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Spatial Noncommutative structure
• Gedanken experiments with a sharp spatial localization of

events have predicted uncertainty in the coordinates at the

quantum level. PLB 331 39 (1994); PLB 339 301 (1994)

. – p.2/7



Spatial Noncommutative structure
• Gedanken experiments with a sharp spatial localization of

events have predicted uncertainty in the coordinates at the

quantum level. PLB 331 39 (1994); PLB 339 301 (1994)

• Quantization of the continuous phase-space of CM → QM,

variables follow the Hisenberg algebra

[xi, pj] = i~δij , [xi, xj] = 0 , [pi, pj] = 0 .
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quantum level. PLB 331 39 (1994); PLB 339 301 (1994)

• Quantization of the continuous phase-space of CM → QM,

variables follow the Hisenberg algebra

[xi, pj] = i~δij , [xi, xj] = 0 , [pi, pj] = 0 .

⇒ simulteneous determination of the same components of

position variable and its conjugate momenta is restricted.

• Likewise, quantization of the space ⇒ Restriction on the

simulteneous determination of different components of

space coordinates ⇒ the NC Heisenberg algebra

[x̂i, p̂j] = i~δij , [x̂i, x̂j] = iθij , [p̂i, p̂j] = iθ̄ij .

θ, θ̄ = constant antisymmetric tensor

⇒ noncommutative (NC) space.
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NCQM/NCFT → commutative equivalent picture

• NCFT: Action with NC fields and star product;

f̂ ⋆ ĝ = f̂ ĝ + i
2
θµν∂µf∂νg +O[θ2]
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• NCFT: Action with NC fields and star product;

f̂ ⋆ ĝ = f̂ ĝ + i
2
θµν∂µf∂νg +O[θ2]

• In presence of the gauge fields SW map relates

f̂ = f + θf 1 (f, Aµ) +O[θ2]

• Commutative equivalent description.

• NC electrodynamics: first order; NC gravity: second order

• NCQM: Classical Hamiltonian → canonical variables

change to NC Heisenberg operators.

• This NC phase-space algebra → Standard Heisenberg

algebra spanned by the operators X̂i and P̂j of the ordinary

QM through the transformation equations

x̂i = X̂i − 1

2~
θǫijP̂j , p̂i = P̂i +

1

2~
θ̄ǫijX̂j
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Upper-bound on NC parameter/possible detection

• Theoretical modeling of various experiments in a NC space

help set up upper bounds on NC parameter.
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Upper-bound on NC parameter/possible detection

• Theoretical modeling of various experiments in a NC space

help set up upper bounds on NC parameter.

• NC length scale
√
θ ∼ 10−20m (Clock-comparison

experiment) [PRL87, 141601, 2001].

• NC will show up in xperiments where a length-scale

∼ 10−20m is effectively probed.

• Best Bet: NCQM modelling of GW detection set ups.

• Successful detection of GW in aLIGO, an interferometric

detector. (but justifying a QM modeling is tricky.)

• Instead, we modelled the Resonant bar detectors of

GW(still trying to achieve the needed sensitivity limit for

successful detection) quantum mechanically in NC space .
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Resonant bar-detectors (J.Weber)

• Typical cylindrical Aluminium bar with L ∼ 3m,

r = 30 cm, M = 2× 103Kg.
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Resonant bar-detectors (J.Weber)

• Typical cylindrical Aluminium bar with L ∼ 3m,

r = 30 cm, M = 2× 103Kg.

• Set into forced elastic oscillation by incoming GW ⇒
Oscillation is converted into electrical signal ⇒ Amplified

and recorded. (when oscillator resonates with GW).

• The frequency of the fundamental mode of elastic

oscillation is a few KHz (respond to GW in the KHz range.)

• The fundamental mode of elastic oscillation driven by the

force of the passing GW is identical to a forced harmonic

oscillator.

• SO we model a NCQM Harmonic oscillator interacting

with GW.
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Results

• Our results imply that due to noncommutativity the

harmonic oscillator resonates to a periodic GW not at its

intrinsic frequency ̟, but at two frequencies evenly spaced

around it, ̟ ± Λθ = ̟′.
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Results

• Our results imply that due to noncommutativity the

harmonic oscillator resonates to a periodic GW not at its

intrinsic frequency ̟, but at two frequencies evenly spaced

around it, ̟ ± Λθ = ̟′.

• The shift in frequency is Λθ =
m̟2θ
2~

.

• The same bar-detector resonating to two evenly placed

frequencies, centering the intrinsic frequency of the bar can

be a potential evidance of NC space.

• In such a scenario, since the intrinsic frequency ̟ is

known, and resonance frequencies ̟′ would be observed,

one can ontain Λθ.
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