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Abstract

While regularizations break the classical chiral symmetry which oc-

curs for massless fermions, some symmetries which break näıve regu-

larizations can be consistently regularized with care. These classical

symmetries are therefore not anomalous, unlike the usual chiral sym-

metry; they only appear so. As example, we review the case of the

Peccei-Quinn symmetry and introduce a new non-abelian general-

ization of axions and Peccei-Quinn symmetry. Pure QCD with a

twisted mass term but without axions also has a parity symmetry

which is only apparently anomalous.
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INT RODUCT ION

Anomaly

• Known for over half a century that the chiral symmetry which

holds in classical Dirac theory with massless fermions interact-

ing with gauge fields is broken upon quantization (Adler, Bell-

Jackiw).

• The transformation

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 ,

is a symmetry of the kinetic term ψ̄[i/∂]ψ and also of the inter-

action term ψ̄[i /A]ψ with the gauge field Aµ.

• But the axial current ψ̄γµγ5ψ, which appears to be conserved

from the equations of motion is found to violate this conservation

when the fermion triangle diagram is carefully regularized and

evaluated. Called the chiral anomaly.

• In the early literature, only the one-loop diagram was consid-
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INT RODUCT ION

ered, but subsequently it became clear that higher order loops

do not cause any further damage. Instead of considering indi-

vidual diagrams it is more natural to consider the action and

regularize it by one of the many available methods.

• A lattice regularization is an example. Here the spacetime itself

is temporarily imagined to be discrete and fields appropriately

defined on the lattice sites or links.

• The discrete Lagrangian density takes the form ψ̄[ 1
2
( /D

L
+ /D

L∗
)−

aDL∗
µ DL

µ ]ψ. Here a is the lattice spacing, DL is the covariant

forward difference, divided by a and DL∗ the covariant backward

difference, again divided by a. While the kinetic term is chirally

invariant as in the continuum, there is the double derivative term

which breaks this invariance on the lattice (Wilson).

The anomaly can be calculated from this lack of invariance.

• Another example is the regularization introduced by Pauli and
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Villars, where some fictitious species are temporarily introduced.

In both cases, calculations are done with the temporary regular-

ized action, after which the realistic limit is taken. This means

making the lattice spacing vanish, or the masses of the fictitious

species go to infinity.

• The simple Pauli-Villars regularized Lagrangian density is

ψ̄[i/∂]ψ + χ̄[i/∂ −M ]χ,

where χ is a fictitious field which takes the form of a spinor like

ψ but has to be assigned Bose statistics if loop diagrams are to

be regularized by this combination. The mass M of χ is taken

to infinity at the end of calculations.

The chiral symmetry of the ψ part is broken only when the mass

m 6= 0. However, the χ part has to break chiral symmetry

because M , which has to be taken to infinity at the end, cannot

be taken to vanish.
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Thus the simple Pauli-Villars regularization already shows that

chiral symmetry does not survive regularization and has an anomaly

which can be calculated by taking the M → ∞ limit of the di-

vergence of the full axial current.

• It is found to be finite and proportional to trFF̃ .

• In general, a classical symmetry may or may not survive quanti-

zation. The simple phase symmetry, whereby ψ is multiplied by

a phase factor, does survive quantization for all values of m. To

see whether a symmetry survives quantization, the action has to

be regularized. If the regularized action still has the symmetry,

the symmetry has no anomaly. If the regularized action does not

possess the symmetry, one tends to think that the symmetry has

an anomaly, but it is necessary to be careful. There are different

ways of regularizing fermion field theories and one must check

whether a different regularization can preserve the symmetry.
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• We shall review the example of the Peccei-Quinn symmetry

which occurs in the presence of a hypothetical field called the ax-

ion and was introduced by these authors in an attempt to solve

the strong CP problem. It appeared to be anomalous at that

time because it was thought to violate regularizations. However,

it has recently been shown to survive quantization.

• After that, a nonabelian analogue of Peccei-Quinn theory is in-

troduced. The new symmetry too is not anomalous.

• After that we go back to axionless chromodynamics and discuss

strong parity in the presence of a twisted mass term.

• Finally there are discussions involving lattices and the measure

approach to anomalies.

• Before that, let us look at what has been called the strong CP

problem.
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Strong CP

• Recall that a Dirac field can be decomposed into a left part and

a right part: ψ = ψL + ψR.

• Weak interactions involve one handedness and break parity

• Vector interactions involve both and respect parity

• What about the strong and electromagnetic interactions? They

are rather similar in the sense that both are vector gauge the-

ories, the gauge symmetry being abelian in the electrodynamic

case and non-abelian in the strong interactions. So again there

is no violation of parity or time-reversal to begin with.

• Topological term FF̃ involving gluons and “vacuum angle” θ, if

present, violates P,T:

The Lagrangian of the standard model for the strong interac-

tions, viz., quantum chromodynamics, theoretically allows an
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adjustable

θFµνF̃µν ∼ θ ~E · ~B
term involving the gluon fields. This violates both parity ( ~B

even, ~E odd) and time reversal ( ~E even, ~B odd).

• Worse, the quark mass terms, which are related to time-reversal

violations in the weak interactions through phase factors, can be

an unknown complex mixture of scalar and pseudoscalar struc-

tures,

exp[iγ5θ
′]

• Quark mass term has this chiral phase θ′ from symmetry break-

ing in electroweak sector

May be large ≈ 1, may violate P and T

• ψ̄Lme
iθ′

ψR + hc = ψ̄meiθ
′γ5ψ = cos θ′ψ̄mψ + i sin θ′ψ̄mγ5ψ.

Looks like scalar (ψ̄ψ) + pseudoscalar (ψ̄γ5ψ)

⇒ suggests parity violation
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• Phase factor eiθ
′ → e−iθ′

under antilinear operation

⇒ suggests time-reversal violation

• Chiral transformation believed to combine θ, θ′

• May define an effective parameter θ̄ ≡ θ − θ′

• But there is no experimental evidence of such violations. A

possible signature would be an electric dipole moment of the

neutron, which is a bound state of quarks formed by the strong

interactions. An electric dipole moment satisfies an equation like

~d = ǫ~s,

violating both parity and time-reversal because ~d is odd under

parity and even under time- reversal, whereas the spin ~s is just

the other way round.

• No such moment has been experimentally observed.

• Electric dipole moment of neutron < 10−26 e-cm
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• One could imagine the gluon effect parametrized by θ to cancel

effects of the unknown phase θ′ in the mass terms.

One asks: Is θ = θ′?

• But this would involve something like a conspiracy between the

strong interactions and the mass terms and is considered unnat-

ural.

• Increasing a symmetry of an action by a choice of a parameter

is natural: ’t Hooft’s criterion of naturalness

• Making θ = θ′ unnatural:

symmetry of effective action increases, not of classical action

• Why then no experimental observation?

This was the Strong CP Problem

• Banerjee, Chatterjee and I showed over 15 years back that even

in the standard theory, the θ′-term does not cause parity or time-

reversal violation.
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• The combination of a scalar and a pseudoscalar involving θ′ does

not really lead to P or T violation in classical field theory: they

just get redefined.

• Although it may appear that the θ′-term violates parity and

time-reversal classically, a classically conserved parity and a clas-

sically conserved time-reversal can be defined: violations can

then occur only if this parity or this time-reversal has an anomaly,

i.e., a quantum breaking of the classical symmetry. However,

this parity symmetry is not afflicted with any anomaly and is

conserved in the quantum theory.

• The result holds in quantum field theory as the regularization

or measure of fermion integration can be adjusted to take this

redefinition into account.

• Remaining CP violation can be removed by θ = 0.

• The gluon θ-term does violate both symmetries, but this coef-
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ficient can be set equal to zero without invoking any magical

cancellation with a non-trivial term.

This is natural.

However, let us go on to axions.
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PECCEI − QUINN SYMMET RY AND T HE AXION

Chiral symmetry is explicitly broken by the mass term mψ̄ψ and

also by quantum effects, i.e. the anomaly. However, an artificial

chiral symmetry for massive fermions works by letting a new field ϕ

absorb the chiral transformation. The mass term is replaced by

ψ̄meiϕγ5ψ,

which is invariant if the field ϕ transforms under

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 , ϕ→ ϕ− 2α.

This transformation leaves the action invariant provided the new

field ϕ is massless. This is the Peccei-Quinn symmetry. The particle

corresponding to the new field ϕ introduced by them is called the

axion, but it has not been seen in any experiment.

To see whether this symmetry survives quantization, we may follow

Pauli and Villars. The Lagrangian density

ψ̄[i/∂ −meiϕγ5 ]ψ + χ̄[i/∂ −M ]χ
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PECCEI − QUINN SYMMET RY AND T HE AXION

is invariant. But the fictitious field χ has to be treated in the same

way as ψ. If χ is transformed as

χ→ eiαγ5/2χ, χ̄→ χ̄eiαγ5/2,

the second term does not stay invariant. That is why it was believed

that the Peccei-Quinn symmetry does not survive quantization.

However, the basic idea of the Pauli-Villars regularization is that

the diagrams must be duplicated with the physical particle replaced

by the fictitious one, so that the regulator field must behave in the

same way as the physical field. Thus the field χ should be minimally

coupled to the gauge field Aµ. This yields

ψ̄[i /D −meiϕγ5 ]ψ + χ̄[i /D −M ]χ.

This coupling makes the Lagrangian density gauge invariant under

identical gauge transformations of ψ and χ. But the interactions with

ϕ are still different. To rectify this, one has to introduce an axion
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PECCEI − QUINN SYMMET RY AND T HE AXION

interaction with the regulator in the same way as in the Peccei-Quinn

term:

ψ̄[i /D −meiϕγ5 ]ψ + χ̄[i /D −Meiϕγ5 ]χ.

With this correction, the action, including the kinetic term of the

axion, is invariant under the Peccei-Quinn transformation extended

to χ:

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5

χ→ eiαγ5χ, χ̄→ χ̄eiαγ5

ϕ→ ϕ− 2α.

Thus this Pauli-Villars regularization respects the Peccei-Quinn sym-

metry, which accordingly is not anomalous but survives quantization.
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PECCEI − QUINN SYMMET RY AND T HE AXION

The conserved Noether current for this symmetry is

ψ̄γµγ5ψ + χ̄γµγ5χ+ 2F 2∂µϕ,

where F is a constant of mass dimension such that the axion kinetic

term is 1

2
F 2∂µϕ∂

µϕ.

For simplicity, we have considered so far the simple version of Pauli-

Villars regularization with only one regulator field χ. But this is not

sufficient to remove all divergences. There is a generalized Pauli-

Villars regularization

ψ̄[i /D −m]ψ +
∑

j

|cj |∑

k=1

χ̄jk[i /D −Mj ]χjk.

Here cj are integers whose signs are related to the statistics assigned

to the spinor fields χjk. They are positive for Fermi statistics and

negative for Bose statistics. They have to satisfy some conditions to
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PECCEI − QUINN SYMMET RY AND T HE AXION

ensure regularization of the divergences:

1 +
∑

j

cj = 0, m2 +
∑

j

cjM
2

j = 0.

The consistency with the symmetry of the unregularized action,

which has been achieved above by coupling the axion to a single

χ, is to be attained by applying the same coupling to all the fields

χjk here:

ψ̄[i /D −meiϕγ5 ]ψ +
∑

j

|cj |∑

k=1

χ̄jk[i /D −Mje
iϕγ5 ]χjk.

The axial symmetry can be made local by introducing an extra gauge

field Bµ for this purpose:

ψ̄[i /D + /Bγ5 −meiϕγ5 ]ψ +
1

2
F 2(∂µϕ+ 2Bµ)(∂

µϕ+ 2Bµ),

with additional kinetic terms of the gauge fields. Regularization is
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as before.

We have considered an ordinary abelian or nonabelian gauge field

above. The spacetime too can be taken to be curved. Then

/D = γleµl (∂µ − iAµ − i

2
Amn

µ σmn)

involves a tetrad eµl and a spin connection Amn
µ in addition to the

gauge field Aµ, but nevertheless it continues to anticommute with γ5.

Hence the symmetry survives quantization even in curved spacetime.
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NONABELIAN GENERALIZAT ION OF PECCEI QUINN

The usual chiral symmetry is under a transformation of the fermion

in spinor space. If the fermion is an SU(N) multiplet, there exist

nonabelian chiral symmetries. The kinetic piece

ψ̄i/∂ψ = ψ̄Li/∂ψL + ψ̄Ri/∂ψR

is invariant under the chiral transformations

ψL → ULψL, ψR → ULψR,

where UL, UR are spacetime independent SU(N) matrices acting on

the two chiral projections of ψ. The gauge interactions will also

be invariant under these provided a different factor group is gauged

and the matrix Aµ commutes with UL, UR. For instance, the SU(N)

could be a flavour group and the colour SU(3) or the U(1) could be

gauged.

The usual mass term m(ψ̄LψR+ ψ̄RψL) is not invariant unless UL =

UR, in which case of course the transformation is a vector transforma-
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NONABELIAN GENERALIZAT ION OF PECCEI QUINN

tion. The analogue of the Peccei-Quinn mass term is m(ψ̄LWψR +

ψ̄RW
†ψL). Here W has to be a hypothetical SU(N) matrix field

similar to the axion. Considering that the original axion has not

been detected, we certainly do not intend to suggest that such an

object should exist, but the mathematical construction may be use-

ful for calculations because of the symmetry. This term is invariant

under the joint transformation if W transforms as

W → ULWU †
R.

The kinetic term for this matrix field has to be of the form

Tr[∂µW∂µW †].

This is invariant when W changes as above. Thus the full action is

invariant under the generalized Peccei-Quinn symmetry

ψL → ULψL, ψR → ULψR, W → ULWU †
R.
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NONABELIAN GENERALIZAT ION OF PECCEI QUINN

The question we have to ask is whether this nonabelian chiral symme-

try survives quantization. The näıve way of regularization would be

to introduce a Pauli-Villars SU(N) multiplet with the usual kinetic

term and a mass-like term M(χ̄LχR + χ̄RχL). This term will not

be invariant under chiral transformations of χ. But as noted above,

Pauli-Villars requires a coupling of χ toW : M(χ̄LWχR+χ̄RW
†χL).

Adding the interaction with the W field ensures invariance of the

regularized action. For the full Pauli-Villars regularization one has

ψ̄[i /D −mW̄ ]ψ +
∑

j

|cj |∑

k=1

χ̄jk[i /D −MjW̄ ]χjk,

where PL, PR are the projection operators for left and right chirality

respectively and

W̄ =WPR +W †PL.
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NONABELIAN GENERALIZAT ION OF PECCEI QUINN

This is invariant under the transformations

ψL → ULψL, ψR → ULψR, χL → ULχL, χR → ULχR,W → ULWU †
R.

Hence like the Peccei-Quinn symmetry, this classical symmetry too

survives quantization and is not anomalous.

Again, gauge fields can be used to extend the global chiral symme-

tries to local ones. For example, for the left handed chiral symmetry,

one needs an SU(N) gauge field matrix Bµ:

ψ̄[i /D + /BPL −mW̄ ]ψ +
1

2
F 2Tr[(∂µ − iBµ)W (∂µW † + iW †Bµ)].

Gauge field kinetic terms have to be added.

As in the abelian case, the generalization to curved spacetime can be

carried out here too using the Dirac operator of the earlier section.
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ST RONG CP WIT HOUT AXIONS

Now the axion is only a hypothetical field which was introduced for

some historical reasons. Let us consider the situation of strong CP

without axions. First we consider a single flavour. The Lagrangian

density

ψ̄[i /D −meiθγ5 ]ψ

represents QCD with a twisted mass term as may arise from sponta-

neous symmetry breaking and the Higgs mechanism. Note that this

action may also be reached from the theory including the axion by

setting the field ϕ equal to the constant θ.

This action no longer has the Peccei-Quinn symmetry. It is usually

believed that this action breaks parity. This is because the mass

term is not invariant under the usual parity transformation

ψ(~x) → γ0ψ(−~x), ψ̄(~x) → ψ̄(−~x)γ0.

In fact this term is believed to cause strong CP violation and has
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ST RONG CP WIT HOUT AXIONS

been at the origin of the so-called strong CP problem.

However, as was pointed out earlier, the action is invariant under a

twisted parity transformation

ψ(~x) → γ0eiθγ5ψ(−~x), ψ̄(~x) → ψ̄(−~x)γ0e−iθγ5 .

This is equally admissible as a parity transformation and is an actual

symmetry of the action. The main reason why it looks unfamiliar is

that few people are used to twisted mass terms. There is also the

fact that this transformation involves γ5 and may be suspected to

be anomalous. To see whether that is the case, one has to consider

regularizing the action. The näıve regularization

ψ̄[i /D −meiθγ5 ]ψ + χ̄[i /D −M ]χ

seems to respect it if χ is transformed under parity the usual way,

but χ has to be treated exactly like ψ and thus has the twisted parity
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ST RONG CP WIT HOUT AXIONS

transformation above:

ψ(~x) → γ0eiθγ5ψ(−~x), ψ̄(~x) → ψ̄(−~x)γ0e−iθγ5

χ(~x) → γ0eiθγ5χ(−~x), χ̄(~x) → χ̄(−~x)γ0e−iθγ5 .

This symmetry is respected if the mass term of χ is twisted:

ψ̄[i /D −meiθγ5 ]ψ + χ̄[i /D −Meiθγ5 ]χ

For the full Pauli-Villars regularization,

ψ̄[i /D −meiθγ5 ]ψ +
∑

j

|cj |∑

k=1

χ̄jk[i /D −Mje
iθγ5 ]χjk.

Such a phase with a γ5 is consistent with Pauli-Villars theory. Thus

there does exist a regularization which respects the unfamiliar parity

symmetry of the action with twisted mass term.

In other words, this parity is not anomalous and is a genuine symme-
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ST RONG CP WIT HOUT AXIONS

try of the theory. The theory conserves P and CP. This was pointed

out over a decade back, but is still not quite commonly understood.

Of course, a trFF̃ term in the action violates CP, but it is natural to

set its coefficient equal to zero. This is apparently not as dramatic

as imagining a new particle to force it to vanish.

Like the action we started with, this regularized action too can be

derived from the regularized action with the axion by replacing the

field ϕ by the constant θ.

In QCD with SU(N) flavour, the fields W can be replaced by a

constant SU(N) matrix w. In this case, the mass term takes the form

m(ψ̄LwψR + ψ̄Rw
†ψL) which is not invariant under the generalized

Peccei-Quinn symmetry, but is invariant under a twisted parity

ψL(~x) → wγ0ψR(−~x), ψR(~x) → w†γ0ψL(−~x),

ψ̄L(~x) → ψ̄R(−~x)γ0w†, ψ̄R(~x) → ψ̄L(−~x)γ0w.
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This twisted parity is maintained by putting w in all mass terms,

i.e.,

ψ̄[i /D −m(wPR + w†PL)]ψ +
∑

j

|cj |∑

k=1

χ̄jk[i /D −Mj(wPR + w†PL)]χjk

and is therefore not anomalous.
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LAT T ICE REGULARIZAT ION

Although the lattice regularization has been mentioned in the intro-

duction, it has not been indicated how this preserves symmetries in

the examples we study. We proceed to present the details. In the ax-

ion case, the axion coupling has to be introduced at two places in the

action because there are two terms which are chirally non-invariant:

ψ̄[
1

2
( /D

L
+ /D

L∗
)− aeiϕγ5/2(DL∗

µ DL
µ )e

iϕγ5/2 −meiϕγ5 ]ψ.

In the SU(N) case, one needs

ψ̄[
1

2
( /D

L
+ /D

L∗
)− a(DL∗

µ DL
µ )WPR − aW †PL(D

L∗
µ DL

µ )−mW̄ ]ψ.

In the case of QCD, the field ϕ gets replaced by the constant θ:

ψ̄[
1

2
( /D

L
+ /D

L∗
)− aeiθγ5(DL∗

µ DL
µ )−meiθγ5 ]ψ.

In the SU(N) flavour QCD case, one has

ψ̄[
1

2
( /D

L
+ /D

L∗
)− a(DL∗

µ DL
µ )wPR − aw†PL(D

L∗
µ DL

µ )−mw̄]ψ,
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LAT T ICE REGULARIZAT ION

where

w̄ = wPR + w†PL.

All these lattice actions preserve the symmetry of the continuum

action.
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T HE MEASURE APPROACH T O ANOMALIES

Anomalies arise because regularizations may break some symmetries

of classical actions. In the functional integral approach, Fujikawa

suggested that the action has a symmetry which is broken by the

measure. It may be interesting to look at our three examples and

the respective measures.

To formulate the fermion measure, it is customary to expand the

fermion field in eigenfunctions of some operator. To maintain gauge

invariance, the covariant Dirac operator is considered. The eigen-

value equation is

i /Dfn = λnfn,

where the subscript labels the eigenvalue and the eigenfunction. Un-

der a gauge transformation,

Dµ → UDµU
−1, ψ → Uψ, ψ̄ → ψ̄U−1,
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T HE MEASURE APPROACH T O ANOMALIES

so that

f → Uf.

The field is expanded as

ψ =
∑

n

anfn, ψ̄ =
∑

n

ānf
†
n.

Each a, ā is gauge invariant because ψ and f transform the same

way under gauge transformations and ψ̄ and f† also transform like

each other. The gauge invariant measure
∏

n dandān is used for

the fermion integration. It is well known that the measure is not

chirally invariant: chiral transformations alter a, ā and the change

of the measure is a Jacobian which can be evaluated after some

regularization and yields the chiral anomaly. One needs measures

for other fields too, but these do not break symmetries.

Given this situation, it would appear that the Peccei-Quinn trans-

formation would also alter the measure. The above measure would
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T HE MEASURE APPROACH T O ANOMALIES

certainly be altered, but remembering that the requirement of gauge

invariance led to the use of a fermion measure involving the eigen-

functions of the Dirac operator which contains the gauge field, we

can invoke the axion field now. Consider the new expansion

ψ = e−iϕγ5/2
∑

n

bnfn, ψ̄ =
∑

n

b̄nf
†
ne

−iϕγ5/2.

Although the fermion field changes under the Peccei-Quinn trans-

formation, the exponential factor too changes and cancels it, leaving

b, b̄ invariant. Hence the measure
∏

n dbndb̄n is invariant under the

transformation. In other words, although the näıve fermion measure

is altered by the Peccei-Quinn transformation, there does exist a

fermion measure which is left invariant. This is very similar to what

happens with regularizations. It may be added that the measure for

ϕ is translation invariant.

In the case of QCD without axions, the field ϕ is replaced by θ, so
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T HE MEASURE APPROACH T O ANOMALIES

that the measure
∏

n dbndb̄n with

ψ = e−iθγ5/2
∑

n

bnfn, ψ̄ =
∑

n

b̄nf
†
ne

−iθγ5/2

comes into consideration. Of course this is not chirally invariant,

but the question is whether it is invariant under the parity of the

action with the twisted mass term. Now the parity transformation

of f follows from the eigenvalue equation:

f(~x) → γ0f(−~x).

It follows that

e−iθγ5/2f(~x) → γ0eiθγ5/2f(−~x) = [γ0eiθγ5 ]e−iθγ5/2f(−~x).

Thus the combination e−iθγ5/2f transforms exactly the same way as

ψ under parity. Consequently, the variables b are parity invariant.
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Similarly b̄ is parity invariant because

f†(~x)e−iθγ5/2 → f†(−~x)γ0e−iθγ5/2 = f†(−~x)e−iθγ5/2[γ0e−iθγ5 ]

and accordingly the measure too is. Thus the redefined measure

including the phase preserves the new parity symmetry. This is

exactly as in the case with axions.

For the SU(N) version of axions, the construction of the measure is

more complicated. First, note that eigenvalues and eigenfunctions

of i /D come in pairs:

i /Dfn = λnfn, i /Dγ5fn = −λnγ5fn.

Hence it is possible to consider expansions in fnL, fnR, which are chi-

ral combinations of the fn, γ5fn, though they are not eigenfunctions

of i /D. We expand

ψL =
∑

n

aLnfnL, ψR =
∑

n

aRn fnR,
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ψ̄L =
∑

n

āLnf
†
nL, ψ̄R =

∑

n

āRn f
†
nR.

Of course, the range of n is implicitly altered here. The measure∏
n da

L
nda

R
n dā

L
ndā

R
n is not invariant under an SU(N) chiral transfor-

mation because a, ā have to change unless UL = UR, in which case

the common vector transformation may be absorbed in f .

However, a new measure can be constructed using the generalized

axion field. Consider the expansions

W †ψL =
∑

n

bLnfnL, ψR =
∑

n

bRn fnR,

ψ̄LW =
∑

n

b̄Lnf
†
nL, ψ̄R =

∑

n

b̄Rn f
†
nR.

AS W is invertible, it may also be taken to the right if desired.

This construction is not unique, but serves the purpose. Note the

asymmetric use ofW here. Because of this asymmetry, the left hand
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sides of both equations in the first line acquire UR and the left hand

sides in the second line acquire U †
R, so that the common vector factor

UR may be absorbed in f , leaving the b, b̄ invariant. This means

that there exists a measure
∏

n db
L
ndb

R
n db̄

L
ndb̄

R
n invariant under the

SU(N) version of the Peccei-Quinn transformation, exactly as is the

case with regularizations. As regards the measure for W , it can be

chosen to be SU(N) invariant.

In the case of SU(N) flavour QCD without axions, the nonabelian

version of Peccei-Quinn symmetry cannot of course be maintained.

But the action has a twisted parity. Let us consider the measure∏
n db

L
ndb

R
n db̄

L
ndb̄

R
n corresponding to the expansion

w†ψL =
∑

n

bLnfnL, ψR =
∑

n

bRn fnR,

ψ̄Lw =
∑

n

b̄Lnf
†
nL, ψ̄R =

∑

n

b̄Rn f
†
nR.
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As w is invertible, it may also be taken to the right if desired. This

construction too is not unique. Noting that

fnL(~x) → γ0fnR(−~x), fnR(~x) → γ0fnL(−~x),

we find that the occurrence of w in the parity transformation of ψ, ψ̄

causes bLn , b
R
n to be interchanged under parity and similarly there is

an interchange of b̄Ln , b̄
R
n too. This means that the product measure

is invariant under the parity symmetry of the action.
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CONCLUSION

CONCLUSION

• Symmetries, which appear to be anomalous because of inconsis-

tency with obvious regularizations, may turn out to be consistent

if regularized with care.

• Such symmetries are then not really anomalous.

• Used Pauli-Villars regularization, lattice regularization and mea-

sure approach to study QCD with and without axions.

• Peccei-Quinn symmetry generated by axions is not anomalous.

• SU(N) Peccei-Quinn symmetry occurring with new SU(N) ver-

sion of axion is also nonanomalous.

• Pure QCD with twisted mass term actually has parity symmetry

with no anomaly, so that axions are not needed to solve strong

CP problem.
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