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Introduction

• Success of fluid models: at sufficiently high energy densities local
equilibrium prevails in an interacting theory → local inhomogeneities are
smoothed out → Discrete (Lagrangian) to continuous (Eulerian) fluid
variables.
It applies at microscopic scales (liquid drop model in early nuclear physics
and quark-gluon-plasma produced RHIC/LHC) and at macroscopic scales
(generic fluid models in cosmology).
• Topical areas of interest: (i) fluid-gravity correspondence

(ii) cosmology
• Fluid dynamics (at least for simplest ideal (no viscosity) non-relativistic

fluid)):
(i) continuity equation
(ii) Euler force equation
• In this talk we develop a generalized fluid dynamics model in

Non-Commutative (NC) space and show its possible impact via
cosmological perturbations.
NC fluid model is constructed from first principles, based on the map
between the Lagrangian and Hamiltonian (Euler) formulation of fluid
dynamics (Jackiw et.al, 2004).
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• Noncommutative (NC) effects in physics
Reviews: M.R.Douglas and N.A.Nekrasov, Rev. Mod. Phys. 2001; R. J.
Szabo, Phys. Rep. 2003; R. Banerjee, B. Chakraborty, S. G., P.
Mukherjee, S. Samanta, Found.Phys. 2009 .....
Generic NC extension:
• In NC quantum mechanics it is customary to consider NC space as

[Ẋ i ,X j ] = (i/m)δij + iαij (X , Ẋ), [X i ,X j ] = iθij (X , Ẋ),

[Ẋ i , Ẋ j ] = iβ ij (X , Ẋ). (1)

If αij , θij , β ij depend on X i , Ẋ i → (algebraic) restrictions on their structure
from Jacobi identity.
Originally NC phase space, with operatorial extensions, first appeared in
Snyder (PR, 1947) as a regularization for short distance singularity. Even
though the original motivation was not successful it is still a very active
area of research, leading to
Generalized Uncertainty Principle framework (Kemp, J.Ph.A 1997),
Doubly Special Relativity (G. Amelino-Kamelia, Nature 2002), among
others.
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• For constant (non-operatorial) αij , θij , β ij there is no such Jacobi identity
restriction. NC space with θij 6= 0, first appeared in the work of Seiberg
and Witten (JHEP 1999), where in a background two-form field open
string endpoints (in certain low energy limits) resided on NC branes.
• From High Energy Physics perspective bounds on θ, (θ ≤ (10TeV )−2,

relevant at > TeV scale), are available ( M. Chaichian, M. M.
Sheikh-Jabbari, and A. Tureanu, PRL 2001; S.Carroll, J.A.Harvey,
V.A.Kostelecky, C.D.Lane, T.Okamoto PRL 87 (2001).).

• In our works we have used constant NC (or deformation) parameter in a
classical framework,

[Ẋ i ,X j ] = (1/m)δij , [X i ,X j ] = θij , [Ẋ i , Ẋ j ] = 0. (2)

Strictly speaking we might refer to it as Noncanonical fluid (instead of
Noncommutative fluid). The name Noncommutative fluid has stuck
because the way noncanonical effect is introduced is a classical analogue
of NC quantum mechanics.
We also use ”operators” to mean classical variables with non-zero Poisson
brackets.
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• Incorporating NC effects in field theory
• Two parallel ways of constructing NC extension of a fluid:

(i) directly apply the Groenwald-Moyal ∗-product in action of conventional
fluid → NC-extended field theory action and proceed.
M. C. B. Abdalla, L. Holender, M. A. Santos, and I. V. Vancea, PRD
2012; L. Holender, M. A. Santos, M. T. D. Orlando, and I. V. Vancea,
PRD 2011; M.V. Marcial, A.C.R. Mendes, C. Neves, W. Oliveira and F.I.
Takakura, PLA 2010.

• (ii) Our approach: Lagrangian (discrete) fluid model → introduce the NC
coordinates → exploit the map connecting Lagrangian to Euler
Hamiltonian (continuum) framework → NC effects in fluid field theory (P.
Das and SG, EPJC 2016; Jackiw et.al., review for canonical fluid).
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Lagrangian and Hamiltonian formulation of canonical fluid

• Lagrangian description of fluid dynamics

Microscopic picture where the fluid is treated as a large collection of point
particles obeying canonical Newtonian dynamics. The d.o.f.s consist of the
particle coordinate and velocity, X(x, t), dX(x, t)/dt, respectively.
• Newton’s law for each particle (Lagrangian) coordinate Xi (t) and velocity

ui (t) = Ẋi is given by,

mẌi (t) = mu̇i (t) = Fi (X(t)), (3)

where m is the particle mass and Fi (X(t)) is the applied force.
• Canonical Poisson brackets

[Ẋ i ,X j ] = (1/m)δij , [X i ,X j ] = [Ẋ i , Ẋ j ] = 0. (4)
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Hamiltonian (Eulerian) description of fluid dynamics

• Macroscopic picture as a field theory Hamiltonian H =
∫

d3rE(ρ, u) and a
set of Poisson brackets between the fluid d.o.f, density and velocity fields
ρ(r, t), u(r, t),

{ρ(r), ρ(r′)} = 0, (5)
{ui (r), ρ(r′)} = ∂iδ(r − r′), (6)

{ui (r), uj (r′)} = −ωij (r)

ρ(r)
δ(r − r′), (7)

where
ωij (r) = ∂i uj (r)− ∂j ui (r) (8)

is called the fluid vorticity.
• The fluid equations of motion are derived from the above as Hamilton’s

equation of motion.
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• Positing the Hamiltonian for a barotropic fluid (pressure depending only on
density ρ) with potential energy U(ρ) as

H =

∫
dr
(

1
2ρu2 + U(ρ)

)
, (9)

the equations of motion turn out to be

ρ̇ = {H, ρ} = −~∇ · (uρ), (10)
u̇ = {H, u} = −(u · ~∇)u− ~∇U ′(ρ). (11)

where U ′(ρ) = ∂U/∂ρ.
The above equations (10), (11) constitute respectively continuity equation
and Euler (force) equation, the two central equations governing perfect
fluid dynamics.
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Map between Lagrangian and Eulerian d.o.f.

Field theoretic Poisson algebra between Euler variables is derived from the
canonical point mechanics Poisson brackets between Lagrangian variables.
We exploit this formalism to generate NC extended algebra among the Euler
degrees of freedom, ie. density and velocity field variables.

• The Eulerian density field for the single particle is,

ρ(t, r) = mδ(X(t)− r). (12)

Hence the density and velocity fields for a collection of particles are given
by,

ρ(t, r) = m
N∑

n=1

δ(Xn(t)− r), (13)

u(t, r) =
m

ρ(t, r)

N∑
n=1

Ẋn(t)δ(Xn(t)− r). (14)
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• For fluid field theory the discrete particle labels → continuous variables,

ρ(r) = ρ0

∫
δ(X(x)− r) dx , (15)

ui (r) =
ρ0
∫

Ẋi (x)δ(X(x)− r) dx
ρ(r)

. (16)

• Poisson brackets

[Ẋ i ,X j ] = (1/m)δij , [X i ,X j ] = 0, [Ẋ i , Ẋ j ] = 0. (17)

• are generalized for continuum,

{Ẋ i (x),X j (x′)} =
1
ρ0
δijδ(x− x′); {X i (x),X j (x′)} = {Ẋ i (x), Ẋ j (x′)} = 0.

(18)
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• Using the defining equations for Euler variables from (15, 16), we need to
compute,

{ρ(r), ρ(r′)} = ρ2
0

[∫
δ(X(x)− r)dx ,

∫
δ(X(y)− r ′)dy

]
, (19)

{ui (r), ρ(r′)} =

[∫
dxẊi (x)δ(X(x)− r)∫

dxδ(X(x)− r)
, ρ0

∫
δ(X(y)− r ′)dy

]
, (20)

{ui (r), uj (r′)} =

[∫
dxẊi (x)δ(X(x)− r)∫

dxδ(X(x)− r)
,

∫
dyẊj (y)δ(X(y)− r ′)∫

dyδ(X(y)− r ′)

]
, (21)

where the NC algebra between the Lagrange particle coordinates have to
be used. Xi , Ẋi are the dynamical variables with non-zero brackets.
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Quick outline of derivation
{ρ, ρ} = 0 follows trivially since {X ,X} = 0.

{ui (r), ρ(r′)} =

[∫
dxẊi (x)δ(X(x)− r)∫

dxδ(X(x)− r)
, ρ0

∫
δ(X(y)− r ′)dy

]
, (22)

∼ ρ0∫
dxδ(X(x)− r)

∫
dxdy {Ẋi (x),Xj (y)} ∂δ(X(y)− r ′)

∂j X(y)
δ(X(x)− r)

∼ ρ0∫
dxδ(X(x)− r)

∫
dxdy δij

ρ0
δ(x − y)

∂δ(X(y)− r ′)
∂j X(y)

δ(X(x)− r)

∼ 1∫
dxδ(X(x)− r)

(

∫
dxδ(X(x)− r))∂iδ(r − r ′)

∼ ∂iδ(r − r ′)
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• We obtain,

{ρ(r), ρ(r′)} = 0, (23)

{ui (r), ρ(r′)} = ∂iδ(r − r′), (24)

{ui (r), uj (r′)} = − (∂i uj − ∂j ui )

ρ
δ(r − r′) (25)

∂i uj − ∂j ui = ωij is called vorticity.This is the canonical fluid algebra ((5-8)
mentioned earlier).
Canonical Poisson brackets between Lagrangian D.O.F., and Lagrangian
D.O.F. to fluid D.O.F. map→ Canonical Poisson brackets between fluid
D.O.F.

• In the same way
NC Poisson brackets between Lagrangian D.O.F., and Lagrangian D.O.F.
to fluid D.O.F. map→ NC Poisson brackets between fluid D.O.F.
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Noncommutative generalization of fluid

• We follow same procedure now with NC brackets

{Ẋ i (x),X j (x′)} =
1
ρ0
δijδ(x− x′), {X i (x),X j (x′)} =

1
ρ0
θijδ(x− x′),

{Ẋ i (x), Ẋ j (x′)} = 0. (26)

(with θij = −θji ) resulting in NC fluid algebra,

{ρ(r), ρ(r′)} = −θij∂iρ(r)∂jδ(r − r′), (27)

{ui (r), ρ(r′)} = ∂iδ(r − r′)− θjk∂j ui (r)∂kδ(r − r′), (28)

{ui (r), uj (r′)} =
(∂j ui − ∂i uj )

ρ
δ(r − r′) + θkl

∂k ui∂l uj

ρ
δ(r − r′). (29)

Noncommutativity induced vorticity: No (canonical) vorticity,
ωij = ∂i uj − ∂j ui = 0, a commonly used restriction. But note that due to
NC effect effective θ-dependent vorticity is generated

{ui (r), uj (r′)} = θkl
∂k ui∂l uj

ρ
δ(r − r′). (30)
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• Jacobi identity considerations: Jacobi identity plays a vital role in the
internal consistency of the commutator structure in quantum mechanics or
quantum field theory.
• In classical Hamiltonian mechanics or field theory, Jacobi identity defined

in terms of Poisson brackets (or Dirac brackets in constrained systems) has
to be satisfied

J(A(x),B(y),C(z)) ≡ {{A(x),B(y)},C(z)}+ {{B(y),C(z)},A(x)}
+{{C(z),A(x)},B(y)} = 0. (31)

Jacobi identity for NC coordinate algebra is trivially satisfied since the NC
extension θij is not operatorial.
• However, even the canonical fluid algebra has operators in RHS of

brackets and checking its Jacobi is non-trivial. But J(ρ, ui , uj ) = 0, true
for other combinations also (Jackiw review).
• NC fluid algebra is still more complicated but we have checked Jacobi

identity validity (Mitra, Banerjee and Ghosh, JCAP 2018).
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Equations of motion for NC fluid
Assumption: we use same form of Hamiltonian as the canonical one,
• Hamiltonian

H =

∫
dr
(

1
2ρu2 + U(ρ)

)
, (32)

but NC brackets to compute the NC fluid equations of motion:
• NC Continuity equation remains unchanged,

ρ̇ = {H, ρ} = −∂i (ρui ), (33)

Example of how antysymmetry of θij affects results:

{ρ(x),

∫
U(ρ(y))dy} ∼

∫
U ′(ρ(y))θij∂iρ(x)∂jδ(x−y) ∼ θij∂iρ(x)∂j U ′(x)

∼ θij∂iρ(x)∂j U ′(ρ(x)) ∼ θij∂iρ(x)∂jρ(x)U ′′(x) = 0

• NC Euler (force ) equation

u̇i = {H, ui} = −∂j

(
(

u2

2 + U ′)δij + θjk (
u2

2 + U ′)(∂k ui )

)
. (34)

The continuity equation is unchanged but the Euler (force) equation has
NC terms.
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Properties of canonical fluid: Conservation laws and symmetries

Details in Jackiw et.al., review
• The energy density,

E =
1
2ρu2 + U = T 00, (35)

together with the energy flux

T j0 = ρuj (
1
2 u2 + U ′), (36)

satisfies the energy conservation law,

Ṫ 00 + ∂j T j0 = 0. (37)

• The momentum density, P,

P i = ρui = T oi , (38)

and the stress tensor T ij with P = ρU ′ − U defined as the pressure,

T ij = δij (ρU ′ − U) + ρui uj = δij P + ρui uj , (39)

satisfy
Ṫ oi + ∂j T ji = 0. (40)
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• The time translation and space translation are generated by the conserved
quantities,

E =

∫
dxE (time-translation), (41)

P =

∫
dr ~P =

∫
dr j (space-translation). (42)

Rotations are generated by the conserved angular momentum,

M ij =

∫
dr (r iP j − r jP i ) (spatial rotation). (43)

• The non-relativistic theory under Galilean transformation: Galilean boost
constant of motion,

B = t P−
∫

dr rρ (velocity boost). (44)

• The continuity equation provides the total number or mass as the final
conserved quantity

N =

∫
drρ (number). (45)

We will compare and contrast these important features of the ideal fluid
with the NC generalized fluid model.
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Properties of NC fluid: Conservation laws and symmetries

• Conservation laws
From the NC fluid continuity equation derived earlier
ρ̇ = {H, ρ} = −∂i (ρui ) the Total number(∼ mass)
•

N =

∫
drρ

is a conserved quantity.
Using both continuity and Euler equation

u̇i = {H, ui} = −∂j

(
(

u2

2 + U ′)δij + θjk (
u2

2 + U ′)(∂k ui )

)
and energy density E = ρu2

2 + U(ρ) we obtain
•

Ė = −∂i

[
ρui (

u2

2 + U ′) + θij{
u2

2 ∂j P}
]
, (46)

where P = ρU ′ − U is the pressure.
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• Thus, as per our assumption, canonical form of energy density is preserved
but the energy flux T j0 receives an NC correction,

T j0 = ρui (
u2

2 + U ′) + θij{
u2

2 ∂j (ρU ′ − U)}. (47)

• We still have total energy conservation in NC fluid since the θ-term is also
a total derivative.
H =

∫
drE is conserved quantity.

• Space-time symmetries
Translation invariance: for momentum πi defined as
Πi =

∫
drπi =

∫
drρui

{Πi , ρ(r)} = −∂iρ, (48)

{Πi , , uj (r)} = −∂i uj + θkl∂k uj∂l ui . (49)

• Π translates ρ correctly but fails to do so for u.
Time derivative of πi :

πi = ρui , π̇i = ∂j [−{ρui uj + δij P}+ θjk ui∂k P]

+
1
2θjkρ(∂j ui )∂k u2. (50)

• The last term in RHS is not a total derivative but ∼ small for small ui →
”weaker” momentum conservation principle.
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• Thus,
π̇i = ∂j (−(ρui uj + δij P) + θjk ui∂k P) , (51)

leading to a modified T ij ,

T ij = −(ρui uj + δij P) + θjk ui∂k P. (52)

• θ-contribution in T ij is not symmetric under interchange of i , j → the
total angular momentum will not be conserved.

Ṁij =

∫
dr(r i π̇j − r j π̇i )

=

∫
drθkl [r i∂j ul − r j∂i ul ](∂k u2)ρ. (53)

• This result is also expected since the constant set parameters θij does not
transform under rotations. However once again RHS is of higher powers in
ui → ”weaker” angular momentum conservation principle.
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Action formulation for canonical fluid
Subtleties involved in action formalism (Review by Jackiw et.al., J.Ph.A)
• Fluid Lagrangian in Lagrangian variables → Fluid Hamiltonian in

Lagrangian variables → Fluid Hamiltonian in Euler variables (using the
map) ≡ Euler Hamiltonian (used earlier)

L =

∫
dx(

1
2 mẊ(x)2−U(X(x))) → H =

∫
dx(

P(x)2

2m m+U(X(x))); P = mẊ

→ H(Euler) =

∫
dr(

1
2ρu2 + V (ρ))

The above is straightforward.
• Deriving Euler Hamiltonian directly from a Lagrangian (the latter written

in terms of Euler variables) is problematic.
Reasons: (i) Fluid Euler equations are first order in time.
(ii) The above has to be reproduced from the Hamiltonian using fluid
variable algebra which should be derivable from the time derivative
(kinetic) part of Lagrangian.
(iii) Directing using the map

L =

∫
dx(

1
2 mẊ(x)2 − U(X(x))) →

∫
dr(

1
2ρu2 − V (ρ)) 6= L(Euler)

Not the correct Euler L → this will not generate any non-trivial brackets
since there are no time derivatives.
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Canonical fluid action via Clebsch variables (1859)
Deeper reason: Presence of a Casimir, Chern-Simons term (in three space
dim.) C3 =

∫
dr~u.(∇× ~u) =

∫
dr~u.~ω with ~ω ≡ vorticity. For non-zero ~ω this

creates an obstruction.
• Represent velocity ui = ∂iθ + α∂iβ in terms of three scalar variables →

(θ, α, β) the Clebsch variables.
Now ~ω = ∇α×∇β → C3 =

∫
dr∂i (θε

ijk∂jα∂kβ) =
∫

d~S.(θ~ω). Since C3 is
a surface integral it has no bulk contribution and brackets for θ, α, β can
be derived.
• Lagrangian due to Eckart (1938) and Lin (1963)

L =

∫
dr (

1
2ρ~u

2 − V (ρ) + θ(ρ̇+∇.(~uρ))− ρα(β̇ + ~u.∇β) (54)

ui is now an auxiliary variable and its variation → ui = ∂iθ + α∂iβ.
Generalization to interacting gauge-fluid models are studied in Mitra,
Banerjee and SG, EPJC 2015.
• First order Lagrangian L has Second Class Constraints → Dirac analysis

yields the (Dirac) brackets:

{ρ(x), ρ(y)} = {ρ(x), α(y)} = {ρ(x), β(y)} = 0,

{ρ(x), θ(y)} = δ(x − y), {α(x), θ(y)} = −α
ρ
δ(x − y),

{α(x), β(y)} = 1
ρ
δ(x − y).
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Noncommutative fluid action

The action for canonical fluid with brackets correctly reproduces Euler
Hamiltonian and ρ, ui = ∂iθ + α∂iβ brackets.
• We posit a NC corrected fluid action that reproduces the NC density

bracket
{ρ(x), ρ(y)} = −θij∂iρ(x)∂jδ(x − y).

• Proposed form of NC fluid Lagrangian for irrotational (zero vorticity) fluid,
(α, β do not appear),

L = −θ̇(ρ− 1
2θ

ij∂iρ∂jθ)− (
1
2ρ(∂iθ)2 + U(ρ)). (55)

Lagrangian (variational) equations of motion for ρ and θ:

ρ̇ = −∂i

[
(ρ∂iθ) +

θij

2 [∂jθ∂k (ρ∂kθ) + ρ∂j (∂kθ)2]

]
, (56)

θ̇ = −
[

(
(∂θ)2

2 + u′)− θjk

2 ∂kθ∂j (
(∂θ)2

2 + U ′)
]
. (57)
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• Noether prescription yields the canonical energy momentum tensor:

Tµν =
∂L

∂(∂µθ)
∂νθ +

∂L
∂(∂µρ)

∂νρ− ηµνL (58)

where ηµν = diag(1,−1,−1,−1) is the flat metric.
• Explicit expressions for energy and momentum densities are,

T 00 =
1
2ρ(∂iθ)2 + U(ρ), T 0i = ρ∂iθ −

1
2θ

jk∂jρ∂kθ∂iθ. (59)

Consistent with our earlier assumption, T 00 does not receive any NC
correction.
T ij 6= T ji ,T 0i 6= T i0 indicates that rotational and Lorentz symmetries are
lost due to constant θij parameter.
• NC Dirac brackets to O(θij ),

{θ(x), θ(y)} = 0 , {ρ(x), ρ(y)} = −θij∂iρ(x)∂x
j δ(x − y),

{ρ(x), θ(y)} = δ(x − y) +
1
2θ

ij∂jθ(x)∂x
i δ(x − y). (60)

These brackets reproduce same equations of motion (55,56).
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T 00,T 0i correctly generate correct time and space translations respectively.
• With the Hamiltonian H =

∫
d3xT 00 from (59) and the NC algebra (60),

we compute

ρ̇ = {ρ,H}, u̇i = {ui ,H}. (61)

RHS same as Lagrangian dynamical equations derived earlier.
• Momentum P i =

∫
d3x T 0i yields

{θ(x),P i} = −∂iθ, {ρ(x),P i} = −∂iρ. (62)

→ spatial translations for ρ and θ.
• Total mass operator M =

∫
d3x ρ(x) satisfies

{M, ρ(x)} = {M, ∂iθ(x)} = 0 (63)

indicating that M will lie at the centre of the Galilean algebra and will act
as the central extension.
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• Two parameter central extension in Galilean algebra for
Noncommutative fluid
Total mass M =

∫
d3x ρ is conserved,

{M,H} = 0. (64)

Energy-momentum conservation,

∂µTµν = 0 (65)

or component form energy and momentum conservation laws are satisfied,

∂0T 00 + ∂i T i0 = 0, ∂0T 0i + ∂j T ji = 0. (66)

But the total momentum P i =
∫

d3x T 0i is conserved but the local
conservation law receives NC corrections.
• Galilean boost algebra: Define Galileo boost generator,

B i = tP i −
∫

d3x ρx i (67)

Non-canonical θij -dependent transformation of θ and ρ under boost,

{θ(x),B i} = −t∂iθ + x i − 1
2θ

ij∂jθ, {ρ(x),B i} = −t∂iρ− θij∂jρ. (68)

Both θ and ρ behave in a non-canonical way.
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• Compute

{B i ,P j} = −δij
∫

d3x ρ = −δij M, (69)

{B i ,Bj} = θij
∫

d3x ρ = θij M. (70)

→ two parameter central extension in Galilean algebra (Das and S.G.,
PRD (rap.) 2018).
• The first one, M, is the well known Bargman central extension.
• A structure, similar to the second one, depending on NC parameter θij was

discovered only in 2 + 1-dimensional planar models having Exotic symmetry
(for review see C.Duval, P. A. Horvarthy, J. Phys A: Math. Gen. 2001). In
NC fluid second extension can occur in higher (three) dimensions.
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• Rest of NC Galilean algebra in three space dimensions: (angular
momentum J =

∫
d3x (x× T) and NC parameter Θk = (1/2)εkijθij )

{J i , J j} = εijk Jk , {J i ,P j} = εijk Pk (71)

{J i ,Bj} = εijk Bk +
1
2 (Θ.Pδij −Θj P i ), (72)

{B,H} = −P +

∫
d3x [

1
2Θ.(∇

1
ρ
× T)T +

1
4 (Θ×∇(

1
ρ

))], (73)

{J,H} =
1
4

∫
d3x T2[(Θ.T)∇ 1

ρ2 − (Θ.∇ 1
ρ2 )T]. (74)

• P i transforms canonically which is expected since (as shown before) it
correctly translates both θ, ρ.
• J−J angular momentum algebra is also canonical – somewhat unexpected.
• Rest of the algebra receive NC corrections.Thus NC generalization leads to

non-conservation of boost and angular momentum which is expected and
agrees with earlier results.
• In our (low energy) approximation some of the NC corrections can be

neglected but the second central extension survives.
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Darboux map, noncommutativity induced vorticity and
non-isentropy
• Darboux’s theorem, a fundamental property of symplectic geometry, states

that any symplectic manifold is locally isomorphic to some R2n with its
standard symplectic form.
In physics language the NC variables ρ, θ can be expressed (at least
locally) in terms of a canonical set ρc , θc obeying canonical algebra

{ρc (x), ρc (y)} = {θc (x), θc (y)} = 0; {ρc (x), θc (y)} = δ(x − y).

The explicit form of Darboux map to O(θ):

ρ = ρc −
1
2θ

ij∂jρc∂iθc ; θ = θc .

• From now on we will work with ρc , θc but keep the original notation ρ, θ.
The Hamiltonian, to O(θ) and to O(u2) is,

H ≈
∫

dr [Tc −
1
2θ

ij ∂jρui

ρ
(Tc + Pc )] (75)

where, ui = ∂iθ and Tc = 1
2ρu2 + U(ρ), Pc = ρU ′ − U are canonical

energy density and pressure (Das and S.G., PRD 2018).
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• The continuity equation to O(u2),

ρ̇ ≈ {ρ,H}

= ∂l [−ρ(ul − 1
2θ

lj∂jρ
1
ρ

(
1
2 u2 + U ′)− 1

2θ
ij (∂jρ)

ρ
ui ul )]

(76)

defines an effective velocity ρ̇ = −∂l (ρūl ) where, to O(u2),

ūl ≈ ul − 1
2θ

lj∂jρ
1
ρ

(
1
2 u2 + U ′)− 1

2θ
ij (∂jρ)

ρ
ui ul .

Clearly ūl is no longer irrotational → induced vorticity to O(u2):

{ūl (x), ūk (y)} ≈ 1
2 [θlm∂y

k (
1

ρ(y)
U ′(y)∂y

mδ(x − y))

−θkm∂x
l (

1
ρ(x)

U ′(x)∂x
mδ(x − y))]. (77)

• NC induced vorticity is structurally totally different from the conventional
form of vorticity (∼ ∇× u). The leading term (written here) is
independent of ū and will survive the low energy limit.
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• Explicit example: U(ρ) = Kρλ with K , λ numerical constants, for which
Pc = (λ− 1)U.
For the special case of pressureless dust, (λ = 1,Pc = 0), induced NC
vorticity is

{ūl (x), ūk (y)} ≈ K
2 [θlm∂m(

1
ρ
∂kδ(x − y))− θkm∂l (

1
ρ
∂mδ(x − y))].

(All arguments of fields and derivatives are on x .)
Non-abelian like feature, reminiscent of NC field theories since
{uk (x), ūk (y)} even for same k is non-zero:

{ūk (x), ūk (y)} =
θkm

ρ2 (∂kρ∂mδ(x − y)− ∂mρ∂kδ(x − y))

(no sum on k). (Das and S.G., PRD 2018)
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Effective pressure :
• Euler equation for ūi ,

˙̄um ≈ −∂m(
ū2

2 )− 1
ρ
∂mPc +

1
2ρθ

ij∂m(ūi∂j U)

−1
2θ

ij U ′∂m(
1
ρ

ūi∂jρ)

+
1
2θ

mj [U ′∂j (
∂k (ρūk )

ρ
) +

ūk∂jρ∂k U ′

ρ
]. (78)

• Effective pressure depends explicitly on ūi (apart from ρ) → non-barotropy
in the fluid → may lead to non-isentropic dynamics?
NC corrected effective pressure for pressureless fluid (P = 0,U = Kρ):

˙̄ul ≈ −∂l (
ū2

2 ) +
K
2 (

1
ρ2 θ

kj ūk∂jρ∂lρ+ θlj∂j (
∂k (ρūk )

ρ
)).

• Signature of the NC pressure can be both positive or negative (depending
on θ and the fields) → might be interesting in cosmological scenario ?
(Das and S.G., PRD 2018)
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• Noncommutative fluid action for generic fluid (with non-zero vorticity)
Eckart - Lin form of first order fluid action with NC correction terms,

L = −∂tθ(ρ− 1
2θ

ij∂iρ∂jθ)− (
1
2ρu2 + U(ρ))− ρα∂tβ, (79)

where ui = ∂iθ + α∂iβ . For ui = ∂iθ(x) → no vorticity condition.
• The explicit form of Darboux map to O(θ), is given by

ρ = ρc +
1
2θ

ij∂iρc∂jθc ; θ = θc ; β = βc ; α = αc −
θij

2 α
∂iρ∂jθ

ρ
(80)

such that the NC algebra in is reproduced. For simplicity we will just keep
the notation ρ, θ, α, β instead of ρc , θc , αc , βc . The Hamiltonian is now
written in terms of canonical variables, (to order of θij ),

H =

∫
dr [T − 1

2θ
ij ∂jρ∂iθ

ρ
(

1
2ρ(∂iθ)2 − 1

2α
2(∂iβ)2 + U + Pc )]. (81)

where, ui = ∂iθ + α∂iβ, T = 1
2ρu2 + U(ρ) is the canonical energy density

and P = ρU ′ − U is the pressure (P.Das and S.G. EPJC).
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NC fluid: possible effect on cosmology

• Further modification in Non Commutative algebra
Further extensions of the θij -NC structure with a new set of NC

parameters σij ,

{Xi (x),Xj (y)} =
θij

ρ0
δ(x− y), {Ẋi (x),Xj (y)} =

1
ρ0

(δij + σij )δ(x− y),

{ ˙Xi (x), Ẋj (y)} = 0. (82)
This can have non-trivial consequence in cosmology. We noticed that
some of the NC contributions, (that could have been relevant in
cosmology), vanished due to θij = −θji but σij has no such symmetry and
contributes. (Mitra, Banerjee and SG, JCAP 2018).
• Extended NC brackets

{ρ(r), ρ(r′)} = − ∂iρθij∂jδ(r − r′), (83)

{ui (r), ρ(r′)} = ∂iδ(r − r′) + σij∂jδ(r − r′) + θkj∂kδ(r − r′)∂j ui (r′) (84)

{ui (r), uj (r′)} =
∂j ui − ∂i uj

ρ
δ(r − r′) + θlm ∂l vi∂muj

ρ
δ(r − r′)

+
1
ρ

(σkj∂k ui − σik∂k uj )δ(r − r′). (85)

Density (ρ) algebra remains unaltered but the rest receives σij -contribution.
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• Keeping the form of Hamiltonian unaltered,

H =

∫
dV H =

∫
(

1
2ρu2 + U(ρ))

the NC-generalized Euler dynamics follows,

ρ̇ = {ρ,H} = −∂i (ρui )− σij∂j (ρui ) = −∂i (ρui + σjiρuj ), (86)

u̇k = {uk ,H} = −ui∂i uk − ∂k U ′(ρ) + θji∂i U ′(ρ)

−σij ui∂j uk − σij∂j U ′(ρ)∂i uk . (87)

• Continuity equation now gets a NC σ-term. Euler equation has both
σ-terms and a θ-term.
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• Fluid dynamics mapped to comoving coordinates
As is customary in cosmology we now work in a comoving frame (a(t), x):
• Map between laboratory and comoving coordinates (r and a(t), x

respectively) is given by,
r(t) = a(t)x (88)

with a(t) the scale factor and x, the time independent comoving distance.
• The canonical continuity and Euler equations in

Friedmann-Robertson-Walker (FRW) cosmology are given by.

ρ̇ = −3H(ρ+ P) = −3 ȧ
a (ρ+ P), (89)

ä
a = −4πG

3 (ρ+ 3P) +
Λ

3 , (90)

with pressure P, cosmological constant Λ and Newton’s constant G .
H(t) = ȧ/a is the Hubble parameter.
• The Friedmann equation follows:

ȧ2

a2 = H2 =
8πG

3 ρ+
Λ

3 −
k
a2 . (91)
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• Rewrite the conventional fluid dynamical equations in comoving frame →
FRW equations
• NC fluid equations mapped to comoving coordinates → NC FRW

dynamics.
Consider fluid without vorticity as canonical vorticity does not play any
major role in cosmology.
• We consider comoving coordinates

r = a(t)x(t), (92)

where r(t), x(t) and a(t) denote the lab. coordinates, comoving
coordinates and the scale factor respectively. x(t) now depends on t.

• Recast the dynamics in the comoving coordinates x, t.
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• The laboratory velocity u = ṙ

ṙ = ȧx + aẋ(t) → u = ȧx + v, (93)

with v defined as the peculiar velocity (Cosmological Inflation and
Large-Scale Structure, Liddle and Lyth). In standard FRW v is taken as
zero and now it is considered as a perturbation.
• The space derivatives are related by

∂/∂r = (1/a)∂/∂x.

• Time derivatives at constant r and constant x are related by,

∂

∂t |r=
∂

∂t |x −
ȧ
a (x.∂x).

This can be seen as ∂t |r = ∂t |x +( ∂x
∂t )∂x and replace ( ∂x

∂t ) at constant r
using ṙ = 0 = ȧx + aẋ .
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Noncommutative FRW from noncommutative fluid:: Using the above identities
the NC fluid dynamics (85,86)

ρ̇ = {ρ,H} = −∂i (ρui )− σij∂j (ρui ) = −∂i (ρui + σjiρuj ), (94)
u̇k = {uk ,H} = −ui∂i uk − ∂k U ′(ρ) + θji∂i U ′(ρ)

−σij ui∂j uk − σij∂j U ′(ρ)∂i uk − ∂k ΦG . (95)

• The term −∂k ΦG is put in by hand. ΦG is the gravitational potential that
satisfies ∇2ΦG = 4πGρ : Poisson equation.
ΦG = 2

3πGρ0r 2 + φ: the first term satisfies ∇2ΦG = 4πGρ0 for
homogeneous background. φ is a perturbation also called peculiar
potential.
In comoving frames (Mitra, Banerjee and Ghosh, JCAP 2018) and using
P = ρU ′ − U → ∂i U ′ = 1

ρ
∂i P for pressure P,

• Continuity equation,

ρ̇+ 3 ȧ
aρ+

1
a∂i (ρvi ) +

σij

a ∂j (ρȧxi + ρvi ) = 0 (96)

• Euler equation,

äxk +
∂vk

∂t +
ȧ
a vk +

1
a vi∂i vk +

ȧ
aσik (ȧxi + vi ) +

1
aσij (ȧxi + vi )∂j vk

= −1
a [
∂k P
ρ

+ σkj
∂j P
ρ

+
ȧ

aρθik∂i P +
1

aρθij∂i P∂j vk +
4π
3 a2Gρxk + ∂kφ]. (97)
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Recover conventional FRW with

P = Λ = 0; φ = vi = 0; θij = σij = 0; ρ = ρ0,

• Continuity equation
ρ̇0 + 3 ȧ

aρ0 = 0;

• Euler equation
Isolate structurally similar terms in (97) and requiring that the
combinations vanish separately. In the present case the xi -dependent
terms read (with ρ replaced by its homogeneous background value ρ0):

(ä +
4π
3 aGρ0)xi = 0 → ä +

4π
3 aGρ0 = 0.
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NC correction to the background
P = Λ = 0; ρ = ρ0(t), vi = 0
• Continuity equation

ρ̇0 + 3 ȧ
aρ0 +

1
aσij∂j (ρ0ȧxi ) = 0 → ρ̇0 +

ȧ
aρ0(3 + σ) = 0 (98)

where Tr(σij ) = σ.
NC correction to Euler equation φ = vi = 0

[(ä +
4π
3 Gρ0a)δik + ȧHσik ]xi = 0. (99)

To satisfy the above for arbitrary xi we require determinant of the
coefficient matrix of xi to vanish,∣∣∣∣∣(λ+ ȧHσ11) ȧHσ12 ȧHσ13

ȧHσ21 (λ+ ȧHσ22) σ23ȧH
ȧHσ31 ȧHσ32 (λ+ ȧHσ33)

∣∣∣∣∣ = 0, (100)

where,
λ = ä +

4π
3 aGρ0.
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• Expand the determinant

(λ+ ȧHσ11)[(λ+ ȧHσ22)(λ+ ȧHσ33)− (ȧH)2σ23σ32]

+(ȧH)σ12[(ȧH)2σ23σ31 − ȧHσ21(λ+ ȧHσ33)] (101)
+ȧHσ13[(ȧH)2σ21σ32 − ȧHσ31(λ+ ȧHσ22)] = 0. (102)

To O(σ) the above equation reduces to,

(λ)3 + λ2ȧH(σ11 + σ22 + σ33) ≈ 0, (103)

leading to (Trace(σij ) = σ)

λ+ ȧHσ = 0 (104)

→ NC corrected Euler equation in cosmology

ä +
4π
3 aGρ0 + ȧHσ = 0. (105)

After a little more algebra we find that (98) and (105) together yield,

1
2

d
dt (ȧ2) =

4πGρ0

3 [
1
ρ0

(
d
dt (ρ0a2) +

a
ρ0
σ∂j (ρ0ȧ))]− ȧ2Hσ (106)
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• Friedmann equation with NC correction:

ȧ2

a2 =
8πGρ

3 − k
a2 +

8πG
3a2

∫
dt a(ρ0ȧ)σ − 2

a2

∫
dt ȧ2Hσ.

=
8πGρ

3 − keff

a2 , (107)

where
keff = k − σ(

8πG
3

∫
dt aȧρ0 − 2

∫
dt ȧ2H). (108)

In NC space, flatness condition will be dictated by the effective curvature
keff . For instance for a flat universe in NC cosmology keff = 0 will lead to
a relation,

k(t) = σ(
8πG

3

∫
dt aȧρ0 − 2

∫
dt ȧ2H). (109)
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Cosmological perturbations::
The aim of of introducing perturbations in the FRW ”Standard Model” of
cosmology is to explain how large scale structures were formed in the
expanding Universe.

In particular, this means that starting from an isotropic and homogeneous
universe with an average background density ρ0, how does the fluctuation
δρ = ρ− ρ0 grow so that the density contrast δ = δρ/ρ0 can reach unity. Once
δ reaches values of the order of unity, their growth becomes non-linear.
From then onwards, they rapidly evolve towards bound structures such as star
formation and other astrophysical process.

Perturbation theory: it is customary to split the fields into a flat FRW
background part and a perturbation part that can be analyzed order by order.
However, we have already found out that the background FRW equations are
modified by NC contribution. Also the flatness condition keff = 0 means that
k → k(t) due to NC correction.
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Introduction of perturbations

• Customary to absorb the small parameter in perturbations of the respective
quantities and treat these as small with respect to the background

ρ(x, t) = ρ0(t) + δρ((x, t)) = ρ0 + ρ1 + ρ2 + ....

P(x, t) = P0(t) + δP(x, t) = P0 + P1 + P2 + ...

H(x, t) = H0(t) + δH(x, t) = H0 + H1 + H2...

φ(x, t) = φ0(t) + δφ(x, t) = φ0 + φ1 + φ2 + ..

u = ȧx + v = ȧx + v1 + v2.... (110)

• The peculiar velocity v in (110) is considered to be the perturbation in the
velocity field.
• Density contrast (of order n), a useful parameter : δn = ρn

ρ0
.
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• Now, we would like to write the perturbation equation corresponding to
the Euler equation (97) (without the background terms in (105) that has
already been taken in to account). The perturbed equation is,

∂vk

∂t + (H0 + δH)vk +
1
a vi∂i vk + (H0 + δH)σik vi +

1
aσij vi∂j vk

= −1
a [c2

s
∂k (ρ0 + δρ)

ρ0 + δρ
+ σkj

∂j (P0 + δP)

ρ0 + δρ
+ (H0 + δH)θik

∂i (P0 + δP)

ρ0 + δρ

+
1
a θij

∂i (P0 + δP)

ρ0 + δρ
∂j vk + ∂kδφ].(111)

• 1st order in perturbation so that terms of the form ∂k (ρ0+δρ)
ρ0+δρ

≈ ∂kδρ
ρ0

(homogeneous background).
Thus we find

v̇k
1 + H0(v 1

k + σik v 1
i ) = −[

1
a c2

s
∂kδρ

ρ0
+

1
a∂kφ1 +

1
aρ0

H0θik∂i P1 +
1

aρ0
σkj∂j P1](112)
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• To define perturbations in H:

H =
1
3∇.~u =

1
3a∂

x
i (ȧxi + vi ) =

ȧ
a +

1
3a∂i vi .

So that H = H0 + δH = ȧ
a + 1

3a∂i v 1
i → H1 = 1

3a∂i v 1
i .

• From perturbed Poisson equation: 1
a2 ∂

2
k Φ1 = 4πGδρ1

• From perturbed continuity equation:

˙(ρ1) = −ρ0H1(3 + σ)− H0ρ1(3 + σ). (113)

• Using background NC continuity equation ρ̇0 + ȧ
aρ0(3 + σ) = 0 and (113)

we find
˙(δ1) = (

ρ1

ρ0 ). = −H1(3 + σ). (114)
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• Noncommutative corrections in density perturbation equation:
Divergence of the perturbation equation (112):

∂k v̇k
1 + H0∂k (v 1

k + σik v 1
i ) = −1

a [c2
s
∂2

kρ
1

ρ0
+ ∂2

kφ
1 + σkj

∂k∂j P1

ρ0
]. (115)

• Note that θik∂i∂k P1 = 0→ θij -contribution vanishes.
Use relation connecting the divergence of the peculiar velocity and the
Hubble parameter (113), H1 = 1

3a∂i v 1
i →

Ḣ1 = −2H0H1 − 1
3a [c2

s
∂2

kρ
1

aρ0
+
∂2

kφ
1

a + H0σik∂k v 1
i + σkj

∂k∂j P1

aρ0
]. (116)
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• Wave Equation for Growth of Density Perturbations::
Use (114) ˙(δ1) = −H1(3 + σ) → NC corrected density perturbation
equation:

δ̈1 = −2H0δ̇1 +
(3 + σ)

3a [H0σik∂k v 1
i + c2

s
∂2

kδ
1

a +σkj
∂k∂j P1

aρ0
+
∂2

kφ
1

a ]. (117)

• Only O(σij ) are considered.
• Consider solutions of the form δ1(x , t) ∼ δ1(t)exp (ikc.x) so that
∂2

kδ
1 = −k2

c δ
1 = −k2a2δ1,

kc and k are respectively the comoving and proper wave vector,

δ̈1 = −2H0δ̇1 +
∂2

kφ
1

a2 + c2
s
∂2

kδ
1

a2 +
σ

3
∂2

kφ
1

a2 +
1
a H0σik∂k v 1

i + σkj
∂k∂j P1

a2ρ0

= −2H0δ̇1 + (4πGρ0 − c2
s k2)δ1 +

4πGρ0

3 σδ1 +
1
aσik (H0∂k v 1

i +
∂i∂k P1

aρ0
).(118)

We used perturbed Poisson equation: (1/a2)∂2φ1 = 4πGδρ = 4πGρ0δ
1.

This is the density perturbation equation. This equation governs the
dynamics of small density fluctuations in a noncommutative fluid for an
expanding background cosmology without cosmological constant.
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• We rewrite the above equation in the convenient form,

δ̈1 = −2H0δ̇1 + 4πGρ0(1 +
σ

3 )δ1 − c2
s k2δ1 + Σ, (119)

where Σ = 1
aσik (H0∂k v 1

i + ∂i∂k P1

aρ0
). σ and Σ are both NC contributions.

• In Σ both the terms are ∼ O(σ∂v 1),O(σ∂P1) ≈ 0 . We neglect Σ.
Hence in the long wavelength limit ( λ〉〉λJ = cs

√
π

Gρ0
, λj is the Jeans’

wavelength in conventional cosmology), (119) →

δ̈1 = −2H0δ̇1 + 4πGρ0(1 +
σ

3 )δ1. (120)

In the linear regime, density fluctuations on different scales evolve
independently.
In the Fourier space as (114) and (119) are rewritten:

H1
k = − δ̇k

3 + σ
,

δ̈1
k + 2H0δ̇1

k = 4πGρ0(1 +
σ

3 )δ1
k (121)
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• We will try to find solution of the NC-modified equation (121) in a flat
space which implies at critical density (ρ = ρc ),

δ̈1
k + 2H0δ̇1

k = 4πGρ0(1 +
σ

3 )δ1
k . (122)

• First find out the time dependence of H0 and ρ0.
• Note that the background, is no longer the conventional one since it has

already received a NC correction, as is seen from NC-continuity equation
(98), ρ̇0 + ȧ

aρ0(3 + σ) = 0 with solution

ρ0 = ρ̄a−(3+σ). (123)

• To O(σ) we use the conventional (matter dominated) time dependence of
a(= A0t 2

3 ).
→ We calculate k(t) under flat space condition from (109),

k(t) = σ(
8πG

3 ρ̄

∫
dt aȧa−(3+σ) − 2

∫
dt ȧ2H).
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•
k(t) =

8
3σt−2/3(−πG ρ̄A−(1+σ)

0 t−2σ/3 +
A2

0
3 ). (124)

In the conventional (flat space) case, for σ = 0→ k = 0 .
Use this k in the Friedmann equation (91) (with Λ = 0, no cosmological
constant),

ȧ2

a2 =
8πGρ0

3 −
8
3σt−2/3(−πG ρ̄A−(1+σ)

0 t−2σ/3 +
A2

0
3 )

a2 . (125)

Try a solution of a as a polynomial in t. In the RHS of (125) substitute

ρ0 = ρ̄a−(3+σ), a = A0t2/3, (126)

→ σ-corrected background and conventional form of a(t) so that (125)
will yield the O(σ) corrected a(t).
Here A0 and ρ̄ are two constants that take care of the dimensions.
• Solution ,

t = Aa
3+σ

2 + Ba3( 1+σ
2 ) (127)

where A and B are constants,

A =
2(1− σ)

3 + σ

√
3

8πG ρ̄ , B =
8σA3

0
27(1 + σ)

(
3

8πG ρ̄ )
3
2 .
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• Invert (127) to express a as a function of t in the familiar form,

a = (
t
A )

2
3+σ [1− BA2σ/3

0
A t

2σ
3 ]

2
3+σ (128)

where, B
A =

2A3
0σ

3πGρ̄ .
For σ = 0→ B = 0 and the familiar form, a(t) ∼ t2/3 is recovered.
For convenience we further approximate a(t) ∼ t2/(3+σ) in subsequent
analysis.
Putting everything together in (122), the NC evolution equation for δ1

k :

δ̈1
k +

4(1− σ/3)

3t δ̇1
k −

2
3t2 (1 +

σ

6 )δ1
k = 0. (129)

• By inspection a power law solution δ1
k ∼ tn gives

n =
1
6 [−1 +

4σ
3 ± 5

√
1− 11

75σ] ≈ 1
6 [−1 +

4σ
3 ± 5(1− 11

150σ)]. (130)

The NC corrected values of n are

n =
2
3 +

29
180σ, n = −1 +

51
180σ. (131)

Note that σ can be either positive or negative. Positive and negative
values of n signify growing or decaying modes. Obviously allowed values of
σ have to be such that the original nature of the mode (growing or
decaying) is not altered.
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Noncommutative effect on Hubble parameter and linear growth of structure ::
• To what extent can NC affect the curvature and related evolutionary

history of the universe in a quantitative way:
Generically numerical upper bounds of NC parameters, obtained from
areas in quantum mechanics or particle physics are in fact extremely small.
From a theoretical perspective NC effects are expected to become relevant
at approximately around Planck scale when the spacetime continuum
tends to get replaced by discreteness with noncommutativity manifesting
itself by inducing an inherent length scale.
• Strictly speaking, we are considering a non-canonical Poisson bracket

structure in classical physics, rather than a noncommutative structure in
the quantum commutators.
Thus smallness of the quantum NC parameter θ, σ may not directly apply
to our study. Still our NC parameters are small since we have used them
as perturbations.
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NC effect on Hubble parameter H(t):
From a(t) ∼ t2/(3+σ) derived earlier, we find

H(t) =
ȧ
a =

2
(3 + σ)t . (132)

Thus larger negative values of σ (pink and red line in Figure 1) tend to stay
more and more above the σ = 0 line whereas larger positive values of σ (blue
and green line in Figure 1) stay below the σ = 0(blackline) line.

• Figure 1: Using the explicit form of NC-modified scale factor a(t) we
compute H(t) and plot it against t for two values of σ = 0.1, + 0.5 and
σ = −0.1, − 0.5 (since σ can take positive or negative values). These can
be compared with the conventional case, σ = 0, the middle black line.
• Comparing with a conventional matter dominated universe H ∼ 2/(3t),

one might conclude that NC correction for positive σ reduces H
indicating that the rate of expansion of universe slows down → simulating
maybe a dark matter?
Negative σ seems to behave in a way that opposes the conventional
matter contribution.
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Figure : H(t) is plotted against t for σ = 0 black line (conventional case),
σ = −0.1, − 0.5 red and majenta lines respectively and σ = +0.1, + 0.5 blue and
green lines respectively.
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NC-correction in the evolution of the density contrast modes δ1
k ∼ tn:

• For σ = 0 the conventional values n = −1 and n = +2/3 ≈ 0.66. The
latter increasing mode is of interest.
From (131) we get for σ = +0.1, + 0.5, n changes to 0.68, 0.74
respectively and for σ = −0.1, − 0.5, n changes to 0.63, 0.58 respectively
for the increasing mode.

In Figure 2 we have plotted δ1
k against t for the above four values of n

along with n = +2/3 (for σ = 0) for comparison.
• Positive values of σ enhances the growing modes so that structure

formation is favored. In this sense our model of generalized fluid dynamics
in the cosmological perspective becomes interesting since it might lead to
a dark matter model, (that is essential for explaining the observed
large-scale structure in the Universe), in classical framework.
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Figure : δ1
k (t) ∼ tn is plotted against t for n = 2/3, σ = 0 black line (conventional

case), n = 0.68, 0.74; (σ = +0.1,+0.5) for blue and red lines respectively and
n = 0.58, 0.63; (σ = −0.1,−0.5) for green and magenta lines respectively.
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Conclusion::
• A generalized fluid model has been developed that lives in a

noncommutative (∼ noncanonical) space.
• Noncommutative fluid brackets are derived that generate a generalized

fluid dynamics.
• Symmetries of the extended model have been discussed.
• Action for the noncommutative fluid has been constructed.
• Possible consequences of this extended fluid dynamics in cosmology

(non-relativistic Newtonian framework) are pointed out.

Future directions::
• We have considered the simplest form of approximation and a more

detailed analysis of the model is needed. Specifically one of our future
projects is to find solutions of the scale factor directly computed from the
noncommutativity extended equations derived here.
• It would be interesting to exploit the rigorous cosmological averaging

principles developed by Buchert and coworkers in the present context
where the modifications stem from the fact that the evolution and
averaging of dynamical variables do not commute.
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THANK YOU
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