jb2

A†kc2
|0〉
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Variational States

Spin-2

|ψ2
1〉 = (A†iaA†ja −

1
3 δij A

†
laA†la)|0〉

|ψ2
2〉 = A†i1a1

A†i1a1
(A†ia2

A†ja2
− 1

3 δij A
†
i2a2

A†j2a2
)|0〉

|ψ2
3〉 = (A†ia1

A†i1a1
A†i1b1

A†jb1
− 1

3 δij A
†
la1

A†i1a1
A†i1b1

A†lb1
)|0〉

|ψ2
4〉 = dabcdadeA†i1bA†i1c (A

†
id A†je −

1
3 δij A

†
ld A†le)|0〉

|ψ2
5〉 = A†i1a1

A†i1a1
(A†iaA†ja −

1
3 δij A

†
laA†la)|0〉

|ψ2
6〉 =

1
2 dabc (εikl A

†
ja1

A†ka1
+ εjkl A

†
ia1

A†ka1
)A†laA†mbA†mc |0〉

|ψ2
7〉 =

1
2 dabc (εikl A

†
ja + εjkl A

†
ia)A
†
kbA†la1

A†ma1
A†mc |0〉

|ψ2
8〉 = εklm fabcdda1adda2b2

A†ka1
A†lbA†mc (A

†
ia2

A†jb2
− 1

3 δij A
†
i2a2

A†i2b2
)|0〉

|ψ2
9〉 = A†i1a1

A†i1a1
A†i2a2

A†i2a2
(A†iaA†ja −

1
3 δij A

†
laA†la)|0〉

|ψ2
10〉 = A†i1a1

A†i1a1
A†i2a2

A†i2a1
(A†iaA†ja −

1
3 δij A

†
laA†la)|0〉

|ψ2
11〉 = dab1c1

dab2c2
A†i1b1

A†i1c1
A†i2b2

A†i2c2
(A†iaA†ja −

1
3 δij A

†
laA†la)|0〉

|ψ2
12〉 = A†i1a1

A†i1a1
(A†ia2

A†i2a2
A†i2b2

A†jb2
− A†la2

A†i2a2
A†i2b2

A†lb2
)|0〉

|ψ2
13〉 = daa2b2

dac2e2 A†i1a1
A†i1a1

A†i2a2
A†i2b2

(A†ic2
A†jd2
− 1

3 δij A
†
lc2

A†ld2
)|0〉

|ψ2
14〉 =

1
2 (εikl A

†
jbA†kb + εjkl A

†
ibA†kb)εmnpdab1c1

fbb2c2
A†lb1

A†mc1
A†nb2

A†pc2
|0〉

|ψ2
15〉 = dab1c1

dab2c2
A†lb1

A†lc1
A†mb2

A†mc2
( 1

2 (A
†
iaA†jb + A†jaA†ib)−

1
3 δij A

†
la2

A†lc2
)|0〉

|ψ2
16〉 = dab1c1

dbb2c2
A†i1aA†i1bA†j1b1

A†j1c1
(A†iaA†jb −

1
3 δij A

†
laA†lb)|0〉

|ψ2
17〉 = daa2b2

dbc2a1
A†i1a1

A†i1a2
A†j1b2

A†j1c2
(A†iaA†jb −

1
3 δij A

†
laA†lb)|0〉

|ψ2
18〉 = dab1c1

daa2b2
fbb2c2

A†i1b1
A†i1c1

A†i2c2
A†i2d2

(A†ia2
A†je2
− 1

3 δij A
†
la2

A†le2
)|0〉
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Variational States

New Identities

We discovered some (new?) identities involving 3× 8 matrices:

Tr(MT MDaMT MDa) = −1
2

Tr(MT MDa) Tr(MT MDa)

+
2
3

Tr(MT MMT M) +
1
3

Tr(MT M)2

εijk fabcMiaMjb(MMT M)kc =
1
3
εijk fabcMiaMjbMkc Tr(MT M)

where (Da)bc ≡ dabc .
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