Understanding Color (de)confinement using Bulk-to-Nano phase transition¹

V. Srinivasan

Department of Theoretical Physics University of Madras

December 3, 2018

¹Based on Physica E 33 (2006) 359 & Physica E 42 (2010) 1920 (=> = ∽ <

Bulk-to-Nano transition

- Bulk phase
 - Presence of elementary (quasi) particle excitations
 - ► E.g.: Crystals, Magnetism, Superconductivity, Superfluidity, ...
- Nano phase
 - No quasiparticles or elementary excitations a.k.a their strict confinement
 - E.g.: Nano clusters, Nanotube water, Superparamagnetism, ...

- Both are indeed <u>different</u> phase of matter
- What is the parameter that decides the Bulk-to-Nano transition ?
- Ratio of total volume by unit cell volume: V/V_c
- Is there any experimental evidence ?

Phenomenon (ref. no.)	Bulk state phase	Nano-state	$V/V_{\rm c}$	Physical quantity that changes
Magnetism [3]	Ferromagnetic (solid)	Superparamagnetic (solid)	105	Coercivity
Superfluidity [4]	Bulk ⁴ He (liquid)	⁴ He clusters	10 ⁵	Viscosity
Bose-Einstein condensate [6]	⁴⁰ K Bose superfluid		10 ⁵	Superfluidity
Superconductivity [7]	Bulk superconductor (solid)	No superconductivity (solid)	106	Transition Temperature
Optical absorption [8]	Solid with single crystal-like	Solid with blue shifted band	105	Band gap
	band gap	gap (quantum confinement)		
Structural phase transition [9]	Co (HCP)	Co (FCC)	106	
Structural phase transition [10]	Fe-Ge (FCC)	Bc	10 ⁶	
Superplasticity [11]	Cu (normal metal)	Cu (superplastic solid)	106	Elasticity
Multi-domain to single domain [12]	La _{0.875} Sr _{0.125} MnO ₃ (multi-	La _{0.875} Sr _{0.125} MnO ₃ (single	10 ⁶	Magnetization
	domain solid)	domain solid)		
Ferroelectricity [13]	Ferroelectric	Paraelectric	10%	Polarization
Encapsulated water [14]	Bulk	Nanotube water	106	Bond length

Table 1 Examples of bulk-nanophase transitions in different physical phenomena

Fig. 2. The variation in (a) critical temperature, T_{co} of BaTiO₃ showing transition from ferroelectric to paralectric behaviour and (b) the coercivity of COFeQ-4 showing the ferromagnetic to superparamagnetic transition as a function of V/V_c The figure shows the phase transition at 10^5-10^6 in both cases. The figure has been replotted using data from the respective Refs. [3,13]. The lines are only a guide to the eye.

(日)

ж

Fig. 3. The variation in (a) superconducting critical temperature, $T_{\rm o}$ of YBCO and (b) lattice parameters showing the structural phase transition in Co particles as a function of $V/V_{\rm o}$ The figure has been replotted using data from the respective Refs. [7,9]. The lines are only a guide to the eye

(日) (四) (日) (日) (日)

æ

- Only the volume ratio seems to decide the difference between bulk and nano
- The nature of interaction is found to be completely irrelevant
- ► No other parameters *P*, *T*, and coupling constants play any significant role
- This indicates some kind of universality of this phenomena

Color (de)confinement transition

- Assumption: Free color charge exists only in Bulk hadron matter
- Proposition: There must exist some critical volume V_c for color charge also
- ▶ Atomic nucleus size is $\sim 10^{-15}$ m, which corresponds to volume $\sim 10^{-45} m^3$
- ► Thus V_c must be larger than this, since color charge is confined in the nucleus
- Magnetars are neutron stars having extremely strong magnetic $\overline{\text{fields}(\sim 10^{14} \text{ Tesla})}$
- ▶ Their radius is estimated to be $\sim 10 km$, corresponding volume being $\sim 10^{12} m^3$

- Both the scales differ by 57 orders of magnitude !
- Thus an estimation of V_c, off by even a couple of orders of magnitude is good enough
- Heavy lon collision data can be used to estimate it
- ▶ It is very probable that V_c is somewhere between the scale of $10^{-45} \& 10^{12} m^3$

- Which explains why color charge is *confined* in the nucleus
- A possible explanation of strong magnetic behaviour of magnetars to *deconfined* color

Thank you for your attention !

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>