$\mathcal{P T}$-symmetric systems:Integrability, Symmetry \& Related Aspects

Pijush K. Ghosh

Visva-Bharati

December 3-7, 2018
Current Developments in Quantum Field Theory and Gravity
S N Bose National Centre for Basic Sciences, Kolkata

Outline

(1) Introduction: $\mathcal{P} \mathcal{T}$-Symmetric System

Outline

(1) Introduction: $\mathcal{P T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

Outline

(1) Introduction: $\mathcal{P} \mathcal{T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

- Hamiltonian Formulation: Many-body System

Outline

(1) Introduction: $\mathcal{P} \mathcal{T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

- Hamiltonian Formulation: Many-body System
- Exactly Solvable Calogero-type Model

Outline

(1) Introduction: $\mathcal{P T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

- Hamiltonian Formulation: Many-body System
- Exactly Solvable Calogero-type Model
- Exact Correlation Functions via Matrix Model

Outline

(1) Introduction: $\mathcal{P T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

- Hamiltonian Formulation: Many-body System
- Exactly Solvable Calogero-type Model
- Exact Correlation Functions via Matrix Model
(3) $\mathcal{P} \mathcal{T}$-Symmetric Non-relativistic Field Theory

Outline

(1) Introduction: $\mathcal{P T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

- Hamiltonian Formulation: Many-body System
- Exactly Solvable Calogero-type Model
- Exact Correlation Functions via Matrix Model
(3) $\mathcal{P} \mathcal{T}$-Symmetric Non-relativistic Field Theory
- Integrable Model

Outline

(1) Introduction: $\mathcal{P} \mathcal{T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

- Hamiltonian Formulation: Many-body System
- Exactly Solvable Calogero-type Model
- Exact Correlation Functions via Matrix Model
(3) $\mathcal{P} \mathcal{T}$-Symmetric Non-relativistic Field Theory
- Integrable Model
- Schrödinger invariance

Outline

(1) Introduction: $\mathcal{P} \mathcal{T}$-Symmetric System
(2) Integrable Many-body System With Balanced Loss \& Gain

- Hamiltonian Formulation: Many-body System
- Exactly Solvable Calogero-type Model
- Exact Correlation Functions via Matrix Model
(3) $\mathcal{P} \mathcal{T}$-Symmetric Non-relativistic Field Theory
- Integrable Model
- Schrödinger invariance
(4) Epilogue

Chronicle: non-hermitian system with entirely real spectra

- 1959: Quantum System of hard spheres

Chronicle: non-hermitian system with entirely real spectra

- 1959: Quantum System of hard spheres
- 1978: Lee-Yang edge singularity

Chronicle: non-hermitian system with entirely real spectra

- 1959: Quantum System of hard spheres
- 1978: Lee-Yang edge singularity
- 1978: Reggeon field theory

Chronicle: non-hermitian system with entirely real spectra

- 1959: Quantum System of hard spheres
- 1978: Lee-Yang edge singularity
- 1978: Reggeon field theory
- 1992: Complex Toda Field theory

Chronicle: non-hermitian system with entirely real spectra

- 1959: Quantum System of hard spheres
- 1978: Lee-Yang edge singularity
- 1978: Reggeon field theory
- 1992: Complex Toda Field theory
- 1996: Hatano-Nelson Model

Chronicle: non-hermitian system with entirely real spectra

- 1959: Quantum System of hard spheres
- 1978: Lee-Yang edge singularity
- 1978: Reggeon field theory
- 1992: Complex Toda Field theory
- 1996: Hatano-Nelson Model
- 1998-2018: Emerging viewpoint $\Rightarrow \mathcal{P} \mathcal{T}$-symmetric QS

Real spectra for non-hermitian $\mathcal{P} \mathcal{T}$-symmetric QS

- $\mathcal{P} \mathcal{T}$ symmetry preserves Heisenberg algebra

Real spectra for non-hermitian $\mathcal{P} \mathcal{T}$-symmetric QS

- $\mathcal{P T}$ symmetry preserves Heisenberg algebra
- $\mathcal{P T}$ is an anti-linear operator

Real spectra for non-hermitian $\mathcal{P} \mathcal{T}$-symmetric QS

- $\mathcal{P} \mathcal{T}$ symmetry preserves Heisenberg algebra
- $\mathcal{P T}$ is an anti-linear operator
(1) BROKEN $\mathcal{P} \mathcal{T}$ SYMMETRY:

$$
[H, \mathcal{P} \mathcal{T}]=0, \quad H \psi=E \psi, \mathcal{P} \mathcal{T} \psi \neq \text { const. } \psi
$$

Real spectra for non-hermitian $\mathcal{P} \mathcal{T}$-symmetric QS

- $\mathcal{P} \mathcal{T}$ symmetry preserves Heisenberg algebra
- $\mathcal{P T}$ is an anti-linear operator
(1) BROKEN $\mathcal{P T}$ SYMMETRY:

$$
[H, \mathcal{P} \mathcal{T}]=0, \quad H \psi=E \psi, \mathcal{P} \mathcal{T} \psi \neq \text { const. } \psi
$$

(2) UNBROKEN $\mathcal{P} \mathcal{T}$ SYMMETRY:

$$
[H, \mathcal{P} \mathcal{T}]=0, \quad H \psi=E \psi, \quad \mathcal{P} \mathcal{T} \psi=\lambda \psi,|\lambda|^{2}=1
$$

Real spectra for non-hermitian $\mathcal{P} \mathcal{T}$-symmetric QS

- $\mathcal{P T}$ symmetry preserves Heisenberg algebra
- $\mathcal{P T}$ is an anti-linear operator
(1) BROKEN $\mathcal{P T}$ SYMMETRY:

$$
[H, \mathcal{P} \mathcal{T}]=0, \quad H \psi=E \psi, \mathcal{P} \mathcal{T} \psi \neq \text { const. } \psi
$$

(2) UNBROKEN $\mathcal{P} \mathcal{T}$ SYMMETRY:

$$
[H, \mathcal{P} \mathcal{T}]=0, \quad \boldsymbol{H} \psi=E \psi, \quad \mathcal{P} \mathcal{T} \psi=\lambda \psi,|\lambda|^{2}=1
$$

- H with unbroken $\mathcal{P} \mathcal{T}$ symmetry admits entirely real spectra.

$$
\mathcal{P T} H \psi=\mathcal{P} \mathcal{T} E \psi \Rightarrow H(\mathcal{P} \mathcal{T} \psi)=E^{*}(\mathcal{P} \mathcal{T} \psi) \Rightarrow E=E^{*}
$$

$\mathcal{P} \mathcal{T}$-unbroken phase: Orthogonality, Unitarity etc.

- Standard Norm: Non-orthonormal, incomplete set of states
- $\mathcal{P} \mathcal{T}$-normalized states are not necessarily positive-definite

$$
\left\langle\phi_{m} \mid \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=\int_{C} d x\left[\mathcal{P} \mathcal{T} \phi_{m}(x)\right] \phi_{n}(x)=(-1)^{n} \delta_{m n}
$$

$\mathcal{P T}$-unbroken phase: Orthogonality, Unitarity etc.

- Standard Norm: Non-orthonormal, incomplete set of states
- $\mathcal{P} \mathcal{T}$-normalized states are not necessarily positive-definite

$$
\left\langle\phi_{m} \mid \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=\int_{C} d x\left[\mathcal{P} \mathcal{T} \phi_{m}(x)\right] \phi_{n}(x)=(-1)^{n} \delta_{m n}
$$

- \mathcal{C} shares the properties of charge-conjugation operator

$$
\begin{aligned}
& \mathcal{C}(x, y)=\sum_{n} \phi_{n}(x) \phi_{n}(y),[H, \mathcal{P} \mathcal{T}]=0 \Rightarrow[H, \mathcal{C}]=0 \\
& \mathcal{C}(x, y) \phi_{n}(x)=\int_{C} d y \mathcal{C}(x, y) \phi_{n}(y)=(-1)^{n} \phi_{n}(x)
\end{aligned}
$$

$\mathcal{P} \mathcal{T}$-unbroken phase: Orthogonality, Unitarity etc.

- Standard Norm: Non-orthonormal, incomplete set of states
- $\mathcal{P} \mathcal{T}$-normalized states are not necessarily positive-definite

$$
\left\langle\phi_{m} \mid \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=\int_{C} d x\left[\mathcal{P} \mathcal{T} \phi_{m}(x)\right] \phi_{n}(x)=(-1)^{n} \delta_{m n}
$$

- \mathcal{C} shares the properties of charge-conjugation operator

$$
\begin{aligned}
& \mathcal{C}(x, y)=\sum_{n} \phi_{n}(x) \phi_{n}(y),[H, \mathcal{P} \mathcal{T}]=0 \Rightarrow[H, \mathcal{C}]=0 \\
& \mathcal{C}(x, y) \phi_{n}(x)=\int_{C} d y \mathcal{C}(x, y) \phi_{n}(y)=(-1)^{n} \phi_{n}(x)
\end{aligned}
$$

- Orthonormality \& completeness of states with $\mathcal{C P} \mathcal{T}$-norm

$$
\left\langle\phi_{m} \mid \phi_{n}\right\rangle_{\mathcal{C P} \mathcal{T}}=\int_{C} d x\left[\mathcal{C P} \mathcal{T} \phi_{m}(x)\right] \phi_{n}(x)=\delta_{m n}
$$

Example:Potential $V(x)=x^{2}(i x)^{\mathcal{E}}, \mathcal{E} \in \Re$

Numerical Results: Bender \& Boettcher, PRL 80, 5243(1998)
$\mathcal{P}: x \rightarrow-x, \mathcal{T}: i \rightarrow-i, \quad V(x)$ is $\mathcal{P} \mathcal{T}$-Symmetric

Example:Potential $V(x)=x^{2}(i x)^{\mathcal{E}}, \mathcal{E} \in \Re$

Numerical Results: Bender \& Boettcher, PRL 80, 5243(1998)

$\mathcal{P}: x \rightarrow-x, \mathcal{T}: i \rightarrow-i, \quad V(x)$ is $\mathcal{P} \mathcal{T}$-Symmetric

Example:Potential $V(x)=x^{2}(i x)^{\mathcal{E}}, \mathcal{E} \in \Re$

Numerical Results: Bender \& Boettcher, PRL 80, 5243(1998)

$\mathcal{P}: x \rightarrow-x, \mathcal{T}: i \rightarrow-i, \quad V(x)$ is $\mathcal{P} \mathcal{T}$-Symmetric

Entirely Real Spectra

Example:Potential $V(x)=x^{2}(i x)^{\mathcal{E}}, \mathcal{E} \in \Re$

Numerical Results: Bender \& Boettcher, PRL 80, 5243(1998)

$\mathcal{P}: x \rightarrow-x, \mathcal{T}: i \rightarrow-i, \quad V(x)$ is $\mathcal{P} \mathcal{T}$-Symmetric

$\mathcal{E} \geq 0$: Unbroken $\mathcal{P T}$-Symmetry

Entirely Real Spectra
$\mathcal{E}<0$: Broken $\mathcal{P T}$-Symmetry
Real and complex eigenvalues

Example:Potential $V(x)=x^{2}(i x)^{\mathcal{E}}, \mathcal{E} \in \Re$

Numerical Results: Bender \& Boettcher, PRL 80, 5243(1998)

$\mathcal{P}: x \rightarrow-x, \mathcal{T}: i \rightarrow-i, \quad V(x)$ is $\mathcal{P} \mathcal{T}$-Symmetric

$\mathcal{E} \geq 0$: Unbroken $\mathcal{P T}$-Symmetry

Entirely Real Spectra
$\mathcal{E}<0$: Broken $\mathcal{P T}$-Symmetry
Real and complex eigenvalues

Rigorous proof on real spectra

Dorey, Dunning \& Tateo, JPA 40, R205 (2007)

Bateman Oscillator: Hamiltonian for a dissipative oscillator

System: $\quad \ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=0 \Rightarrow$ Dissipative Oscillator
Bath: $\quad \ddot{y}-2 \gamma \dot{y}+\omega_{0}^{2} y=0 \Rightarrow$ Auxiliary Oscillator
DO \& AO together form a Hamiltonian system:

$$
\begin{aligned}
& H_{B}=P_{x} P_{y}+\gamma\left(y P_{y}-x P_{x}\right)+\left(\omega_{0}^{2}-\gamma^{2}\right) x y \\
& P_{x}=\dot{y}-\gamma y, \quad P_{y}=\dot{x}+\gamma x
\end{aligned}
$$

- Gain and loss are equally balanced

Bateman Oscillator: Hamiltonian for a dissipative oscillator

System: $\quad \ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=0 \Rightarrow$ Dissipative Oscillator
Bath: $\quad \ddot{y}-2 \gamma \dot{y}+\omega_{0}^{2} y=0 \Rightarrow$ Auxiliary Oscillator
DO \& AO together form a Hamiltonian system:

$$
\begin{aligned}
& H_{B}=P_{x} P_{y}+\gamma\left(y P_{y}-x P_{x}\right)+\left(\omega_{0}^{2}-\gamma^{2}\right) x y \\
& P_{x}=\dot{y}-\gamma y, \quad P_{y}=\dot{x}+\gamma x
\end{aligned}
$$

- Gain and loss are equally balanced
- H_{B} is $\mathcal{P} \mathcal{T}$-symmetric:

$$
\begin{aligned}
& \mathcal{T}: t \rightarrow-t, \mathcal{P}: x \rightarrow y, y \rightarrow x \\
& \mathcal{P T}: x \rightarrow y, y \rightarrow x, \quad P_{x} \rightarrow-P_{y}, \quad P_{y} \rightarrow-P_{x}
\end{aligned}
$$

Bateman Oscillator: Hamiltonian for a dissipative oscillator

System: $\quad \ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=0 \Rightarrow$ Dissipative Oscillator
Bath: $\quad \ddot{y}-2 \gamma \dot{y}+\omega_{0}^{2} y=0 \Rightarrow$ Auxiliary Oscillator
DO \& AO together form a Hamiltonian system:

$$
\begin{aligned}
& H_{B}=P_{x} P_{y}+\gamma\left(y P_{y}-x P_{x}\right)+\left(\omega_{0}^{2}-\gamma^{2}\right) x y \\
& P_{x}=\dot{y}-\gamma y, \quad P_{y}=\dot{x}+\gamma x
\end{aligned}
$$

- Gain and loss are equally balanced
- H_{B} is $\mathcal{P} \mathcal{T}$-symmetric:

$$
\begin{aligned}
& \mathcal{T}: t \rightarrow-t, \mathcal{P}: x \rightarrow y, y \rightarrow x \\
& \mathcal{P} \mathcal{T}: x \rightarrow y, y \rightarrow x, \quad P_{x} \rightarrow-P_{y}, \quad P_{y} \rightarrow-P_{x}
\end{aligned}
$$

- No equilibrium state

Equilibrium state via System-bath coupling: an example

$$
\begin{aligned}
& V(x, y)=\frac{\epsilon}{2}\left(x^{2}+y^{2}\right)+\frac{g}{2(x-y)^{2}} \\
& \ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x+\epsilon y+\frac{g}{(x-y)^{3}}=0 \\
& \ddot{y}-2 \gamma \dot{y}+\omega_{0}^{2} y+\epsilon x-\frac{g}{(x-y)^{3}}=0
\end{aligned}
$$

- Condition for equilibrium state (Unbroken $\mathcal{P} \mathcal{T}$-phase)

$$
-\frac{\omega_{0}}{2}<\gamma<\frac{\omega_{0}}{2}, 4 \gamma \sqrt{\omega_{0}^{2}-4 \gamma^{2}}<\epsilon<\omega_{0}^{2}
$$

Equilibrium state via System-bath coupling: an example

$$
\begin{aligned}
& V(x, y)=\frac{\epsilon}{2}\left(x^{2}+y^{2}\right)+\frac{g}{2(x-y)^{2}} \\
& \ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x+\epsilon y+\frac{g}{(x-y)^{3}}=0 \\
& \ddot{y}-2 \gamma \dot{y}+\omega_{0}^{2} y+\epsilon x-\frac{g}{(x-y)^{3}}=0
\end{aligned}
$$

- Condition for equilibrium state (Unbroken $\mathcal{P} \mathcal{T}$-phase)

$$
-\frac{\omega_{0}}{2}<\gamma<\frac{\omega_{0}}{2}, 4 \gamma \sqrt{\omega_{0}^{2}-4 \gamma^{2}}<\epsilon<\omega_{0}^{2}
$$

- Classical H : Periodic solutions in unbroken $\mathcal{P} \mathcal{T}$-phase Phase-transitions realized experimentally for $g=0$

Equilibrium state via System-bath coupling: an example

$$
\begin{aligned}
& V(x, y)=\frac{\epsilon}{2}\left(x^{2}+y^{2}\right)+\frac{g}{2(x-y)^{2}} \\
& \ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x+\epsilon y+\frac{g}{(x-y)^{3}}=0 \\
& \ddot{y}-2 \gamma \dot{y}+\omega_{0}^{2} y+\epsilon x-\frac{g}{(x-y)^{3}}=0
\end{aligned}
$$

- Condition for equilibrium state (Unbroken $\mathcal{P} \mathcal{T}$-phase)

$$
-\frac{\omega_{0}}{2}<\gamma<\frac{\omega_{0}}{2}, 4 \gamma \sqrt{\omega_{0}^{2}-4 \gamma^{2}}<\epsilon<\omega_{0}^{2}
$$

- Classical H : Periodic solutions in unbroken $\mathcal{P} \mathcal{T}$-phase Phase-transitions realized experimentally for $g=0$
- Quantum H: Real, discrete, positive spectra, unitarity

General Constructions

- Definitions, Notations etc.

$$
\begin{aligned}
& X^{T}=\left(x_{1}, x_{2}, \ldots, x_{N}\right), P^{T}=\left(p_{1}, p_{2}, \ldots, p_{N}\right) \\
& F^{T}=\left(F_{1}, F_{2}, \ldots, F_{N}\right), F_{i} \equiv F_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)
\end{aligned}
$$

General Constructions

- Definitions, Notations etc.

$$
\begin{aligned}
& X^{T}=\left(x_{1}, x_{2}, \ldots, x_{N}\right), P^{T}=\left(p_{1}, p_{2}, \ldots, p_{N}\right) \\
& F^{T}=\left(F_{1}, F_{2}, \ldots, F_{N}\right), F_{i} \equiv F_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)
\end{aligned}
$$

- Generalized Momenta: $\Pi=P+A F$
A is $N \times N$ constant matrix.

General Constructions

- Definitions, Notations etc.

$$
\begin{aligned}
& X^{T}=\left(x_{1}, x_{2}, \ldots, x_{N}\right), P^{T}=\left(p_{1}, p_{2}, \ldots, p_{N}\right) \\
& F^{T}=\left(F_{1}, F_{2}, \ldots, F_{N}\right), F_{i} \equiv F_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)
\end{aligned}
$$

- Generalized Momenta: $\Pi=P+A F$
A is $N \times N$ constant matrix.
- Hamiltonian

$$
H=\Pi^{T} M \Pi+V\left(x_{1}, x_{2}, \ldots, x_{N}\right), M^{T}=M
$$

M is $N \times N$ non-singular, constant matrix

General Constructions

- Definitions, Notations etc.

$$
\begin{aligned}
& X^{T}=\left(x_{1}, x_{2}, \ldots, x_{N}\right), P^{T}=\left(p_{1}, p_{2}, \ldots, p_{N}\right) \\
& F^{T}=\left(F_{1}, F_{2}, \ldots, F_{N}\right), F_{i} \equiv F_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)
\end{aligned}
$$

- Generalized Momenta: $\Pi=P+A F$
A is $N \times N$ constant matrix.
- Hamiltonian

$$
H=\Pi^{T} M \Pi+V\left(x_{1}, x_{2}, \ldots, x_{N}\right), M^{T}=M
$$

M is $N \times N$ non-singular, constant matrix

- Equations of Motion

$$
\begin{aligned}
& \ddot{X}-2 D \dot{X}+2 M \frac{\partial V}{\partial X}=0 \\
& {[J]_{i j} \equiv \frac{\partial F_{i}}{\partial x_{j}}, \quad R \equiv A J-(A J)^{T}, D:=M R}
\end{aligned}
$$

Generic features

- Hamiltonian \Rightarrow Balanced loss-gain $[\operatorname{Tr}(D)=0]$

$$
\begin{aligned}
& M^{T}=M, R^{T}=-R, D^{T}=D \\
& \{M, R\}=0,\{M, D\}=0,\{R, D\}=0
\end{aligned}
$$

Generic features

- Hamiltonian \Rightarrow Balanced loss-gain $[\operatorname{Tr}(D)=0]$

$$
\begin{aligned}
& M^{T}=M, R^{T}=-R, D^{T}=D \\
& \{M, R\}=0,\{M, D\}=0,\{R, D\}=0
\end{aligned}
$$

- Pair-wise balancing for $N=2 m, m \in \mathbb{Z}^{+}$

$$
\operatorname{det}(D)\left[1-(-1)^{N}\right]=0
$$

$N=2 m+1$: At least one eigenvalue of D is zero

Generic features

- Hamiltonian \Rightarrow Balanced loss-gain $[\operatorname{Tr}(D)=0]$

$$
\begin{aligned}
& M^{T}=M, R^{T}=-R, D^{T}=D \\
& \{M, R\}=0,\{M, D\}=0,\{R, D\}=0
\end{aligned}
$$

- Pair-wise balancing for $N=2 m, m \in \mathbb{Z}^{+}$

$$
\operatorname{det}(D)\left[1-(-1)^{N}\right]=0
$$

$N=2 m+1$: At least one eigenvalue of D is zero

- H in the background of a Pseudo-Euclidean metric

$$
\begin{aligned}
M_{d} & =\hat{O} M \hat{O}^{T} \quad\left(O^{T} O=I_{2 m}\right) \\
& =\operatorname{diagonal}\left(\lambda_{1},-\lambda_{1}, \lambda_{2},-\lambda_{2}, \ldots, \lambda_{m},-\lambda_{m}\right) \\
\tilde{X} & =\hat{O} X, \tilde{P}=\hat{O} P, \tilde{\Pi}=\hat{O} \Pi \\
H & =\tilde{\Pi}^{T} M_{d} \tilde{\Pi}+V\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{N}\right)
\end{aligned}
$$

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability
- $D^{T} \neq D$

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability
- $D^{T} \neq D$
- Anti-commutation relations involving M, R, D are not valid.

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability
- $D^{T} \neq D$
- Anti-commutation relations involving M, R, D are not valid.
- $\operatorname{Tr}(D)=0$, conservative system

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability
- $D^{T} \neq D$
- Anti-commutation relations involving M, R, D are not valid.
- $\operatorname{Tr}(D)=0$, conservative system
- M can be semi-positive definite and leads to a +ve KE term

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability
- $D^{T} \neq D$
- Anti-commutation relations involving M, R, D are not valid.
- $\operatorname{Tr}(D)=0$, conservative system
- M can be semi-positive definite and leads to a +ve KE term
- Additional Lorentz interaction in the system makes $D^{T} \neq D$

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability
- $D^{T} \neq D$
- Anti-commutation relations involving M, R, D are not valid.
- $\operatorname{Tr}(D)=0$, conservative system
- M can be semi-positive definite and leads to a +ve KE term
- Additional Lorentz interaction in the system makes $D^{T} \neq D$
- Stability: Magnitude of applied magnetic field > 'analogous magnetic field' due to loss/gain terms

Generic Feature:Taming the instability

- KE term is not positive-definite \Rightarrow instability
- $D^{T} \neq D$
- Anti-commutation relations involving M, R, D are not valid.
- $\operatorname{Tr}(D)=0$, conservative system
- M can be semi-positive definite and leads to a +ve KE term
- Additional Lorentz interaction in the system makes $D^{T} \neq D$
- Stability: Magnitude of applied magnetic field > 'analogous magnetic field' due to loss/gain terms
- Landau Hamiltonian with balanced loss/gain
(i) Particle moves in an elliptic orbit with reduced cyclotron frequency
(ii) Hall current is not necessarily in the perpendicular direction to the applied electric field

Representation of Matrices

- A particular choice for $N=2 m$

$$
\begin{aligned}
& M=I_{m} \otimes \sigma_{x}, A=\frac{-i \gamma}{2} I_{m} \otimes \sigma_{y}, D=\gamma \chi_{m} \otimes \sigma_{z} \\
& {\left[\chi_{m}\right]_{i j}=\frac{1}{2} \delta_{i j} Q_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
\end{aligned}
$$

Representation of Matrices

- A particular choice for $N=2 m$

$$
\begin{aligned}
& M=I_{m} \otimes \sigma_{x}, A=\frac{-i \gamma}{2} I_{m} \otimes \sigma_{y}, D=\gamma \chi_{m} \otimes \sigma_{z} \\
& {\left[\chi_{m}\right]_{i j}=\frac{1}{2} \delta_{i j} Q_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
\end{aligned}
$$

- Assumption based on Pairwise Balancing:

$$
F_{2 i-1} \equiv F_{2 i-1}\left(x_{2 i-1}, x_{2 i}\right), \quad F_{2 i} \equiv F_{2 i}\left(x_{2 i-1}, x_{2 i}\right)
$$

Representation of Matrices

- A particular choice for $N=2 m$

$$
\begin{aligned}
& M=I_{m} \otimes \sigma_{x}, A=\frac{-i \gamma}{2} I_{m} \otimes \sigma_{y}, D=\gamma \chi_{m} \otimes \sigma_{z} \\
& {\left[\chi_{m}\right]_{i j}=\frac{1}{2} \delta_{i j} Q_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
\end{aligned}
$$

- Assumption based on Pairwise Balancing:

$$
F_{2 i-1} \equiv F_{2 i-1}\left(x_{2 i-1}, x_{2 i}\right), \quad F_{2 i} \equiv F_{2 i}\left(x_{2 i-1}, x_{2 i}\right)
$$

- J has the expression: $J=\sum_{i=1}^{m} U_{i}^{(m)} \otimes V_{i}^{(2)}$

$$
\left[U_{a}^{(m)}\right]_{i j} \equiv \delta_{i a} \delta_{j a}, \quad V_{a}^{(2)} \equiv\left(\begin{array}{cc}
\frac{\partial F_{2 a-1}}{\partial x_{22}-1} & \frac{\partial F_{2 a-1}}{\partial x_{2 a}} \\
\frac{\partial F_{2 a}}{\partial x_{2 a-1}} & \frac{\partial F_{2 a}}{\partial x_{2 a}}
\end{array}\right)
$$

Representation of Matrices

- A particular choice for $N=2 m$

$$
\begin{aligned}
& M=I_{m} \otimes \sigma_{x}, A=\frac{-i \gamma}{2} I_{m} \otimes \sigma_{y}, D=\gamma \chi_{m} \otimes \sigma_{z} \\
& {\left[\chi_{m}\right]_{i j}=\frac{1}{2} \delta_{i j} Q_{i}\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
\end{aligned}
$$

- Assumption based on Pairwise Balancing:

$$
F_{2 i-1} \equiv F_{2 i-1}\left(x_{2 i-1}, x_{2 i}\right), \quad F_{2 i} \equiv F_{2 i}\left(x_{2 i-1}, x_{2 i}\right)
$$

- J has the expression: $J=\sum_{i=1}^{m} U_{i}^{(m)} \otimes V_{i}^{(2)}$

$$
\left[U_{a}^{(m)}\right]_{i j} \equiv \delta_{i a} \delta_{j a}, \quad V_{a}^{(2)} \equiv\left(\begin{array}{cc}
\frac{\partial F_{2 a-1}}{\partial x_{22}-1} & \frac{\partial F_{2 a-1}}{\partial x_{2 a}} \\
\frac{\partial F_{2 a}}{\partial x_{2 a-1}} & \frac{\partial F_{2 a}}{\partial x_{2 a}}
\end{array}\right)
$$

- $Q_{a}\left(x_{2 a-1}, x_{2 a}\right)=\operatorname{Trace}\left(V_{a}^{(2)}\right)$

An interpretation

- $\hat{O}=\frac{1}{\sqrt{2}}\left[I_{m} \otimes\left(\sigma_{x}+\sigma_{z}\right)\right]$ diagonalizes M and generates the Co-ordinate transformation

$$
\begin{aligned}
z_{i}^{ \pm} & =\frac{1}{\sqrt{2}}\left(x_{2 i-1} \pm x_{2 i}\right), P_{z_{i}^{ \pm}}= \pm \frac{1}{2}\left(\dot{z}_{i}^{ \pm}-\gamma F_{i}^{\mp}\right) \\
F_{i}^{ \pm} & =\frac{1}{\sqrt{2}}\left(F_{2 i-1} \pm F_{2 i}\right), F_{i}^{ \pm} \equiv F_{i}^{ \pm}\left(z_{i}^{+}, z_{i}^{-}\right)
\end{aligned}
$$

An interpretation

- $\hat{O}=\frac{1}{\sqrt{2}}\left[I_{m} \otimes\left(\sigma_{x}+\sigma_{z}\right)\right]$ diagonalizes M and generates the Co-ordinate transformation

$$
\begin{aligned}
& z_{i}^{ \pm}=\frac{1}{\sqrt{2}}\left(x_{2 i-1} \pm x_{2 i}\right), P_{z_{i}^{ \pm}}= \pm \frac{1}{2}\left(\dot{z}_{i}^{ \pm}-\gamma F_{i}^{\mp}\right) \\
& F_{i}^{ \pm}=\frac{1}{\sqrt{2}}\left(F_{2 i-1} \pm F_{2 i}\right), F_{i}^{ \pm} \equiv F_{i}^{ \pm}\left(z_{i}^{+}, z_{i}^{-}\right)
\end{aligned}
$$

- H describes a system of m particles on a Pseudo-Euclidean plane interacting with each other through V

$$
H=\sum_{i=1}^{m}\left[\left(P_{z_{i}^{+}}+\frac{\gamma}{2} F_{i}^{-}\right)^{2}-\left(P_{z_{i}^{-}}-\frac{\gamma}{2} F_{i}^{+}\right)^{2}\right]+V
$$

An interpretation

- $\hat{O}=\frac{1}{\sqrt{2}}\left[I_{m} \otimes\left(\sigma_{x}+\sigma_{z}\right)\right]$ diagonalizes M and generates the Co-ordinate transformation

$$
\begin{aligned}
& z_{i}^{ \pm}=\frac{1}{\sqrt{2}}\left(x_{2 i-1} \pm x_{2 i}\right), P_{z_{i}^{ \pm}}= \pm \frac{1}{2}\left(\dot{z}_{i}^{ \pm}-\gamma F_{i}^{\mp}\right) \\
& F_{i}^{ \pm}=\frac{1}{\sqrt{2}}\left(F_{2 i-1} \pm F_{2 i}\right), F_{i}^{ \pm} \equiv F_{i}^{ \pm}\left(z_{i}^{+}, z_{i}^{-}\right)
\end{aligned}
$$

- H describes a system of m particles on a Pseudo-Euclidean plane interacting with each other through V

$$
H=\sum_{i=1}^{m}\left[\left(P_{z_{i}^{+}}+\frac{\gamma}{2} F_{i}^{-}\right)^{2}-\left(P_{z_{i}^{-}}-\frac{\gamma}{2} F_{i}^{+}\right)^{2}\right]+V
$$

- The i 'th particle is subjected to magnetic field Q_{i}

$$
Q_{i}=\frac{\partial F_{i}^{+}}{\partial z_{i}^{+}}+\frac{\partial F_{i}^{-}}{\partial z_{i}^{-}}
$$

Quantization

- $z_{i}^{ \pm}$and $P_{z_{i}}^{ \pm}:=-i \partial_{z_{i}^{ \pm}}$are treated as operators with the non-vanishing commutation relations $(\hbar=1)$:

$$
\left[z_{j}^{+}, P_{z_{j}^{+}}\right]=i,\left[z_{j}^{-}, P_{z_{j}^{-}}\right]=i
$$

Quantization

- $z_{i}^{ \pm}$and $P_{z_{i}}^{ \pm}:=-i \partial_{z_{i}^{ \pm}}$are treated as operators with the non-vanishing commutation relations $(\hbar=1)$:

$$
\left[z_{j}^{+}, P_{z_{j}^{+}}\right]=i,\left[z_{j}^{-}, P_{z_{j}^{-}}\right]=i
$$

- Generalized momenta $\hat{\Pi}_{z_{i}^{ \pm}}:=-i \partial_{z_{i}^{ \pm}} \pm \frac{\gamma}{2} F_{i}^{\mp}$

$$
\left[\hat{\Pi}_{z_{i}^{ \pm}}, \hat{\Pi}_{z_{j}^{ \pm}}\right]=0, \quad\left[\hat{\Pi}_{z_{i}^{-}}, \hat{\Pi}_{z_{j}^{+}}\right]=-\delta_{i j} \frac{i \gamma}{2} Q_{i}\left(z_{i}^{-}, z_{i}^{+}\right)
$$

Quantization

- $z_{i}^{ \pm}$and $P_{z_{i}}^{ \pm}:=-i \partial_{z_{i}^{ \pm}}$are treated as operators with the non-vanishing commutation relations $(\hbar=1)$:

$$
\left[z_{j}^{+}, P_{z_{j}^{+}}\right]=i,\left[z_{j}^{-}, P_{z_{j}^{-}}\right]=i
$$

- Generalized momenta $\hat{\Pi}_{z_{i}^{ \pm}}:=-i \partial_{z_{i}^{ \pm}} \pm \frac{\gamma}{2} F_{i}^{\mp}$

$$
\left[\hat{\Pi}_{z_{i}^{ \pm}}, \hat{\Pi}_{z_{j}^{ \pm}}\right]=0, \quad\left[\hat{\Pi}_{z_{i}^{-}}, \hat{\Pi}_{z_{j}^{+}}\right]=-\delta_{i j} \frac{i \gamma}{2} Q_{i}\left(z_{i}^{-}, z_{i}^{+}\right)
$$

- In general, \hat{H} is non-hermitian for standard B.C.

$$
\hat{H}=\sum_{i=1}^{m}\left[\left(\hat{\Pi}_{z_{i}^{+}}\right)^{2}-\left(\hat{\Pi}_{z_{i}^{-}}\right)^{2}\right]+V\left(z_{1}^{ \pm}, \ldots, z_{m}^{ \pm}\right)
$$

Normalizable wf only in appropriate Stoke wedges

Integrability

- Translational invariant system(TIS)

$$
V \equiv V\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right), \quad Q_{i} \equiv Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right)
$$

Integrability

- Translational invariant system(TIS)

$$
V \equiv V\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right), \quad Q_{i} \equiv Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right)
$$

- Symmetry transformation:

$$
x_{2 i-1} \rightarrow x_{2 i-1}+\eta_{i}, x_{2 i} \rightarrow x_{2 i}+\eta_{i}
$$

η_{i} are m independent parameters

Integrability

- Translational invariant system(TIS)

$$
V \equiv V\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right), \quad Q_{i} \equiv Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right)
$$

- Symmetry transformation:

$$
x_{2 i-1} \rightarrow x_{2 i-1}+\eta_{i}, x_{2 i} \rightarrow x_{2 i}+\eta_{i}
$$

η_{i} are m independent parameters

- Integrals of motion

$$
\Pi_{i}=2 P_{z_{i}^{+}}+\gamma F_{i}^{-}-\gamma \int Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right) d z_{i}^{-}
$$

Integrability

- Translational invariant system(TIS)

$$
V \equiv V\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right), \quad Q_{i} \equiv Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right)
$$

- Symmetry transformation:

$$
x_{2 i-1} \rightarrow x_{2 i-1}+\eta_{i}, x_{2 i} \rightarrow x_{2 i}+\eta_{i}
$$

η_{i} are m independent parameters

- Integrals of motion

$$
\Pi_{i}=2 P_{z_{i}^{+}}+\gamma F_{i}^{-}-\gamma \int Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right) d z_{i}^{-}
$$

- Partial(complete) integrability for $m>1(m=1)$

$$
\left\{H, \Pi_{i}\right\}_{P B}=0 \quad\left\{\Pi_{i}, \Pi_{j}\right\}_{P B}=0
$$

Integrability

- Translational invariant system(TIS)

$$
V \equiv V\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right), \quad Q_{i} \equiv Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right)
$$

- Symmetry transformation:

$$
x_{2 i-1} \rightarrow x_{2 i-1}+\eta_{i}, x_{2 i} \rightarrow x_{2 i}+\eta_{i}
$$

η_{i} are m independent parameters

- Integrals of motion

$$
\Pi_{i}=2 P_{z_{i}^{+}}+\gamma F_{i}^{-}-\gamma \int Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right) d z_{i}^{-}
$$

- Partial(complete) integrability for $m>1(m=1)$

$$
\left\{H, \Pi_{i}\right\}_{P B}=0 \quad\left\{\Pi_{i}, \Pi_{j}\right\}_{P B}=0
$$

- Similar results for

$$
V \equiv V\left(z_{1}^{+}, z_{2}^{+}, \ldots, z_{m}^{+}\right), Q_{i} \equiv Q_{i}\left(z_{1}^{+}, z_{2}^{+}, \ldots, z_{m}^{+}\right)
$$

Integrability

- Translational invariant system(TIS)

$$
V \equiv V\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right), \quad Q_{i} \equiv Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right)
$$

- Symmetry transformation:

$$
x_{2 i-1} \rightarrow x_{2 i-1}+\eta_{i}, x_{2 i} \rightarrow x_{2 i}+\eta_{i}
$$

η_{i} are m independent parameters

- Integrals of motion

$$
\Pi_{i}=2 P_{z_{i}^{+}}+\gamma F_{i}^{-}-\gamma \int Q_{i}\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right) d z_{i}^{-}
$$

- Partial(complete) integrability for $m>1(m=1)$

$$
\left\{H, \Pi_{i}\right\}_{P B}=0 \quad\left\{\Pi_{i}, \Pi_{j}\right\}_{P B}=0
$$

- Similar results for

$$
V \equiv V\left(z_{1}^{+}, z_{2}^{+}, \ldots, z_{m}^{+}\right), Q_{i} \equiv Q_{i}\left(z_{1}^{+}, z_{2}^{+}, \ldots, z_{m}^{+}\right)
$$

- Quantum Integrability: $\{., .\}_{P B} \rightarrow[.,$.

Rotational Invariant Systems

- Parametrization of co-ordinates

$$
z_{i}^{+}=r_{i} \cosh \theta_{i}, \quad z_{i}^{-}=r_{i} \sinh \theta_{i}
$$

Rotational Invariant Systems

- Parametrization of co-ordinates

$$
z_{i}^{+}=r_{i} \cosh \theta_{i}, \quad z_{i}^{-}=r_{i} \sinh \theta_{i}
$$

- Symmetry transformation

Hyperbolic rotation in each ' $z_{i}^{-}-z_{i}^{+}$' plane

Rotational Invariant Systems

- Parametrization of co-ordinates

$$
z_{i}^{+}=r_{i} \cosh \theta_{i}, \quad z_{i}^{-}=r_{i} \sinh \theta_{i}
$$

- Symmetry transformation

Hyperbolic rotation in each ' $z_{i}^{-}-z_{i}^{+}$' plane

- Condition for invariance of action

$$
\begin{gathered}
V \equiv V\left(r_{1}, \ldots, r_{m}\right) \\
F_{i}^{+}=z_{i}^{+} g\left(r_{1}, \ldots, r_{m}\right), F_{i}^{-}=z_{i}^{-} g\left(r_{1}, \ldots, r_{m}\right)
\end{gathered}
$$

Rotational Invariant Systems

- Parametrization of co-ordinates

$$
z_{i}^{+}=r_{i} \cosh \theta_{i}, \quad z_{i}^{-}=r_{i} \sinh \theta_{i}
$$

- Symmetry transformation

Hyperbolic rotation in each ' $z_{i}^{-}-z_{i}^{+}$' plane

- Condition for invariance of action

$$
\begin{gathered}
V \equiv V\left(r_{1}, \ldots, r_{m}\right) \\
F_{i}^{+}=z_{i}^{+} g\left(r_{1}, \ldots, r_{m}\right), F_{i}^{-}=z_{i}^{-} g\left(r_{1}, \ldots, r_{m}\right)
\end{gathered}
$$

- Integrals of motion

$$
L_{i}=-r_{i}^{2} \dot{\theta}_{i}+\gamma r_{i}^{2} g\left(r_{1}, \ldots, r_{m}\right)
$$

Rotational Invariant Systems

- Parametrization of co-ordinates

$$
z_{i}^{+}=r_{i} \cosh \theta_{i}, \quad z_{i}^{-}=r_{i} \sinh \theta_{i}
$$

- Symmetry transformation

Hyperbolic rotation in each ' $z_{i}^{-}-z_{i}^{+}$' plane

- Condition for invariance of action

$$
\begin{gathered}
V \equiv V\left(r_{1}, \ldots, r_{m}\right) \\
F_{i}^{+}=z_{i}^{+} g\left(r_{1}, \ldots, r_{m}\right), F_{i}^{-}=z_{i}^{-} g\left(r_{1}, \ldots, r_{m}\right)
\end{gathered}
$$

- Integrals of motion

$$
L_{i}=-r_{i}^{2} \dot{\theta}_{i}+\gamma r_{i}^{2} g\left(r_{1}, \ldots, r_{m}\right)
$$

- Partial(complete) integrability for $m>1(m=1)$

$$
\left\{H, L_{i}\right\}_{P B}=0 \quad\left\{L_{i}, L_{j}\right\}_{P B}=0
$$

Rotational Invariant Systems

- Parametrization of co-ordinates

$$
z_{i}^{+}=r_{i} \cosh \theta_{i}, \quad z_{i}^{-}=r_{i} \sinh \theta_{i}
$$

- Symmetry transformation

Hyperbolic rotation in each ' $z_{i}^{-}-z_{i}^{+}$' plane

- Condition for invariance of action

$$
\begin{gathered}
V \equiv V\left(r_{1}, \ldots, r_{m}\right) \\
F_{i}^{+}=z_{i}^{+} g\left(r_{1}, \ldots, r_{m}\right), F_{i}^{-}=z_{i}^{-} g\left(r_{1}, \ldots, r_{m}\right)
\end{gathered}
$$

- Integrals of motion

$$
L_{i}=-r_{i}^{2} \dot{\theta}_{i}+\gamma r_{i}^{2} g\left(r_{1}, \ldots, r_{m}\right)
$$

- Partial(complete) integrability for $m>1(m=1)$

$$
\left\{H, L_{i}\right\}_{P B}=0 \quad\left\{L_{i}, L_{j}\right\}_{P B}=0
$$

- Quantum Integrability: $\{., .\}_{P B} \rightarrow[.,$.

Classical Hamiltonian

$$
\begin{aligned}
& V_{C}\left(z_{i}^{-}\right)=-\sum_{i=1}^{m} 2 \omega_{0}^{2}\left(z_{i}^{-}\right)^{2}-\sum_{\substack{i, j=1 \\
i<j}}^{m} \frac{g^{2}}{2\left(z_{i}^{-}-z_{j}^{-}\right)^{2}}, \\
& \ddot{z}_{i}^{-}+\omega^{2} z_{i}^{-}-\sum_{j,(j \neq i)}^{m} \frac{g^{2}}{\left(z_{i}^{-}-z_{j}^{-}\right)^{3}}=0 \\
& z_{i}^{+}(t)=2 \gamma \int z_{i}^{-}(t) d t+C_{i}, \quad i=1,2, \ldots m .
\end{aligned}
$$

Unlike RCM, $V_{I I}$ (second term of V) is not invariant under permutation symmetry $S_{2 m}$. If each pair $\left(x_{2 i-1}, x_{2 i}\right)$ is considered as an element, then, $V_{l /}$ is invariant under S_{m}
Exactly solvable with periodic solutions for $-\frac{\omega_{0}}{\sqrt{2}}<\gamma<\frac{\omega_{0}}{\sqrt{2}}$

Quantum Hamiltonian in translational invariant gauge

$$
\hat{H}_{L}=\sum_{i=1}^{m}\left[\left(-i \partial_{z_{i}^{+}}+\gamma z_{i}^{-}\right)^{2}-P_{z_{i}^{-}}^{2}\right]+V_{C}
$$

Energy eigenvalues:

$$
\begin{aligned}
& E=-2 \Omega\left[2 n+I+\frac{1}{2} m+\frac{\lambda}{2} m(m-1)\right]+\frac{m k^{2} \omega^{2}}{2 \Omega^{2}} \\
& \Omega^{2}=\frac{1}{2}\left(\omega_{0}^{2}-2 \gamma^{2}\right),-\frac{\omega_{0}}{\sqrt{2}}<\gamma<\frac{\omega_{0}}{\sqrt{2}}
\end{aligned}
$$

- $k=0$: E is bounded from below for $\Omega<0$

Quantum Hamiltonian in translational invariant gauge

$$
\hat{H}_{L}=\sum_{i=1}^{m}\left[\left(-i \partial_{z_{i}^{+}}+\gamma z_{i}^{-}\right)^{2}-P_{z_{i}^{-}}^{2}\right]+V_{C}
$$

Energy eigenvalues:

$$
\begin{aligned}
& E=-2 \Omega\left[2 n+I+\frac{1}{2} m+\frac{\lambda}{2} m(m-1)\right]+\frac{m k^{2} \omega^{2}}{2 \Omega^{2}}, \\
& \Omega^{2}=\frac{1}{2}\left(\omega_{0}^{2}-2 \gamma^{2}\right),-\frac{\omega_{0}}{\sqrt{2}}<\gamma<\frac{\omega_{0}}{\sqrt{2}}
\end{aligned}
$$

- $k=0$: E is bounded from below for $\Omega<0$
- E consists of discrete as well as continuous spectra

Quantum Hamiltonian in translational invariant gauge

$$
\hat{H}_{L}=\sum_{i=1}^{m}\left[\left(-i \partial_{z_{i}^{+}}+\gamma z_{i}^{-}\right)^{2}-P_{z_{i}^{-}}^{2}\right]+V_{C}
$$

Energy eigenvalues:

$$
\begin{aligned}
& E=-2 \Omega\left[2 n+I+\frac{1}{2} m+\frac{\lambda}{2} m(m-1)\right]+\frac{m k^{2} \omega^{2}}{2 \Omega^{2}} \\
& \Omega^{2}=\frac{1}{2}\left(\omega_{0}^{2}-2 \gamma^{2}\right),-\frac{\omega_{0}}{\sqrt{2}}<\gamma<\frac{\omega_{0}}{\sqrt{2}}
\end{aligned}
$$

- $k=0$: E is bounded from below for $\Omega<0$
- E consists of discrete as well as continuous spectra
- Box normalization: $0 \leq z_{i}^{+} \leq L, \forall i$

$$
E=2|\Omega|\left[2 n+I+\frac{1}{2} m+\frac{\lambda}{2} m(m-1)\right]+\frac{2 m \pi^{2} \omega^{2} \hat{k}^{2}}{L^{2} \Omega^{2}}
$$

Normalization of wave-functions

- Asymptotic form of the wave function χ

$$
|\chi|^{2} \sim \exp \left[|\Omega| \sum_{j=1}^{m} z_{j}^{2}\right]
$$

Normalization of wave-functions

- Asymptotic form of the wave function χ

$$
|\chi|^{2} \sim \exp \left[|\Omega| \sum_{j=1}^{m} z_{j}^{2}\right]
$$

- Eigenfunctions are not normalizable along real z_{i} lines. Normalizable solutions in complex z_{i}-planes

$$
z_{i}=r_{i} \exp \left[i \theta_{i}\right], \quad \sum_{i=1}^{m} \cos \left(2 \theta_{i}\right)<0
$$

- Exact Correlation Functions via Matrix Model

Normalization of wave-functions

- Asymptotic form of the wave function χ

$$
|\chi|^{2} \sim \exp \left[|\Omega| \sum_{j=1}^{m} z_{j}^{2}\right]
$$

- Eigenfunctions are not normalizable along real z_{i} lines. Normalizable solutions in complex z_{i}-planes

$$
z_{i}=r_{i} \exp \left[i \theta_{i}\right], \quad \sum_{i=1}^{m} \cos \left(2 \theta_{i}\right)<0
$$

- Possible solution: $\theta_{i}=\theta \forall i$, a pair of Stoke wedges with opening angle $\frac{\pi}{2}$ and centered about the positive and negative imaginary axes

Correlation functions

$$
\begin{aligned}
R_{n}\left(x_{1}, x_{2}, \ldots . x_{n}\right) & =\frac{N!}{(N-n)!} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \prod_{i=n+1}^{N} d x_{i} \\
& \times\left|\chi\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right|^{2}, n<N
\end{aligned}
$$

Define $y_{i}=\sqrt{\frac{\Omega}{\lambda}} z_{i}$. Results from RMT \& RCM may be used

- Integrations over z_{i}^{-}in proper Stoke Wedges

Correlation functions

$$
\begin{aligned}
R_{n}\left(x_{1}, x_{2}, \ldots . x_{n}\right) & =\frac{N!}{(N-n)!} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \prod_{i=n+1}^{N} d x_{i} \\
& \times\left|\chi\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right|^{2}, n<N
\end{aligned}
$$

Define $y_{i}=\sqrt{\frac{\Omega}{\lambda}} z_{i}$. Results from RMT \& RCM may be used

- Integrations over z_{i}^{-}in proper Stoke Wedges
- Mapping to integrals of RCM only for even $n\left(y=y_{1}\right)$

$$
R_{2}= \begin{cases}\frac{N(N-1)}{m \pi L}\left(2 m-y^{2}\right)^{\frac{1}{2}}, & y^{2}<2 m \\ 0, & y^{2}>2 m .\end{cases}
$$

Differs from RCM by a constant multiplicative factor

Non-local Nonlinear Schrödinger Equation

Ablowitz \& Musslimani, PRL 110, 064105(2013)
Sinha \& Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124
$i \psi_{t}(x, t)=-\frac{1}{2} \psi_{x x}(x, t)+g \underbrace{\psi^{*}(-x, t) \psi(x, t)}_{V(x, t)} \psi(x, t), g \in \Re$.

- Standard NLSE(SNLSE): $V_{S}(x, t)=\psi^{*}(x, t) \psi(x, t)$

Non-local Nonlinear Schrödinger Equation

Ablowitz \& Musslimani, PRL 110, 064105(2013)
Sinha \& Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124
$i \psi_{t}(x, t)=-\frac{1}{2} \psi_{x x}(x, t)+g \underbrace{\psi^{*}(-x, t) \psi(x, t)}_{V(x, t)} \psi(x, t), g \in \Re$.

- Standard NLSE(SNLSE): $V_{S}(x, t)=\psi^{*}(x, t) \psi(x, t)$
- $V(x, t)$ is $\mathcal{P} \mathcal{T}$-symmetric for the stationery solution

Non-local Nonlinear Schrödinger Equation

Ablowitz \& Musslimani, PRL 110, 064105(2013)
Sinha \& Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124
$i \psi_{t}(x, t)=-\frac{1}{2} \psi_{x x}(x, t)+g \underbrace{\psi^{*}(-x, t) \psi(x, t)}_{V(x, t)} \psi(x, t), g \in \Re$.

- Standard NLSE(SNLSE): $V_{S}(x, t)=\psi^{*}(x, t) \psi(x, t)$
- $V(x, t)$ is $\mathcal{P} \mathcal{T}$-symmetric for the stationery solution
- Integrable with infinite number of conserved quantities

Non-local Nonlinear Schrödinger Equation

Ablowitz \& Musslimani, PRL 110, 064105(2013)
Sinha \& Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124
$i \psi_{t}(x, t)=-\frac{1}{2} \psi_{x x}(x, t)+g \underbrace{\psi^{*}(-x, t) \psi(x, t)}_{V(x, t)} \psi(x, t), g \in \Re$.

- Standard NLSE(SNLSE): $V_{S}(x, t)=\psi^{*}(x, t) \psi(x, t)$
- $V(x, t)$ is $\mathcal{P} \mathcal{T}$-symmetric for the stationery solution
- Integrable with infinite number of conserved quantities
- In contrast to SNLSE, both bright \& dark solitons for $g<0$.

Non-local Nonlinear Schrödinger Equation

Ablowitz \& Musslimani, PRL 110, 064105(2013)
Sinha \& Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124
$i \psi_{t}(x, t)=-\frac{1}{2} \psi_{x x}(x, t)+g \underbrace{\psi^{*}(-x, t) \psi(x, t)}_{V(x, t)} \psi(x, t), g \in \Re$.

- Standard NLSE(SNLSE): $V_{S}(x, t)=\psi^{*}(x, t) \psi(x, t)$
- $V(x, t)$ is $\mathcal{P} \mathcal{T}$-symmetric for the stationery solution
- Integrable with infinite number of conserved quantities
- In contrast to SNLSE, both bright \& dark solitons for $g<0$.
- Vector Nonlocal NLSE is integrable \& share all the properties of scalar Nonlocal NLSE

Lagrangian formulation of non-local NLSE

- Standard NLSE: Independent fields $\psi(\mathbf{x}, t)$ and $\psi^{*}(\mathbf{x}, \mathbf{t})$

Lagrangian formulation of non-local NLSE

- Standard NLSE: Independent fields $\psi(\mathbf{x}, t)$ and $\psi^{*}(\mathbf{x}, \mathbf{t})$
- Non-local NLSE: Independent fields $\psi(\mathbf{x}, \mathbf{t})$ and $\psi^{*}(\mathcal{P} \mathbf{x}, \mathbf{t})$

Lagrangian formulation of non-local NLSE

- Standard NLSE: Independent fields $\psi(\mathbf{x}, t)$ and $\psi^{*}(\mathbf{x}, \mathbf{t})$
- Non-local NLSE: Independent fields $\psi(\mathbf{x}, \mathbf{t})$ and $\psi^{*}(\mathcal{P} \mathbf{x}, \mathbf{t})$
- Lagrangian density of a $d+1$ dimensional NLSE

$$
\begin{aligned}
\mathcal{L} & =i \psi^{*}(\mathcal{P} \mathbf{x}, t) \partial_{t} \psi(x, t)-\frac{1}{2} \nabla \psi^{*}(\mathcal{P} \mathbf{x}, t) \cdot \nabla \psi(\mathbf{x}, t) \\
& -\frac{g}{p+1}\left\{\psi^{*}(\mathcal{P} \mathbf{x}, t) \psi(\mathbf{x}, t)\right\}^{p+1}
\end{aligned}
$$

Lagrangian formulation of non-local NLSE

- Standard NLSE: Independent fields $\psi(\mathbf{x}, t)$ and $\psi^{*}(\mathbf{x}, \mathbf{t})$
- Non-local NLSE: Independent fields $\psi(\mathbf{x}, \mathbf{t})$ and $\psi^{*}(\mathcal{P} \mathbf{x}, \mathbf{t})$
- Lagrangian density of a $d+1$ dimensional NLSE

$$
\begin{aligned}
\mathcal{L} & =i \psi^{*}(\mathcal{P} \mathbf{x}, t) \partial_{t} \psi(x, t)-\frac{1}{2} \nabla \psi^{*}(\mathcal{P} \mathbf{x}, t) \cdot \nabla \psi(\mathbf{x}, t) \\
& -\frac{g}{p+1}\left\{\psi^{*}(\mathcal{P} \mathbf{x}, t) \psi(\mathbf{x}, t)\right\}^{p+1}
\end{aligned}
$$

- Equation of motion

$$
i \psi_{t}(\mathbf{x}, t)=-\frac{1}{2} \nabla^{2} \psi(\mathbf{x}, t)+g\left\{\psi^{*}(\mathcal{P} \mathbf{x}, t) \psi(\mathbf{x}, t)\right\}^{p} \psi(\mathbf{x}, t)
$$

Schrödinger invariance

Real-valued Charges

- Density $\rho=\psi^{*}(\mathcal{P} \mathbf{x}, t) \psi(\mathbf{x}, \mathbf{t})$ is complex-valued.

- Schrödinger invariance

Real-valued Charges

- Density $\rho=\psi^{*}(\mathcal{P} \mathbf{x}, t) \psi(\mathbf{x}, \mathbf{t})$ is complex-valued.
- $N=\int d^{d} \mathbf{x} \rho(\mathbf{x}, t)$ is real-valued and non-positive-definite

$$
N=\int d^{d} x\left(\left|\psi_{e}(\mathbf{x}, \mathbf{t})\right|^{2}-\left|\psi_{o}(\mathbf{x}, t)\right|^{2}\right)
$$

ψ_{e} and ψ_{o} are \mathcal{P}-even and \mathcal{P}-odd fields, respectively

Real-valued Charges

- Density $\rho=\psi^{*}(\mathcal{P} \mathbf{x}, t) \psi(\mathbf{x}, \mathbf{t})$ is complex-valued.
- $N=\int d^{d} \mathbf{x} \rho(\mathbf{x}, t)$ is real-valued and non-positive-definite

$$
N=\int d^{d} x\left(\left|\psi_{e}(\mathbf{x}, \mathbf{t})\right|^{2}-\left|\psi_{o}(\mathbf{x}, t)\right|^{2}\right)
$$

ψ_{e} and ψ_{o} are \mathcal{P}-even and \mathcal{P}-odd fields, respectively

- Hamiltonian \mathcal{H} is real-valued and non-positive-definite

$$
\begin{aligned}
\mathcal{H} & =\frac{1}{2} \int d^{d} \mathbf{x}[\underbrace{\left|\nabla \psi_{e}(\mathbf{x}, t)\right|^{2}-\left|\nabla \psi_{o}(\mathbf{x}, t)\right|^{2}}_{\text {Non-positive definite Kinetic Energy }}] \\
& +\frac{g}{p+1} \int d^{d} \mathbf{x} \sum_{k=0}^{\left[\frac{p+1}{2}\right]}(-1)^{k}{ }^{p+1} C_{2 k}\left|\rho_{c}\right|^{2 k} \rho_{r}^{p+1-2 k} \\
\rho=\rho_{r} & +\rho_{c}, \rho_{r}\left(\rho_{c}\right)=\text { real(complex) part of } \rho
\end{aligned}
$$

Complex-valued Charges

- Continuity equation

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{J}=0 \\
& \mathbf{J}=\frac{i}{2}\left[\psi(\mathbf{x}, t) \nabla \psi^{*}(\mathcal{P} \mathbf{x}, t)-\psi^{*}(\mathcal{P} \mathbf{x}, t) \nabla \psi(\mathbf{x}, t)\right]
\end{aligned}
$$

-Schrödinger invariance

Complex-valued Charges

- Continuity equation

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{J}=0 \\
& \mathbf{J}=\frac{i}{2}\left[\psi(\mathbf{x}, t) \nabla \psi^{*}(\mathcal{P} \mathbf{x}, t)-\psi^{*}(\mathcal{P} \mathbf{x}, t) \nabla \psi(\mathbf{x}, t)\right]
\end{aligned}
$$

- Momentum \mathbf{P}, center of mass \mathbf{X} and boost \mathbf{B} are complex

$$
\mathbf{P}=\int \mathbf{J} d^{d} \mathbf{x}, \mathbf{X}=\frac{1}{N d} \int \mathbf{x} \rho(\mathbf{x}, t) d^{d} \mathbf{x}, \mathbf{B}=t \mathbf{P}-\mathbf{X}
$$

-Schrödinger invariance

Complex-valued Charges

- Continuity equation

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{J}=0 \\
& \mathbf{J}=\frac{i}{2}\left[\psi(\mathbf{x}, t) \nabla \psi^{*}(\mathcal{P} \mathbf{x}, t)-\psi^{*}(\mathcal{P} \mathbf{x}, t) \nabla \psi(\mathbf{x}, t)\right]
\end{aligned}
$$

- Momentum \mathbf{P}, center of mass \mathbf{X} and boost \mathbf{B} are complex

$$
\mathbf{P}=\int \mathbf{J} d^{d} \mathbf{x}, \mathbf{X}=\frac{1}{N d} \int \mathbf{x} \rho(\mathbf{x}, t) d^{d} \mathbf{x}, \mathbf{B}=t \mathbf{P}-\mathbf{X}
$$

- Angular momenta $L_{i j}, \forall i, j$ are real for odd d only

$$
L_{i j}=\int\left(x_{i} J_{j}-x_{j} J_{i}\right) d^{d} \mathbf{x}, \quad i, j=1,2, \ldots d
$$

-Schrödinger invariance

Conformal Symmetry for $p d=2$

$$
\begin{aligned}
& \tau(t)=\frac{\alpha t+\beta}{\gamma t+\delta}, \alpha \delta-\beta \gamma=1 \\
& \mathbf{x} \rightarrow \mathbf{x}_{h}=\dot{\tau}^{-\frac{1}{2}}(t) \mathbf{x}, \quad t \rightarrow \tau=\tau(t) \\
& \psi(\mathbf{x}, t) \rightarrow \psi_{h}\left(\mathbf{x}_{h}, \tau\right)=\dot{\tau}^{\frac{d}{4}} \exp \left(-i \frac{\ddot{\tau}}{4 \dot{\tau}} x_{h}^{2}\right) \psi(\mathbf{x}, t) \\
& \psi^{*}(\mathcal{P} \mathbf{x}, t) \rightarrow \psi_{h}^{*}\left(\mathcal{P} \mathbf{x}_{h}, \tau\right)=\dot{\tau}^{\frac{d}{4}} \exp \left(i \frac{\ddot{\tau}}{4 \dot{\tau}} x_{h}^{2}\right) \psi^{*}(\mathcal{P} \mathbf{x}, t)
\end{aligned}
$$

- Time-translation: $\tau(t)=t+\beta$

-Schrödinger invariance

Conformal Symmetry for $p d=2$

$$
\begin{aligned}
& \tau(t)=\frac{\alpha t+\beta}{\gamma t+\delta}, \alpha \delta-\beta \gamma=1 \\
& \mathbf{x} \rightarrow \mathbf{x}_{h}=\dot{\tau}^{-\frac{1}{2}}(t) \mathbf{x}, \quad t \rightarrow \tau=\tau(t) \\
& \psi(\mathbf{x}, t) \rightarrow \psi_{h}\left(\mathbf{x}_{h}, \tau\right)=\dot{\tau}^{\frac{d}{4}} \exp \left(-i \frac{\ddot{\tau}}{4 \dot{\tau}} x_{h}^{2}\right) \psi(\mathbf{x}, t) \\
& \psi^{*}(\mathcal{P} \mathbf{x}, t) \rightarrow \psi_{h}^{*}\left(\mathcal{P} \mathbf{x}_{h}, \tau\right)=\dot{\tau}^{\frac{d}{4}} \exp \left(i \frac{\ddot{\tau}}{4 \dot{\tau}} x_{h}^{2}\right) \psi^{*}(\mathcal{P} \mathbf{x}, t)
\end{aligned}
$$

- Time-translation: $\tau(t)=t+\beta$
- Dilation: $\tau(t)=\alpha^{2} t$

-Schrödinger invariance

Conformal Symmetry for $p d=2$

$$
\begin{aligned}
& \tau(t)=\frac{\alpha t+\beta}{\gamma t+\delta}, \alpha \delta-\beta \gamma=1 \\
& \mathbf{x} \rightarrow \mathbf{x}_{h}=\dot{\tau}^{-\frac{1}{2}}(t) \mathbf{x}, \quad t \rightarrow \tau=\tau(t) \\
& \psi(\mathbf{x}, t) \rightarrow \psi_{h}\left(\mathbf{x}_{h}, \tau\right)=\dot{\tau}^{\frac{d}{4}} \exp \left(-i \frac{\ddot{\tau}}{4 \dot{\tau}} x_{h}^{2}\right) \psi(\mathbf{x}, t) \\
& \psi^{*}(\mathcal{P} \mathbf{x}, t) \rightarrow \psi_{h}^{*}\left(\mathcal{P} \mathbf{x}_{h}, \tau\right)=\dot{\tau}^{\frac{d}{4}} \exp \left(i \frac{\ddot{\tau}}{4 \dot{\tau}} x_{h}^{2}\right) \psi^{*}(\mathcal{P} \mathbf{x}, t)
\end{aligned}
$$

- Time-translation: $\tau(t)=t+\beta$
- Dilation: $\tau(t)=\alpha^{2} t$
- Special conformal transformation: $\tau(t)=\frac{t}{1+\gamma t}$

Symmetry: Schrödinger Invariance

$$
\begin{aligned}
& I_{1}(t)=\frac{1}{2} \int d^{d} \mathbf{x} x^{2} \rho(\mathbf{x}, t), \quad I_{2}(t)=\frac{1}{2} \int d^{d} \mathbf{x} \mathbf{x} \cdot \mathbf{J}, \\
& D=t H-I_{2}, \quad K=-t^{2} H+2 t D+I_{1}
\end{aligned}
$$

- D and K are real

Symmetry: Schrödinger Invariance

$$
\begin{aligned}
& I_{1}(t)=\frac{1}{2} \int d^{d} \mathbf{x} x^{2} \rho(\mathbf{x}, t), \quad I_{2}(t)=\frac{1}{2} \int d^{d} \mathbf{x} \mathbf{x} \cdot \mathbf{J}, \\
& D=t H-I_{2}, \quad K=-t^{2} H+2 t D+I_{1}
\end{aligned}
$$

- D and K are real
- $H, D, K, \mathbf{P}, L_{i j}$, B form $d+1$ dimensional Schrödinger algebra

-Schrödinger invariance

Symmetry: Schrödinger Invariance

$$
\begin{aligned}
& I_{1}(t)=\frac{1}{2} \int d^{d} \mathbf{x} x^{2} \rho(\mathbf{x}, t), \quad I_{2}(t)=\frac{1}{2} \int d^{d} \mathbf{x} \mathbf{x} \cdot \mathbf{J}, \\
& D=t H-I_{2}, \quad K=-t^{2} H+2 t D+I_{1}
\end{aligned}
$$

- D and K are real
- $H, D, K, \mathbf{P}, L_{i j}, \mathbf{B}$ form $d+1$ dimensional Schrödinger algebra
- Complex charges have no physical significance. It is to be seen, whether the corresponding quantum charges could be hermitian wrt some modified norm or not.

Summary

- Hamiltonian formulation of generic many-particle systems with space-dependent balanced loss \& gain is presented along with general features

Summary

- Hamiltonian formulation of generic many-particle systems with space-dependent balanced loss \& gain is presented along with general features
- Constructed partial \& completely integrable systems related to underlying translation and rotational symmetry

Summary

- Hamiltonian formulation of generic many-particle systems with space-dependent balanced loss \& gain is presented along with general features
- Constructed partial \& completely integrable systems related to underlying translation and rotational symmetry
- A Calogero-type model with balanced loss/gain is introduced and solved at the classical as well as quantum level including exact $2 n$-particle correlation functions for the ground-state

Ongoing \& Future Works

- Analysis of solitons, quantum behaviour etc. of collective field theory corresponding to many-particle systems with balanced loss \& gain

Ongoing \& Future Works

- Analysis of solitons, quantum behaviour etc. of collective field theory corresponding to many-particle systems with balanced loss \& gain
- Quantization of Non-local NLSE

Ongoing \& Future Works

- Analysis of solitons, quantum behaviour etc. of collective field theory corresponding to many-particle systems with balanced loss \& gain
- Quantization of Non-local NLSE
- Reductions of Matrix models to Many-particle systems is well known. Do the many-particle systems with balanced loss \& gain correspond to any many matrix model?

Ongoing \& Future Works

- Analysis of solitons, quantum behaviour etc. of collective field theory corresponding to many-particle systems with balanced loss \& gain
- Quantization of Non-local NLSE
- Reductions of Matrix models to Many-particle systems is well known. Do the many-particle systems with balanced loss \& gain correspond to any many matrix model?
- QFT formulations

Graffiti

MURRAY GELL-MANN's totalitarian principle in QM

Everything (that is) not forbidden is compulsory

THANK YOU

