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Introduction

Motivation

@ Understanding the out of equilibrium quantum many-body
systems is one of the central problems for both theoretical and
experimental physics.

@ Thermalization of isolated quantum systems, many-body
localization and related concepts are at the forefront of
research today.

o Entanglement entropy and entanglement dynamics play a key
role in many of these ideas.

e Entanglement entropy for the bosonic systems was realized
experimentally by R. Islam, et al., Nature, (2015) and A. M.
Kaufman et al., Science, (2016).

@ With recent advances in cold atoms and optical lattices it is
plausible that detailed predictions of entanglement dynamics
may be amenable to experimental studies.



Introduction

Motivation

Measuring entanglement entropy in a
quantum many-body system

Rajibul Islam', Ruichao Ma', Philipp M. Preiss’, M. Eric Tai', Alexander Lukin', Matthew Rispoli' & Markus Greiner'

Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between
quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse
fields ranging from condensed matter to quantum gravity. However, measuring remains a chall

This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of
spatial entanglement has been elusive. Here, we measure entanglement in suich a system of itinerant particles using
quantum interference of many-body twins. Makm;, use of our singl Ived control of ull 1d bosonic atoms
in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly
measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for
using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

Ref: R. Islam, et al., Nature, (2015)



Introduction

Motivation

Quantum thermalization through
entanglement in an isolated
many-body system

Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner™

Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrédinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

Ref: A. M. Kaufman et al., Science, (2016)



Introduction

Motivation

@ Another motivation of this study arises from black hole
physics.

@ The black hole horizon provides a bipartition of space-time
into exterior and interior region.

@ With respect to the exterior region, the black hole behaves as
a thermodynamic object.

@ Bekenstein-Hawking entropy law gives S < A.

@ This can be interpreted as entanglement entropy [Sorkin
(1986), Srednicki (1993)].

@ It is interesting to ask how the system would behave in a
non-equilibrium situation.
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Product state Entangled state
B

A

A B

@ State of system is described by

YaB

@ Product state if

Yag = Ya® g
o Entangled state if

Yag # Ya® g



Introduction

Introduction

@ Density matrix of a system is defined as p = |¢) >< 9|

@ The reduced density matrix of any subsystem is

pa/g = Tre a(p)

@ The von Neumann entropy is a measure of quantum
entanglement

S1=—Tr(palogpa) = — Y (pilogp;)

I



N Coupled Oscillator
A B

@ The Hamiltonian of the many-body system is given by

HY(t)

N N—-1
S (6 +H0) KO 35 e
Lj=1 j=1

N
> pp+ XTK(t).X

@ where w is the trapping frequency and k is the interaction strength.



@ We will first discuss the case for N = 2

H(E) = 5 (8 + 8 + (D04 +8) + k(D) — )],

which could be mapped to the two site Bose-Hubbard model
H= wBH(aJ{al + agag) — J(aIaQ + azal).

for w = (wBH — J) and k = 2wBHJ.
@ The above Hamiltonian could be written as two independent
harmonic oscillator with time dependent frequencies

1
H(t) = 5 [Pi +p2 +wi(t)x2 —I—w%(t)xg] ,

_ Pitpm S =)
V2

where p4 and x4 = NG and with w; = w and

w_ = Vw2 + 2k



TDSE

@ A time dependent Hamiltonian satisfies the time dependent
Schrodinger equation (TDSE)

0
ih- ) = H(Ol)

@ In order to find the solutions, it is necessary to look for an
invariant Hermetian operator / such that

dl ol
——a+l [1,H] =0

@ The solutions of the TDSE can be constructed from the
eigenstates of the operator / [Lewis and Riesenfeld (1969)].

@ For a given Hamiltonian there is no general procedure to find
the invariant. If H is an element of a dynamical algebra, then
| can be expanded in terms of its elements with time
dependent factors.



Time dependent SHO
Time dependent SHO

@ The Hamiltonian for a single time dependent oscillator is

2 mw?(t
0= £ 50

@ The corresponding time dependent Schrodinger equation is

.0
ihs- 1) = H(Ol)

@ There exists a time invariant Hermitian operator /(t)
satisfying
d ol 1
—=—+4+ —[I,H] =0
dt = ot ih[ H]

@ By using above two equations we obtain

)
iho(110)) = H(E)(114))



Time dependent SHO
Time dependent SHO

@ Solution of the Schrédinger equation can be written as,

Yn(x, t) = ") (x, 1)

where ¢/(x, t) is an eigenstate of / and k(t) is a real function
of time which satisfies the equation given by

o (ol H)lo)

@ Let us use following ansatz for invariant operator in the
quadratic form as

1(8) = Sla(e) + 5(0)p +(1)(px + xp)]

where «, 8,7 are the dimensionful factors



Time dependent SHO

Time dependent SHO

@ The equations satisfied by «, 5,y given by

. 2 1
& =2mwy, B =——7, ¥=——a+ mw?p
m m

o If we now introduce a new real function b(t) as

B(t) = b(t)

@ Using the above equations we get

d .. . .
ba(mzb + m?w?b) + 3b(m?b + m*w?b) =0

@ The integration of the above equation will produce a nonlinear
differential equation

w?(0)
b3

b+ w?(t)b =



Time dependent SHO
Time dependent SHO

@ The invariant operator now can be written as

L[l

=3 | %

5 x* 4 (bp — mbx)ﬂ

@ In terms of the operators

5_2;[ mw(O)X i(bp—mbx)]j

b mw(0)
st o1 [ mw(O)X ~(bp— mbx)]
b mw(0)

the invariant / has the form

[y

I =(ata+ 5)mwo.



Time dependent SHO

Time dependent SHO

o If ¢}(x,t) denotes the ground state of 3 in position basis,
then

aph(x,t) =0,
@ Thus the ground state of / is

ohot) = (D) e (5 m)

b2

@ All the excited states are accessed by acting the creation
operator on the ground state, the nt" order eigenstate is

1
mw(0 4 mw(0 imb 2 _ mw(0)
¢L(X’t):<22"n!£7r)bz> i (X b§)>e ¢



Time dependent SHO

Time dependent SHO

@ Now the phase factor x(t) using Schrodinger equation given

by
K(t) = — (n + ;) w(0) /Ot lﬂgt’)dtl’
=— (n + ;) w(0)r.

@ Hence the ground state solution at time t is
i(Dby2_ X
zbgs()@ t) = e’(ZbX EOT)wgS (Bu 0) 9

where b(t) is a scaling parameter satisfies Ermakov equation

and 7 = fot % and Ey is the ground state energy of the

oscillator at time t = 0.



Time-dependent calculations

Detailed steps for N = 2

@ The TDSE of the two oscillator Hamiltonian is given by,

iaw(xl, X2, t)

at = H(t)w(x].?)@a t)

@ The full time dependent wave function can be found as

Y(x1, X2, t) :A(t)exp [i(ale + alx22 + 232x1xz)] X exp[ - /'<E+7ur + E_T_)]

1 2 1 2
X exp[ - WWHO)()@ +x2) ] X exp[ - mw—(o)(xl —x2) ]
A0 (@r(@w_ (@) by _
where A(t) = = OO ai(t) = (4b1 + 4b2 ax(t) = (4b1 - 4b2) and

wi = w and w_ = Vw2 + 2k.



Time-dependent calculations
Solution of Ermakov equation

@ Here bi(t), by(t) satisfy the nonlinear Ermakov equations
given by
wi(0)

3
b;

o Boundary condition b;(0) = 1, b;(0) = 0.
@ Then the general solution of b;(t) can be written by a
nonlinear superposition principle (Ref: E. Pinney, (1950)),

b + WA (t )bj =

\/Au 2 + Cv(t)? + 2Bu(t)v(t)

where u(t), v(t) are the linearly independent solutions of the
Hill's equatlons A, B, C are constants, related by

AC — B? = V&O) and W = av — vu is the Wronskian.



Time-dependent calculations

Solution of Ermakov equation

@ For example we consider a particular form of
w(t) = wif(—t) + wrb(t).

@ Now the corresponding Hill's equation is
. 2.
X +wsx = 0.

The two linearly independent solutions of the above equation
are

u(t) = elwrt,

v(t) = e iwrt

The Wronskian is, W = uv — vt = —2jwr



Time-dependent calculations

Solution of Ermakov equation

@ Therefore the general solution can be written as

2
b(t) = | Ae?iwrt 4 Ce=2iwrt 42, [AC + w,2
dws

e Applying the boundary conditions b;(0) =1, bj(O) =0, we
get

b(t) = \/n cos(2wrt) + na,

2 2 2 2
where n; = L%, np = £
2wf wa




Time-dependent calculations

Detailed steps for N = 2

@ The reduced density matrix is defined as
Pred(x1, X1, t) = /dxzp(X1,X27X{,X2,t)

@ The reduced density matrix is

preaoa . £) = 712y = )2 exp [i(x = x¢?)z()] exp [~ 2 (o +x7) + Brax]]

where
(w+(0) N w_(o>) (w+(o> _ w_<o>)2 _ (ﬂ _ @)2
(t) = b2(t) b3 (1) N b2 (1) b3 (1) by by
K 2 A <w+(0) N w7<0)> ’
b2 (1) b3(1)
<w+(o> _ w7<o>)2+ (5 B 52)2
B(t) = b2 (1) b3(1) by~ by
4(w+(0> N w_(O)) ’
b2(t) b3(t)
wi(0) w_(0)

= (B2 HO - Bo (b bk
4by  4by wi(©  w-© \ab  4ab, )’

b2 (1) b3 (1)




Time-dependent calculations

Detailed steps for N = 2

@ The eigenvalue equation satisfied by p,eq is

/ dxi pred(x1, X1, t) fa(x1, t) = pn(t)fa(x1, t)

@ The eigenvalue has the following form

pa(t) = (1 = &(2))E()"

@ The time-dependence of £(t) is given by,
B
B Gl

= = <1,
T 1+ 1-5

@ The von Neumann entropy can be now written as

S3(t) = ~log(1 — £(6)) - -\ers log ().

§(1)




Time-dependent calculations

Detailed steps for N = 2

@ This expression of von Neumann entropy is true for arbitrary
time dependence in the system

@ For the time independent frequencies, the entropy reduces to
that derived by Sorkin et al (1986) and Srednicki (1993) in
the context of black holes.

@ Next we will consider two different cases of quench.



Time-dependent calculations

Quench in N =2

@ The time dependence is given by sudden change in the
parameters.

@ The solutions of Ermakov equations for a sudden quench in w
from w(i) = w — w(f) =0 are

bi(t) = V1+ w22,

bz(t) = \/n2 COS(2kt) + mo,

2
and  my = 2kl 26

4k

2k—(w?+2k
where ny = %



Time-dependent calculations

Von Neumann Entropy for N=2

0 10 20 30 40 50
Time, t

@ We start with w(i) = 3 and k = 2 then quench w(i) to
w(f)=0.



Time-dependent calculations

Quench in N =2

@ Here we do the quench in the Bose-Hubbard parameters.

@ The solutions of Ermakov equations for a sudden quench in
WBH (wBH(i) — wBH(f)) is

bl(t) = \/nl COS(2(wBH(f) - J)t) + mq,
bo(t) = \/na cos(2(wpn(f) + J)t) + my,

(wpn(f) =9 —(wpp() =) ’

e _ (wpn()=IP+(wpn(i)—JI)
2(wpn(f)—J

where n, = 2(p(N )

my

(wpH(A)+)+H(wph () +)
2(wpp(f)+J)?

(wpr(H)+I)? = (wpy()+)?
2(wpp(F)+J)?

ny = and mp =



Time-dependent calculations

Von Neumann Entropy for N=2

6 " A A
5 ;7 wBH(f):ZOl é
[ A ]
r A ]
4t WW wap(F)=2.06 ]

S

Time, t

e We start with wgy(i) = 3 and J = 2 then quench wpy(i) to
wer(f) = 2.15,2.06 and 2.01.



Time-dependent calculations
Time-dependent entangled system

@ The Hamiltonian for N coupled oscillators with time
dependent parameters is given by

N
1
HN(t) = 5 > pr+ XT.K(t).X
j=1

where X=(x1, x2...xy) " and K is a real symmetric N x N
matrix with real eigenvalues.

@ The time dependent density matrix of the whole system has
the form

p(X, X' t) = <det§3) : exp {,’ (XTZ)X B X/TBX’)}

XTQx _ X’TQX/]

exp [— > >

here Q = UTVK'PU, KIP = 4 b=UThPU



Time-dependent calculations

Reduced system and entropy

@ Tracing over the subsystem X%, the reduced density matrix of
X? is given by

Pred Xa X/a /dea Xa Xa X/a Xa)

o We write the matrices Q and b respectively as

Q QnN—
Q= nxn nxN—n >
<QT QN—n><N—n

nxN—n

B: <~En><n NEnXN—n )
er—Xan bN—n><N—n



Time-dependent calculations
Reduced system and entropy

@ Using these and after some algebra, we get

pred(Xa7 X/av t)

1

det2 \2

_ (d eQﬂ- ) exp |:I (Xasza _ Xlaszla):|
et nxn

T

(XaT’yXa—i—X/aT’yX/a) —I—XQT/BX/‘?]

{ 1
X exp )

where X2, X’ has N — n components
e Z(t), v, p are (N — n) x (N — n) matrices given by



Time-dependent calculations

Reduced system and entropy

Z(t) — EN—nXN—n - ban nannQnXN—n>
W(t) = QN—an—n - anN nannQnXN—n

+ 2bn><N nQninbn>< N—n>

B( ) Qn><N nannQnXN—n + ZE:Z—XN—nQ;ianXN—n
@ The reduced density matrix in new coordinates takes the form

Pred(Ra> R/a’ t) = exp [iRaTZ//Ra _ I-R/aTZ//R/a}

N _4)?
X H 7(1 51) ex —l(r-2+r{2)+6~-r-r{
—N—n p j J S

2
Jj=n+1



Time-dependent calculations

Time-dependent many-body system

@ The eigenvalues are given by

@ where

@ In this case there will be N number of bj(t) satisfying
Ermakov equations given by

Aj(0)

Bj + )\j(t)bj = b3
J

where A; are eigenvalues of K which dependence on w and k.



Time-dependent calculations

Time-dependent many-body system

@ The von Neumann entropy takes the form

N—n )
Si(6) = Y | ~lox(1 — §(0) ~ 5 e (0

j=1

after partitioning the system to n versus N — n degrees of
freedom.



Entropy plots for N=4

@ As a specific example, we now consider a chain of N =4
oscillators.

@ The Hamiltonian is given by

4

H() = 5 [ (82 + (1) (0305 57

Jj=1

@ We consider the periodic boundary condition given by
X5 = x1. Ihe matrix K has the form

w2 + 2k —k 0 —k
P —k w42k —k 0
- 0 —k W+ 2k —k

—k 0 —k w242k



Entropy plots for N=4

Eigenvalues are given by \; = (w? + 2k) — 2k cos (2ﬂ>

4

@ The corresponding eigenfunctions are
1

5 — N-1/2 exp(2mij/4)

’ exp(47ij/4)

exp(67ij/4)

where j = 1,2, 3,4.

Note that there are only three distinct eigenvalues (A1 = A3).

Hence there will be only three distinct Ermakov equations

(br(t) = b3(t)) -



Results

Entropy plots for N=4

e The matrices U, bP and (K’D)% are given by

1 1 11
i -1 —i 1
U= -1 1 -1 1
—i —1 i 1
by (t)
261 (1) . 0 0 0
by (t)
po_| ° 2hy(e) (z : 0
by (¢
0 0 251 (1) . 0
by (t)
0 0 0 NG
Vw2 42k 0 0 0
by
0 Vw?+ak 0 0
(K/D)I/Z _ b3
0 0 etk 0
b
1
0 0 0 V2



Entropy plots for N=4

@ We now perform a sudden quench at time t = 0, when w, k
change from a constant values (w(i), k(/)) to (w(f), k(f)).

@ The reduced system is defined by tracing out the last two
oscillators in the chain.

@ In this case there are four Ermakov equations whose solutions
(with bj(t =0) = 1 and bj(t = 0) = 0) are given by

bj(t) = \/nj cos(24/Aj(f)t) + m;

)\jf—>\jl' _)\jf+)\ji
here nj = 4(2;,-(0*( ) mj = 4(221-(0()

@ \i(i), Aj(f) are the eigenvalues of K before and after the
quench.




Results

Entropy plots for N=4

w()=0.01

Si(1)
2

Time, t

o Initial values w(i) = 3 and k(i) = 2.



Results

Scaling of entropy

_ A(N)=A0) _ A)+A0)
@ where n; = W mj = W
@ Three independent time scales contribute to the entanglement
dynamics.

@ This plot shows entanglement revival whose time period
increases with decreasing w(f).

@ Each revival period contains several quasi-revivals on shorter
time scales due to the effect of the Ermakov solutions

@ At large times, the profile of the entanglement dynamics is
dominated by the smallest frequency, which being independent
of interaction k.

@ Existence of multiple time scales within each revival period is
a new feature due to the solutions of the Ermakov equations.



Entropy plots for different N

7, ]
6; w(f):OOl ]
5¢ YA
=z b ARV J\;
= 4: . WYYV ]
%) 3 v ]
o [V — N=4 N=6 —— N=10 |
1 —— N=16 —— N=20
07 . S S S S R S SO S 1
0 10 20 30 40 50

Time, t

@ Plot of von Neumann entropy with different N and same
quenched parameters w(f) = 0.01



Results

Entropy plots for different N

@ The time evolution of S1(t, N) shows the effect of multiple
time scales whose number increases with V.

@ In addition, the von Neumann entropy itself increases as a
function of N.

@ In order to extract the N dependence of the entropy, in next
section we have plotted the ratio Sl(tN ) as a function of time
t for several N.



Results

Scaling of entropy

ar 1
i w(f)=0.01
z 3 ]
E L
S 2
a
il — N=4 N=6 —— N=10
i —— N=16 —— N=20
0““\““\““\““\““7
0 10 20 30 40 50
Time, t

@ Plot of von Neumann entropy with different N and scaled by
log(N)



Results

Scaling of entropy

@ Now we plot the ratio w as a function of time t for

several V.

o It is clear that for N > 10, the nature of this plot is consistent
with the scaling relation

Si(t,N) =c(t)InN+ O (1)
@ where ¢(t) is a time dependent function that encodes the

cumulative effect of the dynamically generated multiple time
scales.



Results

Connection to criticality

@ The Hamiltonian

N

A = 5 | D200 +2(00) + K t)Z(xj ~ x31)°

Jj=1

@ Under the following canonical transformation
(5 p7) — (KM, i/ K11%),

@ Introducing a = v/m/k (m = 1), Hamiltonian takes the form

1| &, P 12
HY(t) = 5 Z(:j + aw’(t)x7) + 3 > 05— x41)
j=1 j=1

@ Lattice discretization of a free boson with lattice spacing a and
mass w.



Results

Connection to criticality

@ In the limit a — 0, N — oo we can replace

xj — ¢(x), — 7(x) = ¢(x), with x = na

@ Hamiltonian reduces to the two-dimension Euclidean action given by

1/
Action, S = > / dX/dT [(0.0)* + w?¢?] .
@ In the limit w — 0 it is conformally invariant

@ Therefore when w — 0 and large N above Hamiltonian becomes
critical.

'P. Calabrese et al., (2013).



Lieb Robinson bound

@ The wavefunction for this N coupled oscillator model with
time dependent coefficients is

N
[PAN: ~
w(xl,....,xN,t):<det7T> exp | i XTbX—ZEjTJ-
j=1

con[-X1X]. 0

D ~ ~
here @ = UTVKDU, KIP = 52 b= UTBPU
J

@ The equal time correlation has the form

1Y 1
<xi(t)x(t) >= 5 > Uni NGOl U,



Results

Lieb Robinson bound

T3 =6 —— j=1

03} =3 1=6 =10
— =14 — j=18
02}

o AN\/M\
0.0
> 4 6 8 10 12 14

Time, t

<X1 Xp>

@ Here we have quenched from w(i) = 3 and k(i) =2 to
w(f) =2and k(f) =25

@ It takes finite time to propagate correlation from site i to site
(i+r)



Lieb Robinson bound

Results

@ The plot of this distance versus time of propagation gives us
propagation velocity with a finite bound

@ The bound in the entanglement propagation speed for
harmonic chain system is given by (for quench from w(i) =3,
k(i) =2 to w(f) =2, k(f) =2.5)

Speed=3.12

16

4 8
Distance, r

20

This shows a finite speed of entanglement propagation



Summary

Summary

@ We have obtained exact analytical expressions of von
Neumann entropy for any arbitrary time-dependence.

@ The entanglement dynamics is characterized by a
multi-oscillatory behaviour and the number of time scales
appearing in the entanglement dynamics increases with N.

@ We saw that the entropy for this system violates the area law.

@ In the critical limit there is a logarithmic scaling of the
entanglement entropy.

@ This method can be used to obtain exact solutions to a
variety of quenches, which are under investigation.



Thank You
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