Towards a Phase Space Description of Gravity

Suvankar Dutta

Department of Physics, Indian Institute of Science Education and Research Bhopal

Current Developments in QFT and Gravity 2018, SNBNCBS December 03, 2018

A Phase space formulation

- String theory in $A d S_{5} \times S^{5}$ is dual to a gauge theory in 4 dimensions.

A Phase space formulation

- String theory in $A d S_{5} \times S^{5}$ is dual to a gauge theory in 4 dimensions.
- A local diffeomorphism invariant theory in one higher dimension is encoded in the dynamics of the gauge theory.
- Is there any natural way in the gauge theory to understand the diffeomorphism redundancy in gravity?

A Phase space formulation

- String theory in $A d S_{5} \times S^{5}$ is dual to a gauge theory in 4 dimensions.

Maldacena, 1997

- A local diffeomorphism invariant theory in one higher dimension is encoded in the dynamics of the gauge theory.
- Is there any natural way in the gauge theory to understand the diffeomorphism redundancy in gravity ?
- A hint came from the work of Lin-Lunin-MIdacena in 2004.
- Geometry of a special class of solutions of the bulk theory is completely determined by specifying a "shape" in dimensions spanned by two of the bulk coordinates $\left(x_{1}, x_{2}\right)$.
[LLM]

A Phase space formulation

- String theory in $A d S_{5} \times S^{5}$ is dual to a gauge theory in 4 dimensions.

Maldacena, 1997

- A local diffeomorphism invariant theory in one higher dimension is encoded in the dynamics of the gauge theory.
- Is there any natural way in the gauge theory to understand the diffeomorphism redundancy in gravity ?
- A hint came from the work of Lin-Lunin-Mldacena in 2004.
- Geometry of a special class of solutions of the bulk theory is completely determined by specifying a "shape" in dimensions spanned by two of the

[LLM]
 bulk coordinates (x_{1}, x_{2}).
- This means the full bulk geometry is determined by the the shape of this 2D droplet.

A Phase space formulation

- LLM identified this 2D droplet with the phase space on the boundary side which captures the dynamics of boundary gauge theory.

A Phase space formulation

- LLM identified this 2D droplet with the phase space on the boundary side which captures the dynamics of boundary gauge theory.
- Questions
- Can phase space description of gauge theories be used to provide a dual quantum mechanical description of string degrees of freedom ?

A Phase space formulation

- LLM identified this 2D droplet with the phase space on the boundary side which captures the dynamics of boundary gauge theory.

- Questions

- Can phase space description of gauge theories be used to provide a dual quantum mechanical description of string degrees of freedom ?
- In this talk :
- How to construct a collective N particle description of a generic class of gauge theory and the corresponding phase space picture ?
- What are the coordinate and momenta of these N particles ?
- Hamiltonian ?
- Constraints on large N representations for Chern-Simons theories.

Gauge theory as unitary matrix model

- Gauge theories on compact manifolds can be written as a unitary matrix model.
- For example, the thermal partition function of a gauge theory, coupled with matter and gauge group $S U(N)$ on a compact manifold $S^{p} \times S^{1}$ can be written as

$$
\begin{gathered}
Z=\int[D U] e^{S(U)}, \quad S(U)=\sum_{\vec{n}=0}^{\infty} \frac{a_{\vec{n}}(T, \lambda)}{N^{k}} \prod_{i=1}^{k} \operatorname{Tr} U^{n_{i}}, \quad \sum_{i}^{k} n_{i}=0 \\
U=\exp \left[i \int_{S^{1}} \mathcal{A}_{0}\right], \quad \mathcal{A}_{0}=\frac{1}{V_{S^{p}}} \int_{S^{p}} A_{0}
\end{gathered}
$$

Gauge theory as unitary matrix model

- Gauge theories on compact manifolds can be written as a unitary matrix model.
- For example, the thermal partition function of a gauge theory, coupled with matter and gauge group $S U(N)$ on a compact manifold $S^{p} \times S^{1}$ can be written as

$$
\begin{gathered}
Z=\int[D U] e^{S(U)}, \quad S(U)=\sum_{\vec{n}=0}^{\infty} \frac{a_{\vec{n}}(T, \lambda)}{N^{k}} \prod_{i=1}^{k} \operatorname{Tr} U^{n_{i}}, \quad \sum_{i}^{k} n_{i}=0 . \\
U=\exp \left[i \int_{S^{1}} \mathcal{A}_{0}\right], \quad \mathcal{A}_{0}=\frac{1}{V_{S^{p}}} \int_{S^{p}} A_{0}
\end{gathered}
$$

- A particular class of unitary matrix model known as plaquette model is given by

$$
\mathcal{Z}=\int \mathcal{D} U \exp \left[N \sum_{n=0}^{\infty} \frac{\beta_{n}}{n}\left(\operatorname{Tr}\left[U^{n}\right]+\operatorname{Tr}\left[U^{\dagger n}\right]\right)\right] .
$$

Unitary matrix model

- Unitary matrix model plays an important role in physics and mathematics.
- The field was initiated almost a century ago by statisticians and introduced in physics in the 50s-60s by Wigner and Dyson.
- Partition functions of different super-symmetric gauge theories, in particular Chern-Simons theories on certain manifolds boil down to UMMs.
- Partition functions of 2D gravity/string theory can also be written in terms of Hermitian matrix models.
- These models also have applications in a broad class of condensed matter systems.
- There exists a strong similarity between non-trivial zeros of $\zeta(s)$ function and eigenvalues of unitary matrix.

Unitary matrix model

- An unitary matrix model is a statistical ensemble of unitary matrices, defined by the partition function

$$
\begin{aligned}
\mathcal{Z} & =\int[\mathcal{D} U] \exp [S(U)], \\
S(U) & : \text { Action, } \mathcal{D} U \rightarrow \text { measure. }
\end{aligned}
$$

Unitary matrix model

- An unitary matrix model is a statistical ensemble of unitary matrices, defined by the partition function

$$
\begin{aligned}
\mathcal{Z} & =\int[\mathcal{D} U] \exp [S(U)], \\
S(U) & : \text { Action, } \mathcal{D} U \rightarrow \text { measure. }
\end{aligned}
$$

- Both $\mathcal{D U}$ and $S(U)$ are invariant under unitary transformation.
- One can go to a diagonal basis

$$
U \rightarrow e^{i \theta_{i}} \delta_{i j}, \quad \theta_{i} \text { 's are eigenvalues of } U .
$$

- In this basis the Haar measure and the action can be written as

$$
\int[D U]=\prod_{i=1}^{N} \int_{-\pi}^{\pi} d \theta_{i} \prod_{i<j} \sin ^{2}\left(\frac{\theta_{i}-\theta_{j}}{2}\right), \quad S(U)=S\left(\left\{\theta_{i}\right\}\right)
$$

Unitary matrix model

- The partition function is given by (for plaquette model)

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D} U \exp \left[N \sum_{n=0}^{\infty} \frac{\beta_{n}}{n}\left(\operatorname{Tr}\left[U^{n}\right]+\operatorname{Tr}\left[U^{\dagger n}\right]\right)\right] \\
& =\int \prod_{i}\left[d \theta_{i}\right] e^{-N S_{\text {eff }}\left(\left\{\theta_{i}\right\}\right)}
\end{aligned}
$$

where

$$
S_{e f f}\left(\left\{\theta_{i}\right\}\right)=-\sum_{i=1}^{N} \sum_{n=1}^{\infty} \frac{2 \beta_{n}}{n} \cos n \theta_{i}-\frac{2}{N} \sum_{i \neq j} \ln \left|\sin \frac{\theta_{i}-\theta_{j}}{2}\right|
$$

Unitary matrix model

- The partition function is given by (for plaquette model)

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D} U \exp \left[N \sum_{n=0}^{\infty} \frac{\beta_{n}}{n}\left(\operatorname{Tr}\left[U^{n}\right]+\operatorname{Tr}\left[U^{\dagger n}\right]\right)\right] \\
& =\int \prod_{i}\left[d \theta_{i}\right] e^{-N S_{e f f}\left(\left\{\theta_{i}\right\}\right)}
\end{aligned}
$$

where

$$
S_{e f f}\left(\left\{\theta_{i}\right\}\right)=-\sum_{i=1}^{N} \sum_{n=1}^{\infty} \frac{2 \beta_{n}}{n} \cos n \theta_{i}-\frac{2}{N} \sum_{i \neq j} \ln \left|\sin \frac{\theta_{i}-\theta_{j}}{2}\right|
$$

- It describes a system of N particles interacting by the two-dimensional repulsive potential $\ln \left|\sin \left(\theta_{i}-\theta_{j}\right) / 2\right|$ in the common potential

$$
V\left(\theta_{i}\right)=-\sum_{n=1}^{\infty} \frac{2 \beta_{n}}{n} \cos n \theta_{i}, \quad \forall i .
$$

Unitary matrix model

- Because of the strong repulsive potential $\ln \left|\sin \left(\theta_{i}-\theta_{j}\right) / 2\right|$ two particles do not come close to each other.
- If we neglected the repussive force, all eigenvalues would sit at the minima of the potential $V(\theta)$.
- Due to the Coulomb repulsion they are spread around these minima and fill some finite intervals.

Unitary matrix model

- Because of the strong repulsive potential $\ln \left|\sin \left(\theta_{i}-\theta_{j}\right) / 2\right|$ two particles do not come close to each other.
- If we neglected the repussive force, all eigenvalues would sit at the minima of the potential $V(\theta)$.
- Due to the Coulomb repulsion they are spread around these minima and fill some finite intervals.
- N Fermions moving in potential $V(\theta)$.
- In large N limit, partition function is dominated by minimum energy configuration.

Eigenvalue distribution.

Unitary matrix model

- The saddle point equation

Eigenvalue distribution is governed by the following equation

$$
\frac{\partial S\left[\theta_{i}\right]}{\partial \theta_{i}}=0
$$

which is given by,

$$
\sum_{\substack{j=1 \\ j \neq i}}^{N} \cot \left(\frac{\theta_{i}-\theta_{j}}{2}\right)=S^{\prime}\left[\theta_{i}\right]
$$

- In large N limit we define continuous variables

$$
\theta(x)=\theta_{i}, \quad x=\frac{i}{N}, \quad x \in[0,1]
$$

- The saddle point equation becomes

$$
f d \theta^{\prime} \rho(\theta) \cot \left(\frac{\theta-\theta^{\prime}}{2}\right)=S^{\prime}(\theta), \quad \rho(\theta)=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta \theta}
$$

Unitary matrix model - an example

- Consider plaquette model with $\beta_{1} \neq 0$ and $\beta_{n>1}=0$. Gross-Witten potential
- Action is given by

$$
\begin{aligned}
S(U) & =N\left[\beta_{1}\left(\operatorname{Tr} U+\operatorname{Tr} U^{\dagger}\right)\right] \\
& =N \sum_{i=1}^{N} 2 \beta_{1} \cos \theta_{i} \\
& =-N^{2} \int d \theta \rho(\theta) V(\theta) .
\end{aligned}
$$

- The potential $V(\theta)$ is given by

$$
V(\theta)=-2 \beta_{1} \cos \theta .
$$

Unitary matrix model - an example

- We categorize different classes according to gaps in eigenvalue distributions.

No-gap phase: Two possibilities

- Potential $V(\theta)=0, \beta_{1}=0$.
- All the eigenvalues are uniformly distributed on circle due to coulomb repulsion.

$$
\rho(\theta)=\frac{1}{2 \pi} .
$$

Unitary matrix model - an example

- We categorize different classes according to gaps in eigenvalue distributions.

No-gap phase: Two possibilities

- Potential $V(\theta)=0, \beta_{1}=0$.
- All the eigenvalues are uniformly distributed on circle due to coulomb repulsion.

$$
\rho(\theta)=\frac{1}{2 \pi} .
$$

- Potential $V(\theta) \neq 0$, but depth is less - can not accommodate N fermions.

$$
\begin{aligned}
\rho(\theta)= & \frac{1}{2 \pi}\left(1+2 \beta_{1} \cos \theta\right) \text { for } \theta \in[-\pi, \pi] . \\
& 0<\beta_{1}<1 / 2 .
\end{aligned}
$$

Unitary matrix model - an example

One-gap phase

- Potential depth is well enough to accommodate N states.
- Eigenvalue density is given by

$$
\rho(\theta)=\frac{2 \beta_{1}}{\pi} \sqrt{\sin ^{2} \frac{\theta_{1}}{2}-\sin ^{2} \frac{\theta}{2}} \cos \frac{\theta}{2}
$$

θ_{1} is determined in terms of β_{1}

$$
\sin ^{2} \frac{\theta_{1}}{2}=\frac{1}{2 \beta_{1}}
$$

Unitary matrix model - an example

One-gap phase

- Potential depth is well enough to accommodate N states.
- Eigenvalue density is given by

$$
\rho(\theta)=\frac{2 \beta_{1}}{\pi} \sqrt{\sin ^{2} \frac{\theta_{1}}{2}-\sin ^{2} \frac{\theta}{2}} \cos \frac{\theta}{2}
$$

θ_{1} is determined in terms of β_{1}

$$
\sin ^{2} \frac{\theta_{1}}{2}=\frac{1}{2 \beta_{1}}
$$

- $\beta_{1}=1 / 2$ is a phase transition point: Gross-Witten phase transition.

Unitary matrix model : other examples

Two-gap phase

- Potential looks like a double-well type.
- In large N limit, lowest energy configuration : lowest energy states are symmetrically filled in both the wells.
- Eigenvalue density is given by

$$
\begin{aligned}
\rho(\theta)= & -\frac{\beta_{2}}{\pi}|\sin \theta| \\
& \sqrt{\left(\cos \theta_{2}-\cos \theta\right)\left(\cos \theta-\cos \theta_{1}\right)}
\end{aligned}
$$

$\beta_{2}<0$ and θ_{1}, θ_{2} are determined in terms of β_{1} and β_{2}.

Unitary matrix model : other examples

Two-gap phase

- Potential has minima at $\theta=0$ and $\theta=\pi$.
- In large N limit, lowest energy configuration : lowest energy states are symmetrically filled in both the wells.
- Eigenvalue density is given by

$$
\begin{aligned}
\rho(\theta)= & \frac{1}{\pi} \sqrt{\left(\cos \theta_{2}-\cos \theta\right)\left(\cos \theta_{1}-\cos \theta\right)} \\
& {\left[\beta_{1}+\beta_{2}\left(2 \cos \theta+\cos \theta_{1}+\cos \theta_{2}\right)\right] }
\end{aligned}
$$

$\beta_{2}>0$ and θ_{1}, θ_{2} are determined in terms of β_{1} and β_{2}.

Partition function in momentum basis

Partition function in momentum basis

- Partition function

$$
\mathcal{Z}=\int[\mathcal{D} U] \exp \left[N \beta_{1}(\operatorname{Tr} U+\operatorname{Tr} U)\right]
$$

Partition function in momentum basis

- Partition function

$$
\mathcal{Z}=\int[\mathcal{D} U] \exp \left[N \beta_{1}(\operatorname{Tr} U+\operatorname{Tr} U)\right]
$$

- Expanding the exponential and using some group theory identities

$$
\mathcal{Z}=\sum_{R} e^{S[R]}
$$

where, R is representations of $S U(N)$.

Partition function in momentum basis

- Partition function

$$
\mathcal{Z}=\int[\mathcal{D} U] \exp \left[N \beta_{1}(\operatorname{Tr} U+\operatorname{Tr} U)\right]
$$

- Expanding the exponential and using some group theory identities

$$
\mathcal{Z}=\sum_{R} e^{S[R]}
$$

where, R is representations of $S U(N)$.

- Any representation of $S U(N)$ can be described in terms Young diagrams with maximum N number of rows.

$$
\mathcal{Z}=\sum_{R} e^{S[R]}=\int \prod_{i=1}^{N} d h_{i} e^{-N S\left[h_{i}\right]}
$$

$h_{i}=n_{i}+N-i, \quad n_{i}$ number of boxes in i-th row of a Young diagram.

Partition function in momentum basis

- Partition function

$$
\mathcal{Z}=\int[\mathcal{D} U] \exp \left[N \beta_{1}(\operatorname{Tr} U+\operatorname{Tr} U)\right]
$$

- Expanding the exponential and using some group theory identities

$$
\mathcal{Z}=\sum_{R} e^{S[R]}
$$

where, R is representations of $S U(N)$.

- Any representation of $S U(N)$ can be described in terms Young diagrams with maximum N number of rows.

$$
\begin{gathered}
\mathcal{Z}=\sum_{R} e^{S[R]}=\int \prod_{i=1}^{N} d h_{i} e^{-N S\left[h_{i}\right]} \\
h_{i}=n_{i}+N-i, \quad n_{i} \text { number of boxes in i-th row of a Young diagram. }
\end{gathered}
$$

- Later we shall see that $h_{i} \mathrm{~s}$ play the role of momenta.

Young diagram distribution for GWW case

- For $\beta_{1}<1 / 2, u(h)$ saturates the maximum value in a finite range of h

$$
\left.\begin{array}{rlrl}
u(h) & =1, & 0 & \leq h
\end{array}\right)=1-2 \beta_{1} .
$$

Young diagram distribution for GWW case

- For $\beta_{1}<1 / 2, u(h)$ saturates the maximum value in a finite range of h

$$
\begin{aligned}
u(h) & =1, & 0 & \leq h \leq 1-2 \beta_{1} \\
& =\frac{1}{\pi} \cos ^{-1}\left[\frac{h-1}{2 \beta_{1}}\right], & 1-2 \beta_{1} & \leq h \leq 1+2 \beta_{1}
\end{aligned}
$$

- For $\beta_{1}>1 / 2, u(h)$ never saturates the upper bound

$$
\begin{gathered}
u(h)=\frac{2}{\pi} \cos ^{-1}\left[\frac{h+\beta_{1}-1 / 2}{2 \sqrt{\beta_{1} h}}\right] \\
\beta_{1}+\frac{1}{2}-\sqrt{2 \beta_{1}} \leq h \leq \beta_{1}+\frac{1}{2}+\sqrt{2 \beta_{1}}
\end{gathered}
$$

Young diagram distribution for GWW case

- For $\beta_{1}<1 / 2, u(h)$ saturates the maximum value in a finite range of h

$$
\begin{aligned}
u(h) & =1, & 0 & \leq h \leq 1-2 \beta_{1} \\
& =\frac{1}{\pi} \cos ^{-1}\left[\frac{h-1}{2 \beta_{1}}\right], & 1-2 \beta_{1} & \leq h \leq 1+2 \beta_{1}
\end{aligned}
$$

- For $\beta_{1}>1 / 2, u(h)$ never saturates the upper bound

$$
\begin{gathered}
u(h)=\frac{2}{\pi} \cos ^{-1}\left[\frac{h+\beta_{1}-1 / 2}{2 \sqrt{\beta_{1} h}}\right] \\
\beta_{1}+\frac{1}{2}-\sqrt{2 \beta_{1}} \leq h \leq \beta_{1}+\frac{1}{2}+\sqrt{2 \beta_{1}}
\end{gathered}
$$

- There exists a Douglas-Kazakov type phase transition between these saddle points as one varies the parameter β_{1}.

Relation between Eigenvalue and Young diagram distribution

Relation between Eigenvalue and Young diagram distribution

- We observed that there exists a surprising relation between eigenvalue distribution and Young tableaux distribution for different phases of the theory.

$$
\rho(\theta)=\frac{h_{+}-h_{-}}{2 \pi} \quad \text { and } \quad u(h)=\theta / \pi
$$

$$
\text { where } \quad h_{ \pm}=\frac{1}{2}+\beta_{1} \cos \theta \pm \pi \rho(\theta) .
$$

Relation between Eigenvalue and Young diagram distribution

- We observed that there exists a surprising relation between eigenvalue distribution and Young tableaux distribution for different phases of the theory.

$$
\rho(\theta)=\frac{h_{+}-h_{-}}{2 \pi} \quad \text { and } \quad u(h)=\theta / \pi \quad \text { where } \quad h_{ \pm}=\frac{1}{2}+\beta_{1} \cos \theta \pm \pi \rho(\theta) \text {. }
$$

- Eigenvalue distribution and Young tableaux distribution can be expressed in a unified way in terms of a single constant distribution function $\omega(h, \theta)$ such that,

$$
\rho(\theta)=\int_{0}^{\infty} \omega(h, \theta) d h, \quad u(h)=\int_{-\pi}^{\pi} \omega(h, \theta) d \theta
$$

where $\omega(h, \theta)$ is a distribution in a two dimensions.

$$
\omega(h, \theta)=\frac{1}{2 \pi} \Theta\left[\left(h_{+}-h\right)\left(h-h_{-}\right)\right] .
$$

Relation between Eigenvalue and Young diagram distribution

- 2D droplets for GWW potential

Relation between Eigenvalue and Young diagram distribution

- 2D droplets for GWW potential

Relation between Eigenvalue and Young diagram distribution

- 2D droplets for GWW potential

$$
\begin{array}{ccc}
\beta_{1}=0 & 0<\beta_{1}<1 / 2 & \beta_{1}>1 / 2 \\
\text { Thermal AdS } & \text { Small black hole } & \text { Big black hole }
\end{array}
$$

- 2D droplets in general (for two gap phase)

Relation between Eigenvalue and Young diagram distribution

- 2D droplets for GWW potential

- 2D droplets in general (for two gap phase)

Gravity dual ?

- These droplets are similar to Wigner distribution in Thomas-Fermi model.
- All the states inside/outside this region are filled/empty.
- Thus boundary defines fermi surface in (h, θ) plane.
- Topology/shape of fermi surface is different for different phases of the model.
- Phase transition corresponds to change of topology of fermi region.

Collective field theory Hamiltonian

- From phase space distribution we define a Hamiltonian density

$$
\omega(h, \theta)=\frac{1}{2 \pi} \Theta\left[\left(h_{+}-h\right)\left(h-h_{-}\right)\right]=\frac{1}{2} \Theta(\mu-\mathfrak{h}(h, \theta))
$$

Collective field theory Hamiltonian

- From phase space distribution we define a Hamiltonian density

$$
\begin{gathered}
\omega(h, \theta)=\frac{1}{2 \pi} \Theta\left[\left(h_{+}-h\right)\left(h-h_{-}\right)\right]=\frac{1}{2} \Theta(\mu-\mathfrak{h}(h, \theta)) \\
\mathfrak{h}(h, \theta)=\frac{h^{2}}{2}-S(\theta) h+\frac{g(\theta)}{2}+\mu, \quad \text { where } g(\theta)=h_{+}(\theta) h_{-}(\theta)
\end{gathered}
$$

- Momentum density $S(\theta)$ can be written from phase space distribution

$$
S(\theta)=\frac{1}{2 \pi \rho} \int_{0}^{\infty} d h h \omega(h, \theta)=\frac{h_{+}(\theta)+h_{-}(\theta)}{2} .
$$

- The Hamiltonian can also be written as

$$
H_{h}=\int d \theta\left(\frac{S^{2} \rho}{2}+\frac{\pi^{2} \rho^{3}}{6}\right)+V_{e f f}(\rho)+\mu
$$

Collective field theory Hamiltonian

- From phase space distribution we define a Hamiltonian density

$$
\begin{gathered}
\omega(h, \theta)=\frac{1}{2 \pi} \Theta\left[\left(h_{+}-h\right)\left(h-h_{-}\right)\right]=\frac{1}{2} \Theta(\mu-\mathfrak{h}(h, \theta)) \\
\mathfrak{h}(h, \theta)=\frac{h^{2}}{2}-S(\theta) h+\frac{g(\theta)}{2}+\mu, \quad \text { where } g(\theta)=h_{+}(\theta) h_{-}(\theta)
\end{gathered}
$$

- Momentum density $S(\theta)$ can be written from phase space distribution

$$
S(\theta)=\frac{1}{2 \pi \rho} \int_{0}^{\infty} d h h \omega(h, \theta)=\frac{h_{+}(\theta)+h_{-}(\theta)}{2} .
$$

- The Hamiltonian can also be written as

$$
H_{h}=\int d \theta\left(\frac{S^{2} \rho}{2}+\frac{\pi^{2} \rho^{3}}{6}\right)+V_{e f f}(\rho)+\mu
$$

- Collective field theory of $\rho(\theta, t)$. The Hamiltonian is given by, [Jevicki-Sakita; Das-Jevicki]

$$
H_{B}=\int d \theta\left(\frac{1}{2} \frac{\partial \pi(t, \theta)}{\partial \theta} \rho(t, \theta) \frac{\partial \pi(t, \theta)}{\partial \theta}+\frac{\pi^{2} \rho^{3}(t, \theta)}{6}+V_{\text {eff }}(\theta) \rho(t, \theta)\right), \quad S(\theta)=\partial_{\theta} \pi
$$

Chern-Simons matter systems: The partition function

Chern-Simons matter systems: The partition function

- We consider CS theory on $S^{2} \times S^{1}$ interacting with matter in fundamental representations. Partition function of this theory is given by

Aharony,Giombi, Gur-Ari, Maldacena,Yacoby
Jain,Minwalla,Sharma,Takimi,Wadia, Yokoyama; Takimi

Chern-Simons matter systems: The partition function

- We consider CS theory on $S^{2} \times S^{1}$ interacting with matter in fundamental representations. Partition function of this theory is given by

Aharony,Giombi, Gur-Ari, Maldacena,Yacoby

$$
\mathcal{Z}=\int[\mathcal{D} A][\mathcal{D} \mu] e^{i \frac{\kappa}{4 \pi} \operatorname{Tr} \int\left(A d A+\frac{2}{3} A^{3}\right)-S_{\text {matter }}}, \quad D \mu \text { is the matter field measure }
$$

- Integrate out the matter fields

$$
\mathcal{Z}=\int[\mathcal{D} U] \exp [S(U)], \quad S(U): \text { Action, form depends on matter field }
$$

where $U(x)=\exp \left[\beta A_{3}\right]$ is the two dimensional holonomy field around the thermal circle S^{1}.

Chern-Simons matter systems: The partition function

- We consider CS theory on $S^{2} \times S^{1}$ interacting with matter in fundamental representations. Partition function of this theory is given by

Aharony,Giombi, Gur-Ari, Maldacena,Yacoby

$$
\mathcal{Z}=\int[\mathcal{D} A][\mathcal{D} \mu] e^{i \frac{\kappa}{4 \pi} \operatorname{Tr} \int\left(A d A+\frac{2}{3} A^{3}\right)-S_{\text {matter }}}, \quad D \mu \text { is the matter field measure }
$$

- Integrate out the matter fields

$$
\mathcal{Z}=\int[\mathcal{D} U] \exp [S(U)], \quad S(U): \text { Action, form depends on matter field }
$$

where $U(x)=\exp \left[\beta A_{3}\right]$ is the two dimensional holonomy field around the thermal circle S^{1}.

- However, eigenvalue density has an upper-cap

$$
0 \leq \rho(\theta) \leq \frac{1}{2 \pi \lambda .} \quad \lambda=\frac{N}{k+N}
$$

Chern-Simons matter systems: Gross-Witten-Wadia matter

1. No-gap phase

2. One-gap phase

Chern-Simons matter systems : Gross-Witten-Wadia matter

Jain,Minwalla,Sharma, Takimi,Wadia, Yokoyama; Takimi

1. No-gap phase

2. One-gap phase

3. Upper-cap phase

4. Cap-gap phase

Chern-Simons matter systems : Gross-Witten-Wadia matter

1. No-gap phase

2. One-gap phase

3. Upper-cap phase

4. Cap-gap phase

Representation for phases of CS-M theory

- No-gap phase

Representation for phases of CS-M theory

- No-gap phase

- One-gap phase

Representation for phases of CS-M theory

- No-gap phase

- One-gap phase

- Upper-cap phase

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]

$$
\rho(\theta)=\frac{h_{+}-h_{-}}{2 \pi}
$$

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]

$$
\rho(\theta)=\frac{h_{+}-h_{-}}{2 \pi} \leq \frac{1}{2 \pi \lambda}
$$

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]

$$
\rho(\theta)=\frac{h_{+}-h_{-}}{2 \pi} \leq \frac{1}{2 \pi \lambda}
$$

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]

$$
\rho(\theta)=\frac{h_{+}-h_{-}}{2 \pi} \leq \frac{1}{2 \pi \lambda}
$$

- We see that the eigenvalue density is related to spread (support) of $u(h)$ i.e. width of Young distribution. Thus an upper cap on eigenvalue density puts restriction on spread of $u(h)$ or width of Young diagrams. Since, spread of Young distribution is identified with $2 \pi \rho(\theta)$, we claim that
for CS-matter theory on $S^{2} \times S^{1}$ the dominant representations have a Young distribution function with maximum spread $1 / \lambda$.

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

- Reduced Young diagrams: The diagram on the right is obtained by taking conjugation of conjugation of the first diagram.

- Conjugation of conjugation of any representation is the representation itself.
- Hence both the diagrams describe the same representation.

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

- Integrable representations: An integrable representation of $S U(N)_{k}$ is characterised by an Young diagram which has maximum $k-N$ boxes in the first row.

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

- Integrable representations: An integrable representation of $S U(N)_{k}$ is characterised by an Young diagram which has maximum $k-N$ boxes in the first row.
- $h_{i}=n_{i}+N-i \rightarrow$ integrable representations correspond to diagrams with

$$
h_{1}<k \quad \text { which implies } \quad h(0)<\frac{1}{\lambda}, \quad\left(h(0)=h_{1} / N\right) .
$$

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

- Integrable representations: An integrable representation of $S U(N)_{k}$ is characterised by an Young diagram which has maximum $k-N$ boxes in the first row.
- $h_{i}=n_{i}+N-i \rightarrow$ integrable representations correspond to diagrams with

$$
h_{1}<k \quad \text { which implies } \quad h(0)<\frac{1}{\lambda}, \quad\left(h(0)=h_{1} / N\right) .
$$

- Putting a cap on eigenvalue distribution constraints the corresponding representations to be integrable.

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

- Integrable representations: An integrable representation of $S U(N)_{k}$ is characterised by an Young diagram which has maximum $k-N$ boxes in the first row.
- $h_{i}=n_{i}+N-i \rightarrow$ integrable representations correspond to diagrams with

$$
h_{1}<k \quad \text { which implies } \quad h(0)<\frac{1}{\lambda}, \quad\left(h(0)=h_{1} / N\right) .
$$

- Putting a cap on eigenvalue distribution constraints the corresponding representations to be integrable.
- Consistent with Naculich and Schnitzer: physical observables (corelators pf Wilson loop) of CS theory on 3 manifold can be written in terms of sum over integrable representations of $S U(N)_{k}$ of boundary WZW theory.

Constraint on Young diagrams for CS-M theory on $S^{2} \times S^{1}$

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

- Integrable representations: An integrable representation of $S U(N)_{k}$ is characterised by an Young diagram which has maximum $k-N$ boxes in the first row.
- $h_{i}=n_{i}+N-i \rightarrow$ integrable representations correspond to diagrams with

$$
h_{1}<k \quad \text { which implies } \quad h(0)<\frac{1}{\lambda}, \quad\left(h(0)=h_{1} / N\right) .
$$

- Putting a cap on eigenvalue distribution constraints the corresponding representations to be integrable.
- Consistent with Naculich and Schnitzer: physical observables (corelators pf Wilson loop) of CS theory on 3 manifold can be written in terms of sum over integrable representations of $S U(N)_{k}$ of boundary WZW theory.
- Eigenvalues are discrete with minimum spacing $2 \pi / k$. This implies that corresponding reciprocal space (h space) is periodic and the size of first Brillouin zone is $k\left(h_{\max }=k\right)$ - consistent with our claim.

Representation for upper-cap phase for CS-M theory

[A. Chattopadhyay, P.Dutta, SD 2018]

- We use the level rank duality to find the dominant representation for the upper cap.
- The Young diagrams for these representations are related to each other by transpositions i.e. the interchange of rows and columns.
- We know that Lower gap is mapped to upper cap via level rank duality.
- Therefore, the dominant representations for upper-cap phase can be obtained by transposing the dominant representations for the lower-gap phase.

Representation for phases of CS-M theory

- No-gap phase

- One-gap phase

- Upper-cap phase

Outlook

- Constant phase space distribution is very similar to Thomas-Fermi (TF) model at zero temperature, where Wigner distribution is assumed to take constant value inside some region in phase space and zero elsewhere.
- We are yet to understand underlying many-body quantum mechanics associated with different large N phases of matrix model.
- It would also be interesting to understand correspondence between a low temperature fluctuation in a many body quantum system and fluctuations in interacting gauge theory.

$$
\omega(h, \theta)=\frac{1}{e^{\beta(H(h, \theta)-\mu)}+1} .
$$

Outlook

- Chern-Simons gauge theory on S^{3} is dual to topological closed string theory on resolved conifold (Gopakumar-Vafa). Does phase space description of CS theory will help us to understand a correspondence between topological string theory and quantum mechanics of many-body system ?
- Is it possible to obtain geometry of dual string theory background from phase space distribution for a supersymmetric gauge theory, for example ABJM, in the spirit of LLM ?

Outlook

- Chern-Simons gauge theory on S^{3} is dual to topological closed string theory on resolved conifold (Gopakumar-Vafa). Does phase space description of CS theory will help us to understand a correspondence between topological string theory and quantum mechanics of many-body system ?
- Is it possible to obtain geometry of dual string theory background from phase space distribution for a supersymmetric gauge theory, for example ABJM, in the spirit of LLM ?

Thank you

