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Introduction:PT -Symmetric System

Real spectra for non-hermitian PT -symmetric QS

PT symmetry preserves Heisenberg algebra

PT is an anti-linear operator

1 BROKEN PT SYMMETRY:

[H,PT ] = 0, Hψ = Eψ, PT ψ 6= const.ψ

2 UNBROKEN PT SYMMETRY:

[H,PT ] = 0, Hψ = Eψ, PT ψ = λψ, | λ |2 = 1

H with unbroken PT symmetry admits entirely real spectra.

PT Hψ = PT Eψ ⇒ H(PT ψ) = E ∗(PT ψ)⇒ E = E ∗
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Introduction:PT -Symmetric System

PT -unbroken phase : Orthogonality, Unitarity etc.

Standard Norm: Non-orthonormal, incomplete set of states

PT -normalized states are not necessarily positive-definite

〈φm|φn〉PT =

∫
C
dx [PT φm(x)]φn(x) = (−1)nδmn

C shares the properties of charge-conjugation operator

C(x , y) =
∑
n

φn(x)φn(y), [H,PT ] = 0⇒ [H, C] = 0

C(x , y)φn(x) =

∫
C
dyC(x , y)φn(y) = (−1)nφn(x)

Orthonormality & completeness of states with CPT -norm

〈φm|φn〉CPT =

∫
C
dx [CPT φm(x)]φn(x) = δmn
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Introduction:PT -Symmetric System

Example:Potential V (x) = x2(ix)E , E ∈ <

Numerical Results: Bender & Boettcher, PRL 80, 5243(1998)

P : x → −x , T : i → −i , V (x) is PT -Symmetric

E ≥ 0: Unbroken PT -Symmetry

Entirely Real Spectra

E < 0: Broken PT -Symmetry

Real and complex eigenvalues

Rigorous proof on real spectra

Dorey, Dunning & Tateo,
JPA 40, R205 (2007)
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Integrable Many-body System With Balanced Loss & Gain

Hamiltonian Formulation: Many-body System

Bateman Oscillator: Hamiltonian for a dissipative oscillator

System: ẍ + 2γẋ + ω2
0x = 0 ⇒ Dissipative Oscillator

Bath: ÿ − 2γẏ + ω2
0y = 0 ⇒ Auxiliary Oscillator

DO & AO together form a Hamiltonian system:

HB = PxPy + γ(yPy − xPx) + (ω2
0 − γ2)xy

Px = ẏ − γy , Py = ẋ + γx

Gain and loss are equally balanced

HB is PT -symmetric:

T : t → −t, P : x → y , y → x

PT : x → y , y → x , Px → −Py , Py → −Px

No equilibrium state
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Gain and loss are equally balanced

HB is PT -symmetric:

T : t → −t, P : x → y , y → x

PT : x → y , y → x , Px → −Py , Py → −Px

No equilibrium state



vblogo.jpg

PT -symmetric systems:Integrability, Symmetry & Related Aspects

Integrable Many-body System With Balanced Loss & Gain

Hamiltonian Formulation: Many-body System

Equilibrium state via System-bath coupling: an example

V (x , y) =
ε

2

(
x2 + y2

)
+

g

2(x − y)2

ẍ + 2γẋ + ω2
0x + εy +

g

(x − y)3
= 0

ÿ − 2γẏ + ω2
0y + εx − g

(x − y)3
= 0

Condition for equilibrium state (Unbroken PT -phase)

−ω0

2
< γ <

ω0

2
, 4γ

√
ω2

0 − 4γ2 < ε < ω2
0

Classical H: Periodic solutions in unbroken PT -phase
Phase-transitions realized experimentally for g = 0

Quantum H: Real, discrete, positive spectra, unitarity
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Integrable Many-body System With Balanced Loss & Gain

Hamiltonian Formulation: Many-body System

General Constructions
Definitions, Notations etc.

XT = (x1, x2, . . . , xN), PT = (p1, p2, . . . , pN),

FT = (F1,F2, . . . ,FN), Fi ≡ Fi (x1, x2, . . . , xN)

Generalized Momenta: Π = P + AF
A is N × N constant matrix.
Hamiltonian

H = ΠTMΠ + V (x1, x2, . . . , xN), MT = M

M is N × N non-singular, constant matrix
Equations of Motion

Ẍ − 2DẊ + 2M
∂V

∂X
= 0

[J]ij ≡
∂Fi
∂xj

, R ≡ AJ − (AJ)T , D := MR
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Integrable Many-body System With Balanced Loss & Gain

Hamiltonian Formulation: Many-body System

Generic features
Hamiltonian ⇒ Balanced loss-gain [Tr(D) = 0]

MT = M, RT = −R, DT = D

{M,R} = 0, {M,D} = 0, {R,D} = 0

Pair-wise balancing for N = 2m,m ∈ Z+

det(D)
[
1− (−1)N

]
= 0

N = 2m + 1: At least one eigenvalue of D is zero
H in the background of a Pseudo-Euclidean metric

Md = ÔMÔT
(
OTO = I2m

)
= diagonal(λ1,−λ1, λ2,−λ2, . . . , λm,−λm)

X̃ = ÔX , P̃ = ÔP, Π̃ = ÔΠ

H = Π̃TMd Π̃ + V (x̃1, x̃2, . . . , x̃N)
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Integrable Many-body System With Balanced Loss & Gain

Hamiltonian Formulation: Many-body System

Generic Feature:Taming the instability

KE term is not positive-definite ⇒ instability

DT 6= D

Anti-commutation relations involving M,R,D are not valid.
Tr(D) = 0, conservative system
M can be semi-positive definite and leads to a +ve KE term

Additional Lorentz interaction in the system makes DT 6= D

Stability: Magnitude of applied magnetic field > ‘analogous
magnetic field’ due to loss/gain terms

Landau Hamiltonian with balanced loss/gain
(i) Particle moves in an elliptic orbit with reduced cyclotron
frequency
(ii) Hall current is not necessarily in the perpendicular
direction to the applied electric field
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[χm]ij =
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δijQi (x1, x2, . . . , xN)

Assumption based on Pairwise Balancing:

F2i−1 ≡ F2i−1(x2i−1, x2i ), F2i ≡ F2i (x2i−1, x2i )

J has the expression: J =
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(m)
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(2)
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U
(m)
a
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ij
≡ δiaδja, V

(2)
a ≡

(
∂F2a−1

∂x2a−1

∂F2a−1

∂x2a
∂F2a
∂x2a−1

∂F2a
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(2)
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An interpretation
Ô = 1√

2
[Im ⊗ (σx + σz)] diagonalizes M and generates the

Co-ordinate transformation

z±i =
1√
2

(x2i−1 ± x2i ), Pz±i
= ±1

2

(
ż±i − γF

∓
i

)
F±i =

1√
2

(F2i−1 ± F2i ) , F
±
i ≡ F±i (z+

i , z
−
i )

H describes a system of m particles on a Pseudo-Euclidean
plane interacting with each other through V

H =
m∑
i=1

[(
Pz+

i
+
γ

2
F−i

)2
−
(
Pz−i
− γ

2
F+
i

)2
]

+ V

The i ’th particle is subjected to magnetic field Qi

Qi =
∂F+

i

∂z+
i

+
∂F−i
∂z−i
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ż±i − γF

∓
i

)
F±i =

1√
2

(F2i−1 ± F2i ) , F
±
i ≡ F±i (z+

i , z
−
i )

H describes a system of m particles on a Pseudo-Euclidean
plane interacting with each other through V

H =
m∑
i=1

[(
Pz+

i
+
γ

2
F−i

)2
−
(
Pz−i
− γ

2
F+
i

)2
]

+ V

The i ’th particle is subjected to magnetic field Qi

Qi =
∂F+

i

∂z+
i

+
∂F−i
∂z−i



vblogo.jpg

PT -symmetric systems:Integrability, Symmetry & Related Aspects

Integrable Many-body System With Balanced Loss & Gain

Hamiltonian Formulation: Many-body System

Quantization

z±i and P±zi := −i∂z±i are treated as operators with the

non-vanishing commutation relations(~ = 1):[
z+
j ,Pz+

j

]
= i ,

[
z−j ,Pz−j

]
= i

Generalized momenta Π̂z±i
:= −i∂z±i ±

γ
2F
∓
i[

Π̂z±i
, Π̂z±j

]
= 0,

[
Π̂z−i

, Π̂z+
j

]
= −δij

iγ

2
Qi (z

−
i , z

+
i )

In general, Ĥ is non-hermitian for standard B.C.

Ĥ =
m∑
i=1

[(
Π̂z+

i

)2
−
(

Π̂z−i

)2
]

+ V (z±1 , . . . , z
±
m )

Normalizable wf only in appropriate Stoke wedges
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Integrability
Translational invariant system(TIS)

V ≡ V (z−1 , z
−
2 , . . . , z

−
m ), Qi ≡ Qi (z

−
1 , z

−
2 , . . . , z

−
m )

Symmetry transformation:

x2i−1 → x2i−1 + ηi , x2i → x2i + ηi

ηi are m independent parameters
Integrals of motion

Πi = 2Pz+
i

+ γF−i − γ
∫

Qi (z
−
1 , z

−
2 , . . . , z

−
m )dz−i

Partial(complete) integrability for m > 1(m=1)

{H,Πi}PB = 0 {Πi ,Πj}PB = 0

Similar results for
V ≡ V (z+

1 , z
+
2 , . . . , z

+
m ),Qi ≡ Qi (z

+
1 , z

+
2 , . . . , z

+
m )

Quantum Integrability: {., .}PB → [., .]
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Rotational Invariant Systems
Parametrization of co-ordinates

z+
i = ri cosh θi , z−i = ri sinh θi

Symmetry transformation
Hyperbolic rotation in each ‘z−i − z+

i ’ plane
Condition for invariance of action

V ≡ V (r1, . . . , rm)

F+
i = z+

i g(r1, . . . , rm), F−i = z−i g(r1, . . . , rm)

Integrals of motion

Li = −r2
i θ̇i + γr2

i g(r1, . . . , rm)

Partial(complete) integrability for m > 1(m=1)

{H, Li}PB = 0 {Li , Lj}PB = 0

Quantum Integrability: {., .}PB → [., .]
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Exactly Solvable Calogero-type Model

Classical Hamiltonian

VC (z−i ) = −
m∑
i=1

2ω2
0(z−i )2 −

m∑
i ,j=1
i<j

g2

2(z−i − z−j )2
,

z̈−i + ω2z−i −
m∑

j ,(j 6=i)

g2

(z−i − z−j )3
= 0

z+
i (t) = 2γ

∫
z−i (t)dt + Ci , i = 1, 2, . . .m.
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Box normalization: 0 ≤ z+
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Integrable Many-body System With Balanced Loss & Gain

Exact Correlation Functions via Matrix Model

Normalization of wave-functions

Asymptotic form of the wave function χ

|χ|2 ∼ exp[|Ω|
m∑
j=1

z2
j ]

Eigenfunctions are not normalizable along real zi lines.
Normalizable solutions in complex zi -planes

zi = riexp[iθi ],
m∑
i=1

cos(2θi ) < 0

Possible solution: θi = θ ∀ i , a pair of Stoke wedges with
opening angle π

2 and centered about the positive and negative
imaginary axes
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Exact Correlation Functions via Matrix Model

Correlation functions

Rn(x1, x2, .....xn) =
N!

(N − n)!

∫ ∞
−∞

. . .

∫ ∞
−∞

N∏
i=n+1

dxi

× | χ(x1, x2, ...., xN) |2, n < N

Define yi =
√

Ω
λ zi . Results from RMT & RCM may be used

Integrations over z−i in proper Stoke Wedges

Mapping to integrals of RCM only for even n (y = y1)

R2 =

{
N(N−1)
mπL (2m − y2)

1
2 , y2 < 2m

0, y2 > 2m.

Differs from RCM by a constant multiplicative factor
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PT -Symmetric Non-relativistic Field Theory

Integrable Model

Non-local Nonlinear Schrödinger Equation

Ablowitz & Musslimani, PRL 110, 064105(2013)
Sinha & Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124

iψt(x , t) = −1

2
ψxx(x , t) + g ψ∗(−x , t)ψ(x , t)︸ ︷︷ ︸

V (x ,t)

ψ(x , t), g ∈ <.

Standard NLSE(SNLSE): VS(x , t) = ψ∗(x , t)ψ(x , t)

V (x , t) is PT -symmetric for the stationery solution

Integrable with infinite number of conserved quantities

In contrast to SNLSE, both bright & dark solitons for g < 0.

Vector Nonlocal NLSE is integrable & share all the properties
of scalar Nonlocal NLSE
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PT -Symmetric Non-relativistic Field Theory

Integrable Model

Lagrangian formulation of non-local NLSE

Standard NLSE: Independent fields ψ(x, t) and ψ∗(x, t)

Non-local NLSE: Independent fields ψ(x, t) and ψ∗(Px, t)
Lagrangian density of a d + 1 dimensional NLSE

L = iψ∗(Px, t)∂tψ(x , t)− 1

2
∇ψ∗(Px, t) · ∇ψ(x, t)

− g

p + 1
{ψ∗(Px, t)ψ(x, t)}p+1 ,

Equation of motion

iψt(x, t) = −1

2
∇2ψ(x, t) + g {ψ∗(Px, t)ψ(x, t)}p ψ(x, t)
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PT -Symmetric Non-relativistic Field Theory

Schrödinger invariance

Real-valued Charges

Density ρ = ψ∗(Px, t)ψ(x, t) is complex-valued.

N =
∫
ddxρ(x, t) is real-valued and non-positive-definite

N =

∫
ddx

(
|ψe(x, t)|2 − |ψo(x, t)|2

)
ψe and ψo are P-even and P-odd fields, respectively

Hamiltonian H is real-valued and non-positive-definite

H =
1

2

∫
ddx

 |∇ψe(x, t)|2 − |∇ψo(x, t)|2︸ ︷︷ ︸
Non-positive definite Kinetic Energy


+

g

p + 1

∫
ddx

[ p+1
2

]∑
k=0

(−1)k p+1C2k |ρc |2kρp+1−2k
r

ρ = ρr + ρc , ρr (ρc) =real(complex) part of ρ
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PT -Symmetric Non-relativistic Field Theory

Schrödinger invariance

Complex-valued Charges

Continuity equation

∂ρ

∂t
+5 · J = 0,

J =
i

2
[ψ(x, t)∇ψ∗(Px, t)− ψ∗(Px, t)∇ψ(x, t)],

Momentum P, center of mass X and boost B are complex

P =

∫
J ddx, X =

1

Nd

∫
xρ(x, t)ddx, B = t P− X

Angular momenta Lij ,∀ i , j are real for odd d only

Lij =

∫
(xiJj − xjJi ) d

dx, i , j = 1, 2, . . . d
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PT -Symmetric Non-relativistic Field Theory

Schrödinger invariance

Conformal Symmetry for pd = 2

τ(t) =
αt + β

γt + δ
, αδ − βγ = 1,

x→ xh = τ̇−
1
2 (t)x, t → τ = τ(t)

ψ(x, t)→ ψh(xh, τ) = τ̇
d
4 exp(−i τ̈

4τ̇
x2
h )ψ(x, t)

ψ∗(Px, t)→ ψ∗h(Pxh, τ) = τ̇
d
4 exp(i

τ̈

4τ̇
x2
h )ψ∗(Px, t),

Time-translation:τ(t) = t + β

Dilation: τ(t) = α2t

Special conformal transformation: τ(t) = t
1+γt
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PT -Symmetric Non-relativistic Field Theory

Schrödinger invariance

Symmetry: Schrödinger Invariance

I1(t) =
1

2

∫
ddx x2 ρ(x, t), I2(t) =

1

2

∫
ddx x · J,

D = tH − I2, K = −t2H + 2tD + I1

D and K are real

H,D,K ,P, Lij ,B form d + 1 dimensional Schrödinger algebra

Complex charges have no physical significance. It is to be
seen, whether the corresponding quantum charges could be
hermitian wrt some modified norm or not.
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Complex charges have no physical significance. It is to be
seen, whether the corresponding quantum charges could be
hermitian wrt some modified norm or not.
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Hamiltonian formulation of generic many-particle systems
with space-dependent balanced loss & gain is presented along
with general features

Constructed partial & completely integrable systems related to
underlying translation and rotational symmetry

A Calogero-type model with balanced loss/gain is introduced
and solved at the classical as well as quantum level including
exact 2n-particle correlation functions for the ground-state
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loss & gain
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Reductions of Matrix models to Many-particle systems is well
known. Do the many-particle systems with balanced loss &
gain correspond to any many matrix model?

QFT formulations
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MURRAY GELL-MANN’s totalitarian principle in QM

Everything (that is) not forbidden is compulsory

THANK YOU
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