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Spherical star collapsing to Black Hole (Penrose-Carter)

SINGULARITY

B=M-—J(I*); HOR =0B

PM (RKMVU) SNBNCBS-2018 3-7 December 2018 2 /26



Spherical star collapsing to Black Hole (Penrose-Carter)

PM (RKMVU)

SINGULARITY

B=M-—J(I*); HOR =0B

5Ahor Z 0
Khor = const
oM — Rhor 6Ahor + q)(thor qFooc

SNBNCBS-2018

3-7 December 2018




Black Holes Must Have Entropy !

Gen. Sec. Law of thermodynamics Bekenstein, 1973 :

Ahor
4Ap

Ap =12, Ip = (Gh/c®)Y? ~ 1073cm — Planck length
signals onset of quantum gravity

0(Sout + Sph) > 0 = Spp =

Need to go beyond classical GR - compulsion, not
aesthetics

Spp ~ /,;2 — nonperturbative QG
If black holes have entropy, they should have a

temperature as well | But what happens if
Tpn > Tomp 7 Bekenstein (1973) : ‘Paradox’
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Hawking radiation : quantum fields near black hole horizon

Virtual particle-antiparticle pairs break-up near event horizon

wr-—

One particle of each pair has finite probability to drift away to
asymptopia, producing a thermal distribution (Hawking 1975)

3
w dw
F(w, Th) elw/keTr £+ 1
h
= o Khor , Khor — surface gravity at EH
T

Ty~ M= Ty << 1degK for stellar black holes

Hawking radiation is swamped by CMB, hence unobservable
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Semiclassical Thermal Instability

For a Schwarzschild black hole,

5Mbh — %5Ahor

8
h/ihor 1
Ton = ~—
oh 2w Mbh
oM,
= sp heatCp, = OTbh <0!
bh

= Thermal Instability : unabated Hawking rad !
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Semiclassical Thermal Instability

For a Schwarzschild black hole,

5Mbh — %5Ahor

8
hl{hor 1
Ton = ~—
oh 2w Mbh
oM,
= sp heatCp, = OTbh <0!
bh

= Thermal Instability : unabated Hawking rad !
m Are all radiant black holes thermally unstable under
Hawking rad ? No ! (Hawking-Page 1984)

m Apparently requires case-by-case analysis using classical
black hole metrics

m Aim : Derive general thermal stability criteria irresp
classical metric (PM 2007, Majhi-PM 2012, Sinha-PM 2016)
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Issues with Event Horizons : Trapping Horizons (Hayward 1997,

Ashtekar et. al. 2000)

m Teleological
m Globally Stationary
m Cannot associate mass

m Apparent horizon : tied to spatial foliation; changes
abruptly

PM (RKMVU) SNBNCBS-2018 3-7 December 2018 6 /26



Issues with Event Horizons : Trapping Horizons (Hayward 1997,

Ashtekar et. al. 2000)

m Teleological
m Globally Stationary
m Cannot associate mass
m Apparent horizon : tied to spatial foliation; changes
abruptly
Trapping horizon :
m Nonstationary, marginally outer-trapped hypersurface
m TL or SL inner boundary with topology R ® S?
m Can associate mass : My, = Mapy — Myt

m Equilibrates (thermally) to Isolated Horizon :
non-stationary null inner boundary of const area
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Isolated and Trapping Horizon Ashtekar et. al., 1997-2000
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Trapping and lIsolated Horizon (Ashtekar, Krishnan, 2005)

TH foliated by splk 2-surface : null normals I , n have
© =0, ©, <0 (marginally trapped)

Splk TH : accreting energy and growing : L,©, <0
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Recap : Quantizing Isolated Horizons using LQG
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Recap : Quantizing Isolated Horizons using LQG

LQG - Canonical quantization of GR : not requiring classical
background sptm; non-perturbative

m Space — discrete, oriented, closed network of links carrying
SU(2) spins jy =1/2,1,3/2,...5U(2) — residual gauge
invariance after gauge fixing local boosts of local SO(3,1)

m Vertices : invariant SU(2) tensors.

m Graph : quantum state of space in Spin network basis

m Geom observables : bounded, discrete spectra
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Recap : IH Area Spectrum
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Recap : IH Area Spectrum

As Z / det!/22g(E
S

aGi,oiv) = 8wyl Z JoUp +1)
p=1
lim a(ji,...Jn) < Ac + O(Ip) for j, < =
N—o0o 2

Equispaced Vj, =1/2
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Quantum Black Hole (non-rotating)
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Quantum Black Hole (non-rotating)
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Recap : Horizon Description
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Recap : Horizon Description

m IH is 3 dim null inner bdy of sptm = induced metric
on IH is degenerate = only topological QFT
allowed on IH

m GR — local gauge theory of SO(3,1) gauge fixed on
IH to local SU(2) = IH DoF are SU(2) gauge fields

m |H described by SU(2) Chern Simons theory,
coupled to punctures created by bulk spin
network edges carrying spin j; , [ =1 ... N,
with the CS coupling k = Ay /Ap € Z.

m |H area eigenvalues ajy(j1, - ,jn) < k- Ap

Fiv) = —— ZalHab p) 6(x, x,) (ip)’W>
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Recap : Black Hole Entropy (Kaul,PM, 1998, 2000; Majhi,PM 2014)

Count # of states of Chern-Simons quantum gauge
theory with total spin = 0
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Recap : Black Hole Entropy (Kaul,PM, 1998, 2000; Majhi,PM 2014)

Count # of states of Chern-Simons quantum gauge
theory with total spin = 0

Dominant contribution from j; = 1/2 if Ay, >> Ap
(macroscopic), but generalizes to arbitrary spin

Ahor
4Ap

3
Seh = SpH — 5 log Sgr + O(Sgﬁ,) , Spy = kg

m Systematic, finite quantum sptm fluctuation corrections
to Bekenstein-Hawking entropy : signature of LQG

m Has been argued to have universal aspects : insensitive to
charges and/or presence of cosmological constant

m Non-perturbative and background independent
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Recap : It from Bit (Kaul-PM 2001, Das-Kaul-PM 2001)

~
©
\ o D
N /s
gl 8 O
- | > A
] “*‘@ i E
o ‘e
/ ” Gﬁ\ . &
\ .
Aplaq ~ /,231 : AH/ApIaq = NH >>1
N = Ny! B Ny!
((Nu/2)12  (Ny/2 + 1)(Ny/2 — 1)!
Upon using Stirling approximation for (Ny)!, obtain A/ ~ exp N,u.,/Nf'_/2
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Aside : Thermal Holography pm 2001, 2007, 2009; Majhi, PM 2011; Sinha,

PM 2016

‘Quantum General Relativity’ : indep qu fluct on bdy :
H="H,Hhs

V) = Z Conl)b ® [X)n
b,h
A=H,1+1®H,

Hamiltonian constraint : bulk

(/3/,,®1+1®Flh> [¥), =0
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Aside : Bulk vs Boundary

Partition Function

Z(/j’) = Trhbe eXP—/j'ﬁ/
= > IConl3(xIla(] exp —BHIL)s)n
b,h

= Traexp—BHn- Y |Conllll9)ell?
b

= Trjexp BI:I;, = Z,(B)

Bulk states decouple! Boundary states determine bh
thermodynamics — Thermal holography !
Weaker than Holographic Hypothesis 't Hooft 1992; Susskind 1993; Bousso 2002
... Given any closed surface, we can represent all that happens (gravitationally)
inside it by degrees of freedom on this surface itself. This ... suggests that
quantum gravity should be described by a topological quantum field theory in
which all (gravitational) degrees of freedom are projected onto the boundary.

v
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Aside : Canonical ensemble of Isolated Horizons

m Assume Z,(/3) is determined by dynamics of A, , Ans (kinem)
m Assume macroscopic areas A, ~n-Ap, n>>>1
m Rescale area A, — A,/Ap

m Assume time-scale such that on every 2; — quasi-equil with |H
of fixed Ay

m Keep Gaussian fluct. (Das, PM, Bhaduri 2001; Chatterjee, PM 2004; PM 2007)

Zh(ﬁ) ~ /dAh exp [Sh(Ah) — 6Mh]

for large area eigenvalues n >> 1.

Evaluate Z, by saddle-pt expansion around A, = : Gaussian
approx
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Aside : Thermal Stability Criterion for isolated black holes

Saddle pt condition (at A, , An)

B [Mba,a0] |2, > [Shananl |4,

This can be further expressed as (with slight change notation)

(log [B(An)a,)) 4, (An) < O

Stability of TH = the local temperature must increase with area

Thermal Stability Criterion for horizon (IH) : if satisied, IH
stable against Hawking radiation, otherwise : Hawking
evaporation ?

PM (RKMVU) SNBNCBS-2018 3-7 December 2018
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Aside : Thermal Stability Criterion

m Thermal Stability Criterion for radiant black hole (Chatterjee, PM
2005; PM 2007; Majhi, PM 2011; Sinha, PM 2016)

m Equil = th stab crit :

Mhia,a, _ ShaA,
Mia, Sha,

m Generalizes to charged, rotating horizons (Majhi, PM 2011; Sinha, PM
2016)
m No classical metric used in derivation

m Corrections to area law for S;; makes stability criterion
nontrivial

3 1
S = Sgy — 5 log Sy + O(Séﬁ,) , Sy = ZAh

v
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Aside : Fiducial Checks pm 2001

Schwarzschild black hole

v
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Aside : Fiducial Checks pm 2001

Schwarzschild black hole
2_ A
167
Examine explicitly thermal stability criterion :
MAA L g SAA - 6/,%//42
My A’
A < 0

Sa (1—62/A)

Violates stability bound for A, >> /2 — thermally unstable

v
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Aside : Fiducial Checks pm 2001

Schwarzschild black hole
2_ A
167
Examine explicitly thermal stability criterion :

MAA o <2> SAA - 6/,%//42

M, Sa (1—6/2/A)
A < 0

Violates stability bound for A, >> /2 — thermally unstable :
A A?

Tor | 3272
=A > 0for A>> 2= (=N)1?

AdS Schwarzschild : M? =

AdS-Schwarzschild black hole is stable for A >> (—\)"1/2
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Generalization to charged, rotating bh sinha, PM 2016

For charged, rotating black holes, assume
m M=MARQ,J)
u A:a/F%a Q:qlpv J:Jl}237 a,q,jEZ, a7q7j>>1

v
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Generalization to charged, rotating bh sinha, PM 2016

For charged, rotating black holes, assume

m M=MARQ,J)

mA=al2, Q=qlp, J=j3, a,9j€Z, a,q,j>>1
Grand Canonical Partition Function

Zc = /dA dQ dJ exp[S(A) — B(E(A, Q,J) — ®Q — Q)]
g(A(x), Qy), J(2))

dA dQ dJ
dx dy dz

expS(A) =

where, S(A) is the microcanonical entropy.

v
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Generalization to charged, rotating bh sinha, PM 2016

For charged, rotating black holes, assume

m M=MARQ,J)

mA=al2, Q=qlp, J=j3, a,9j€Z, a,q,j>>1
Grand Canonical Partition Function

Zc = /dA dQ dJ exp[S(A) — B(E(A, Q,J) — ®Q — Q)]
g(A(x), Qy), J(2))

dA dQ dJ
dx dy dz

expS(A) =

where, S(A) is the microcanonical entropy.
Saddle Point Approximation

m Expand around saddle point A, Q, J corresponding to Isolated
horizon parameters

m Retain upto Gaussian fluctuations

v
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Gaussian Approximation

Zc = exp[S(A) - SM(A, Q,J) + fQ + SQ]
X /dadqdj eXP{_g[(MAA — %) 4+ (Mgq)q®
+ (2Mag)ag + (M1)j* + (2May)aj + (2Mq,)qj]}

where, a, q,j — fluctuations
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Gaussian Approximation

Zc = exp[S(A) — BM(A, Q, J) + pdQ + SQJ]
X /dadqdj exp{——[(l\/lAA—%)a + (Mgg)q?
+ (2Mag)aq + (Myy)j* + (2May)aj + (2Mq,) )]}

where, a, q,j — fluctuations
g = , Mg =, M, =Q
Ma

[ is the inverse temperature and always assumed
>0
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Thermal Stability Criteria

Convergence = det H > 0 where, H is the Hessian matrix

BMAA(’_Aa 6_2751)__ ~_SAA(/_4) 6MAQ(’:47C__?7-:I) BMAJ(%7Q7-:/)
H= BMag(A, Q,J) BMaqo(A, Q, J) BMio(A, Q,J)
BMas(A, Q,J) BMe(A, Q,J) BMu(A,Q,J)

y
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Thermal Stability Criteria

Convergence = det H > 0 where, H is the Hessian matrix

BMaq(A, Q,J) BMqo(A,
BMay(A, Q,J) BMQ(A,

( BMaa(A, Q, J) 5AA(/Z\) 6MAQE/_4
H =

This leads to the Stability Criteria

A = BMaa(A, Q, J) — Saa(A)
BMQQ(’_Av (_?7,_])

BM (A, Q,J)

Moo(A, @, )M (A, Q. J)

My(A, Q, J)(BMaa(A, @, J) — Saa(A))
Mao(A, Q,J)(BMaa(A, @, J) — Saa(A))
det H

Predict thermal stability of all charged, rotating black holes !

,J) BMas(A, Q,J) )
;j) BMJQ(’f\’Q7;j)
J) BMu(A, Q. J)

0

0

0

(MJQ(Aa _7_ )2 >0

B(Mas(A, Q, 1)) >

B(Mag(A, Q. 1)) >

0

v
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Fiducial check : Quasi-stability (Pm, sinha 2017)
Classical bh metrics — M?(A, Q, J) rather than M(A, @, J) =

A Mo 1M Su

M2 2M2 S,

Generally, for most charged, rotating black holes

1

M? = Z[ao+a1A+azA2} , ao, a1, a = f(Q,J) >0
3a2 6

= A %+4a°—§1A+ﬂA2—A4

Macroscopic black holes : For large A >> Ap, negative coeff
of A* = 3 [AmimAMax] such that A >0 for A ¢ [Amin;AMax]
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Fiducial check : Quasi-stability (Pm, sinha 2017)
Classical bh metrics — M?(A, Q, J) rather than M(A, @, J) =

A Mo 1M Su

M2 2M2 S,

Generally, for most charged, rotating black holes

1

M? = Z[ao+a1A+azA2} , ao, a1, a = f(Q,J) >0
3a2 6

= A %+4a°—§1A+ﬂA2—A4

Macroscopic black holes : For large A >> Ap, negative coeff
of A* = 3 [AmimAMax] such that A >0 for A ¢ [Amin;AMax]

Quasi-stability : happens for AF black holes with
charge and ang mom, absent for AF Schwarzschild

black holes !
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Application to Kerr-Newman black hole : Quasi-stability

= sin%0

= 2
ds? = —E(dt—asin29 do)’+ ((r’+a%)d¢—adt)*+ =dr*+~d6”

where, Z==r> —2Mr+a°+ Q% , ¥ = r?> + a°cos®0 , a =
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Application to Kerr-Newman black hole : Quasi-stability

= sin%0

= 2
ds? = —E(dt—asin29 do)’+ ((r’+a%)d¢—adt)*+ =dr*+~d6”

where, Z==r> —2Mr+a°+ Q% , ¥ = r?> + a°cos®0 , a =

Taprons &
+A(4J+Q)+2

2_ A
167

PM (RKMVU) SNBNCBS-2018 3-7 December 2018 25 /26



Application to Kerr-Newman black hole : Quasi-stability

= r 2
ds? = — = (dt—asin’ dg) 40

where, Z==r> —2Mr+a°+ Q% , ¥ = r?> + a°cos®0 , a =

Taprons &
+A(4J+Q)+2

r_ A
167
Quasi-stability

B > 0 for A% > 167%(4% + Q%)
A= (SA/MA)MAA — Saa
A > 0 for 967%(4)° + Q%) > A > 167°(4)% + Q)

In contrast to AF Schwarzschild bh, 3 narrow region of

parameter space in which all criteria but det H > 0 are OK ! ?
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m Thermal Stability Criteria useful to predict
stability of all black holes carrying charge and
ang mom

v
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m Thermal Stability Criteria useful to predict
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general theory ?
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m Thermal Stability Criteria useful to predict
stability of all black holes carrying charge and
ang mom

m Generalization to arbitrary number of ‘hairs’ for
black holes in arbitrary dimensions sinha 2017

m Surprise : region of quasi-stability in parameter
space for AF charged, rotating black holes —
general theory ?

m Match-up with semiclassical analysis of charged,
rotating black holes a la Hawking and Page ?

m Match-up with dynamical stability behavior a la
Wald et. al. ?
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