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A Phase space formulation

I String theory in AdS5 × S5 is dual to a gauge theory in 4 dimensions. Maldacena, 1997

I A local diffeomorphism invariant theory in one higher dimension is encoded in the
dynamics of the gauge theory.

I Is there any natural way in the gauge theory to understand the diffeomorphism
redundancy in gravity ?

I A hint came from the work of Lin-Lunin-Mldacena in 2004.

I Geometry of a special
class of solutions of the
bulk theory is completely
determined by specifying a
"shape" in dimensions
spanned by two of the
bulk coordinates (x1, x2).

[LLM]

I This means the full bulk geometry is determined by the the shape of this 2D
droplet.
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A Phase space formulation

I LLM identified this 2D droplet with the phase space on the boundary side which
captures the dynamics of boundary gauge theory.

I Questions
I Can phase space description of gauge theories be used to provide a dual quantum

mechanical description of string degrees of freedom ?

I In this talk :
I How to construct a collective N particle description of a generic class of gauge theory and

the corresponding phase space picture ?
I What are the coordinate and momenta of these N particles ?
I Hamiltonian ?
I Constraints on large N representations for Chern-Simons theories.

3 / 29



A Phase space formulation

I LLM identified this 2D droplet with the phase space on the boundary side which
captures the dynamics of boundary gauge theory.

I Questions
I Can phase space description of gauge theories be used to provide a dual quantum

mechanical description of string degrees of freedom ?

I In this talk :
I How to construct a collective N particle description of a generic class of gauge theory and

the corresponding phase space picture ?
I What are the coordinate and momenta of these N particles ?
I Hamiltonian ?
I Constraints on large N representations for Chern-Simons theories.

3 / 29



A Phase space formulation

I LLM identified this 2D droplet with the phase space on the boundary side which
captures the dynamics of boundary gauge theory.

I Questions
I Can phase space description of gauge theories be used to provide a dual quantum

mechanical description of string degrees of freedom ?

I In this talk :
I How to construct a collective N particle description of a generic class of gauge theory and

the corresponding phase space picture ?
I What are the coordinate and momenta of these N particles ?
I Hamiltonian ?
I Constraints on large N representations for Chern-Simons theories.

3 / 29



Gauge theory as unitary matrix model

I Gauge theories on compact manifolds can be written as a unitary matrix model.
I For example, the thermal partition function of a gauge theory, coupled with

matter and gauge group SU(N) on a compact manifold Sp × S1 can be written as

Z =
∫

[DU]eS(U), S(U) =
∞∑
~n=0

a~n(T , λ)
Nk

k∏
i=1

TrUni ,

k∑
i

ni = 0.

U = exp[i
∫
S1
A0], A0 = 1

VSp

∫
Sp

A0

I A particular class of unitary matrix model known as plaquette model is given by

Z =
∫
DU exp

[
N
∞∑
n=0

βn
n (Tr [Un] + Tr [U†n])

]
.

4 / 29



Gauge theory as unitary matrix model

I Gauge theories on compact manifolds can be written as a unitary matrix model.
I For example, the thermal partition function of a gauge theory, coupled with

matter and gauge group SU(N) on a compact manifold Sp × S1 can be written as

Z =
∫

[DU]eS(U), S(U) =
∞∑
~n=0

a~n(T , λ)
Nk

k∏
i=1

TrUni ,

k∑
i

ni = 0.

U = exp[i
∫
S1
A0], A0 = 1

VSp

∫
Sp

A0

I A particular class of unitary matrix model known as plaquette model is given by

Z =
∫
DU exp

[
N
∞∑
n=0

βn
n (Tr [Un] + Tr [U†n])

]
.

4 / 29



Unitary matrix model

I Unitary matrix model plays an important role in physics and mathematics.

I The field was initiated almost a century ago by statisticians and introduced in
physics in the 50s-60s by Wigner and Dyson.

I Partition functions of different super-symmetric gauge theories, in particular
Chern-Simons theories on certain manifolds boil down to UMMs.

I Partition functions of 2D gravity/string theory can also be written in terms of
Hermitian matrix models.

I These models also have applications in a broad class of condensed matter systems.

I There exists a strong similarity between non-trivial zeros of ζ(s) function and
eigenvalues of unitary matrix.
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Unitary matrix model

I An unitary matrix model is a statistical ensemble of unitary matrices, defined by
the partition function

Z =
∫

[DU] exp [S(U)] ,

S(U) : Action, DU→ measure.

I Both DU and S(U) are invariant under unitary transformation.

I One can go to a diagonal basis

U → e iθi δij , θi ’s are eigenvalues of U.

I In this basis the Haar measure and the action can be written as∫
[DU] =

N∏
i=1

∫ π

−π
dθi
∏
i<j

sin2
(
θi − θj

2

)
, S(U) = S({θi}).
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Unitary matrix model

I The partition function is given by (for plaquette model)

Z =
∫
DU exp

[
N
∞∑
n=0

βn
n (Tr [Un] + Tr [U†n])

]

=
∫ ∏

i
[dθi ] e−NSeff ({θi}),

where Seff ({θi}) = −
N∑
i=1

∞∑
n=1

2βn
n cos nθi −

2
N
∑
i 6=j

ln | sin θi − θj2 |

I It describes a system of N particles interacting by the two-dimensional repulsive
potential ln | sin(θi − θj)/2| in the common potential

V (θi) = −
∞∑
n=1

2βn
n cos nθi , ∀ i .
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Unitary matrix model

I Because of the strong repulsive potential ln | sin(θi − θj)/2| two particles do not
come close to each other.

I If we neglected the repussive force, all eigenvalues would sit at the minima of the
potential V (θ).

I Due to the Coulomb repulsion they are
spread around these minima and fill some
finite intervals.

I N Fermions moving in potential V (θ).

I In large N limit, partition function is
dominated by minimum energy
configuration.

V (θ)

−π π0

−θ1 θ1

Eigenvalue distribution.
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Unitary matrix model

I The saddle point equation
Eigenvalue distribution is governed by the following equation

∂S[θi ]
∂θi

= 0,

which is given by,
N∑
j=1
j 6=i

cot(θi − θj2 ) = S ′[θi ].

I In large N limit we define continuous variables

θ(x) = θi , x = i
N , x ∈ [0, 1].

I The saddle point equation becomes

−
∫

dθ′ρ(θ) cot
(
θ − θ′

2

)
= S ′(θ), ρ(θ) = lim

∆x→0

∆x
∆θ .
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Unitary matrix model - an example

I Consider plaquette model with β1 6= 0 and βn>1 = 0. Gross-Witten potential

I Action is given by

S(U) = N
[
β1(TrU + TrU†)

]
= N

N∑
i=1

2β1 cos θi

= −N2
∫

dθρ(θ)V (θ).

I The potential V (θ) is given by

V (θ) = −2β1 cos θ.
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Unitary matrix model - an example

I We categorize different classes according to gaps in eigenvalue distributions.

No-gap phase : Two possibilities

I Potential V (θ) = 0, β1 = 0.

I All the eigenvalues are uniformly distributed
on circle due to coulomb repulsion.

ρ(θ) = 1
2π .

I Potential V (θ) 6= 0, but depth is less - can not
accommodate N fermions.

ρ(θ) = 1
2π (1 + 2β1 cos θ) for θ ∈ [−π, π].

0 < β1 < 1/2.

V (θ)

−π π0

−π π0

ρ(θ)
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Unitary matrix model - an example

One-gap phase

I Potential depth is well enough to
accommodate N states.

I Eigenvalue density is given by

ρ(θ) = 2β1
π

√
sin2 θ1

2 − sin2 θ

2 cos θ2 .

θ1 is determined in terms of β1

sin2 θ1
2 = 1

2β1
.

V (θ)

−π π0

−θ1 θ1

Highest level

ρ(θ)

−θ1 θ1−π π

I β1 = 1/2 is a phase transition point : Gross-Witten phase transition.
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Unitary matrix model : other examples

Two-gap phase

I Potential looks like a double-well type.
I In large N limit, lowest energy

configuration : lowest energy states are
symmetrically filled in both the wells.

I Eigenvalue density is given by

ρ(θ) = −β2
π
| sin θ|√

(cos θ2 − cos θ)(cos θ − cos θ1)

β2 < 0 and θ1, θ2 are determined in terms
of β1 and β2.
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Unitary matrix model : other examples

Two-gap phase

I Potential has minima at θ = 0 and θ = π.
I In large N limit, lowest energy

configuration : lowest energy states are
symmetrically filled in both the wells.

I Eigenvalue density is given by

ρ(θ) = 1
π

√
(cos θ2 − cos θ)(cos θ1 − cos θ)

[β1 + β2(2 cos θ + cos θ1 + cos θ2)]

β2 > 0 and θ1, θ2 are determined in terms
of β1 and β2.
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Partition function in momentum basis

I Partition function
Z =

∫
[DU] exp [Nβ1(TrU + TrU)]

I Expanding the exponential and using some group theory identities

Z =
∑
R

eS[R]

where, R is representations of SU(N).
I Any representation of SU(N) can be described in terms Young diagrams with

maximum N number of rows.

Z =
∑
R

eS[R] =
∫ N∏

i=1
dhie−NS[hi ]

hi = ni + N − i , ni number of boxes in i-th row of a Young diagram.

I Later we shall see that his play the role of momenta.
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Young diagram distribution for GWW case

I For β1 < 1/2, u(h) saturates the maximum value in a finite range of h

u(h) = 1, 0 ≤ h ≤ 1− 2β1.

= 1
π

cos−1
[

h − 1
2β1

]
, 1− 2β1 ≤ h ≤ 1 + 2β1

I For β1 > 1/2, u(h) never saturates the upper bound

u(h) = 2
π

cos−1
[

h + β1 − 1/2
2
√
β1h

]
β1 + 1

2 −
√

2β1 ≤ h ≤ β1 + 1
2 +

√
2β1

h+

h_

I There exists a Douglas-Kazakov type phase transition between these saddle points
as one varies the parameter β1.
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Relation between Eigenvalue and Young diagram distribution

I We observed that there exists a surprising relation between eigenvalue distribution
and Young tableaux distribution for different phases of the theory.

ρ(θ) = h+ − h−
2π and u(h) = θ/π where h± = 1

2 + β1 cos θ ± πρ(θ).

I Eigenvalue distribution and Young tableaux distribution can be expressed in a
unified way in terms of a single constant distribution function ω(h, θ) such that,

ρ(θ) =
∫ ∞

0
ω(h, θ)dh, u(h) =

∫ π

−π
ω(h, θ)dθ

where ω(h, θ) is a distribution in a two dimensions.

ω(h, θ) = 1
2πΘ[(h+ − h)(h − h−)].
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Relation between Eigenvalue and Young diagram distribution

I 2D droplets for GWW potential

β1 = 0 0 < β1 < 1/2 β1 > 1/2

Thermal AdS Small black hole Big black hole

I 2D droplets in general (for two gap
phase)

Gravity dual ?

I These droplets are similar to
Wigner distribution in
Thomas-Fermi model.

I All the states inside/outside this
region are filled/empty.

I Thus boundary defines fermi
surface in (h, θ) plane.

I Topology/shape of fermi surface is
different for different phases of
the model.

I Phase transition corresponds to
change of topology of fermi
region.
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Collective field theory Hamiltonian
[A. Chattopadhyay, P. Dutta, SD]

I From phase space distribution we define a Hamiltonian density

ω(h, θ) = 1
2πΘ[(h+ − h)(h − h−)] = 1

2Θ(µ− h(h, θ))

h(h, θ) = h2

2 − S(θ)h + g(θ)
2 + µ, where g(θ) = h+(θ)h−(θ)

I Momentum density S(θ) can be written from phase space distribution

S(θ) = 1
2πρ

∫ ∞
0

dh h ω(h, θ) = h+(θ) + h−(θ)
2 .

I The Hamiltonian can also be written as

Hh =
∫

dθ
(

S2ρ

2 + π2ρ3

6

)
+ Veff (ρ) + µ

I Collective field theory of ρ(θ, t). The Hamiltonian is given by, [Jevicki-Sakita; Das-Jevicki]

HB =
∫

dθ
(

1
2
∂π(t, θ)
∂θ

ρ(t, θ)∂π(t, θ)
∂θ

+ π2ρ3(t, θ)
6 + Veff (θ)ρ(t, θ)

)
, S(θ) = ∂θπ
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2Θ(µ− h(h, θ))

h(h, θ) = h2

2 − S(θ)h + g(θ)
2 + µ, where g(θ) = h+(θ)h−(θ)

I Momentum density S(θ) can be written from phase space distribution

S(θ) = 1
2πρ

∫ ∞
0

dh h ω(h, θ) = h+(θ) + h−(θ)
2 .

I The Hamiltonian can also be written as

Hh =
∫

dθ
(

S2ρ

2 + π2ρ3

6

)
+ Veff (ρ) + µ

I Collective field theory of ρ(θ, t). The Hamiltonian is given by, [Jevicki-Sakita; Das-Jevicki]

HB =
∫

dθ
(

1
2
∂π(t, θ)
∂θ

ρ(t, θ)∂π(t, θ)
∂θ

+ π2ρ3(t, θ)
6 + Veff (θ)ρ(t, θ)

)
, S(θ) = ∂θπ
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Chern-Simons matter systems : The partition function

I We consider CS theory on S2 × S1 interacting with matter in fundamental
representations. Partition function of this theory is given by

Aharony,Giombi, Gur-Ari, Maldacena,Yacoby

Jain,Minwalla,Sharma,Takimi,Wadia, Yokoyama; Takimi

Z =
∫

[DA][Dµ]e i
k

4π Tr
∫

(AdA+ 2
3A

3)−Smatter , Dµ is the matter field measure

I Integrate out the matter fields

Z=
∫

[DU] exp [S(U)] , S(U) : Action, form depends on matter field

where U(x) = exp[βA3] is the two dimensional holonomy field around the thermal
circle S1.

I However, eigenvalue density has an upper-cap

0 ≤ ρ(θ) ≤ 1
2πλ. λ = N

k+N
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Chern-Simons matter systems : Gross-Witten-Wadia matter
Jain,Minwalla,Sharma,Takimi,Wadia, Yokoyama; Takimi

1. No-gap phase

2. One-gap phase

ρ=0 ρ

3. Upper-cap phase

ρ 1

2πλρ

4. Cap-gap phase

ρ 0 ρ 1
2πλ

ρ

ρ

0.5

1

2

0.5
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Representation for phases of CS-M theory
[A. Chattopadhyay, P.Dutta, SD 2018]

I No-gap phase

I One-gap phase

ρ=0 ρ

I Upper-cap phase

ρ 1

2πλρ

?
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Constraint on Young diagrams for CS-M theory on S2 × S1

[A. Chattopadhyay, P.Dutta, SD 2018]

ρ(θ) = h+ − h−
2π

≤ 1
2πλ

h+

h_

h+

I We see that the eigenvalue density is related to spread (support) of u(h) i.e.
width of Young distribution. Thus an upper cap on eigenvalue density puts
restriction on spread of u(h) or width of Young diagrams. Since, spread of Young
distribution is identified with 2πρ(θ), we claim that

for CS-matter theory on S2 × S1 the dominant representations have a Young
distribution function with maximum spread 1/λ.
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Constraint on Young diagrams for CS-M theory on S2 × S1

[A. Chattopadhyay, P.Dutta, SD 2018]

What does it mean ?

I Reduced Young diagrams : The diagram on the right is obtained by taking
conjugation of conjugation of the first diagram.

I Conjugation of conjugation of any representation is the representation itself.
I Hence both the diagrams describe the same representation.
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Constraint on Young diagrams for CS-M theory on S2 × S1

[A. Chattopadhyay, P.Dutta, SD 2018]
What does it mean ?

I Integrable representations : An integrable representation of SU(N)k is
characterised by an Young diagram which has maximum k − N boxes in the first
row.

I hi = ni + N − i → integrable representations correspond to diagrams with

h1 < k which implies h(0) < 1
λ
, (h(0) = h1/N).

I Putting a cap on eigenvalue distribution constraints the corresponding
representations to be integrable.

I Consistent with Naculich and Schnitzer : physical observables (corelators pf
Wilson loop) of CS theory on 3 manifold can be written in terms of sum over
integrable representations of SU(N)k of boundary WZW theory.

I Eigenvalues are discrete with minimum spacing 2π/k. This implies that
corresponding reciprocal space (h space) is periodic and the size of first Brillouin
zone is k (hmax = k) - consistent with our claim.
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Representation for upper-cap phase for CS-M theory

[A. Chattopadhyay, P.Dutta, SD 2018]

I We use the level rank duality to find the dominant representation for the upper
cap.

I The Young diagrams for these representations are related to each other by
transpositions i.e. the interchange of rows and columns.

I We know that Lower gap is mapped to upper cap via level rank duality.
I Therefore, the dominant representations for upper-cap phase can be obtained by

transposing the dominant representations for the lower-gap phase.

..
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Representation for phases of CS-M theory
[A. Chattopadhyay, P.Dutta, SD 2018]

I No-gap phase

I One-gap phase

ρ=0 ρ

I Upper-cap phase

ρ 1

2πλρ
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Outlook

I Constant phase space distribution is very similar to Thomas-Fermi (TF) model at
zero temperature, where Wigner distribution is assumed to take constant value
inside some region in phase space and zero elsewhere.

I We are yet to understand underlying many-body quantum mechanics associated
with different large N phases of matrix model.

I It would also be interesting to understand correspondence between a low
temperature fluctuation in a many body quantum system and fluctuations in
interacting gauge theory.

ω(h, θ) = 1
eβ(H(h,θ)−µ) + 1

.
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Outlook

I Chern-Simons gauge theory on S3 is dual to topological closed string theory on
resolved conifold (Gopakumar-Vafa). Does phase space description of CS theory
will help us to understand a correspondence between topological string theory and
quantum mechanics of many-body system ?

I Is it possible to obtain geometry of dual string theory background from phase
space distribution for a supersymmetric gauge theory, for example ABJM, in the
spirit of LLM ?

Thank you
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