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1959:
1978:
1978:
1992:
1996:

Quantum System of hard spheres
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LIntrot:luction:‘7?7’»Symmetric System

Chronicle: non-hermitian system with entirely real spectra

@ 1959: Quantum System of hard spheres

@ 1978: Lee-Yang edge singularity

@ 1978: Reggeon field theory

@ 1992: Complex Toda Field theory

@ 1996: Hatano-Nelson Model

@ 1998-2018: Emerging viewpoint = PT-symmetric QS
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@ PT symmetry preserves Heisenberg algebra

@ PT is an anti-linear operator
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[H,PT] =0, H¢ = Evyp, PT # const.p
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LIntrot:luction:‘7?7’»Symmetric System

Real spectra for non-hermitian P7T-symmetric QS

@ PT symmetry preserves Heisenberg algebra

@ PT is an anti-linear operator
@ BROKEN PT7 SYMMETRY:

[H,PT] =0, Hy = Ev, PT1 # const.a)
@ UNBROKEN PT SYMMETRY:

[H,PT] =0, Hy=Ey, PTo= [ AP =1

@ H with unbroken P7T symmetry admits entirely real spectra.

PTHY = PTEY = H(PTY) = E*(PT) = E = E*
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@ Standard Norm: Non-orthonormal, incomplete set of states
@ PT-normalized states are not necessarily positive-definite
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PT -unbroken phase : Orthogonality, Unitarity etc.

@ Standard Norm: Non-orthonormal, incomplete set of states
@ PT-normalized states are not necessarily positive-definite

(Onléntpr = [ [PTom(x)] 6000 = (-1,
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LIntroduction:‘737’»Symmetric System

PT -unbroken phase : Orthogonality, Unitarity etc.

@ Standard Norm: Non-orthonormal, incomplete set of states
@ PT-normalized states are not necessarily positive-definite

(@m|pn)pT = /C dx [PT om(x)] ¢n(x) = (=1)"0mn
@ C shares the properties of charge-conjugation operator

Clx,y) =D ¢n(x)énly), [H,PT]=0=[H,C] =0

Clx,y)bn(x) = /C dyC(%, Y)on(y) = (—1)"6n(x)

@ Orthonormality & completeness of states with CP7T-norm

(Smlbaderr = /C dx [CPT 6m(3)] én(x) = Sonn
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Example:Potential V(x) = x?(ix)¢,& € R

Numerical Results: Bender & Boettcher, PRL 80, 5243(1998)

P:ix——x, T:i——i, V(x)is PT-Symmetric

:j l://"” / / / J &€ > 0: Unbroken PT-Symmetry
. // 'y ‘/ vl Entirely Real Spectra
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I ///// & < 0: Broken PT-Symmetry
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|—Hamiltonian Formulation: Many-body System

Bateman Oscillator: Hamiltonian for a dissipative oscillator

System: X+ 2vx + w%x = 0 = Dissipative Oscillator
Bath: y—2vy + wgy = 0 = Auxiliary Oscillator

DO & AO together form a Hamiltonian system:

Hg = PP, +~(yP, — xPx) + (w§ — v*)xy
Px=y =y, Py=x+9x

@ Gain and loss are equally balanced
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|—Hamiltonian Formulation: Many-body System

Bateman Oscillator: Hamiltonian for a dissipative oscillator

System: X+ 2vx + w%x = 0 = Dissipative Oscillator
Bath: y—2vy + wgy = 0 = Auxiliary Oscillator
DO & AO together form a Hamiltonian system:
Hg = PP, +~(yP, — xPx) + (w§ — v*)xy
Px=y =y, Py=x+x

@ Gain and loss are equally balanced
@ Hg is PT-symmetric:
T:t—=—t, P:x—>y,y—>x
PT :x—=y,y =x, Pc——-P,, P, = —Px
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|—Hamiltcmian Formulation: Many-body System

Bateman Oscillator: Hamiltonian for a dissipative oscillator

System: X+ 2vx + w%x = 0 = Dissipative Oscillator
Bath: ¥ —2vy + wiy = 0 = Auxiliary Oscillator
DO & AO together form a Hamiltonian system:
Hg = PP, +~(yP, — xPx) + (w§ — v*)xy
Px=y =y, Py=x+x

@ Gain and loss are equally balanced
@ Hg is PT-symmetric:

T:t—=—t, P:x—>y,y—>x
PT :x—=y,y =x, Pc——-P,, P, = —Px

@ No equilibrium state
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|—Hamiltonian Formulation: Many-body System

Equilibrium state via System-bath coupling: an example

Vi,y) =< (P +y?) + 2

2 20x —y)?
. : g
X+ 29k 4+ wix+ey+ —=>—==0
° (x—y)?
. . 2 g
y—=2vwy+uwiy+ex— ——==0
° (x—y)?

e Condition for equilibrium state (Unbroken PT -phase)

w w
—?0<7<70, 4yyJwg — 42 < e < W}
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|—Hamilt:cmian Formulation: Many-body System

Equilibrium state via System-bath coupling: an example

Vi,y) =< (P +y?) + 2

2 20x —y)?
. : g
X+2yx+wix+ey+—=—==0
° (x—y)?
. . 2 g
y—=2vwy+uwiy+ex— ——==0
° (x—y)?

e Condition for equilibrium state (Unbroken PT -phase)

w w
—?0<7<70, 4yyJwg — 42 < e < W}

@ Classical H: Periodic solutions in unbroken P7T -phase
Phase-transitions realized experimentally for g =0

@ Quantum H: Real, discrete, positive spectra, unitarity
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|—Hamiltcmian Formulation: Many-body System

General Constructions

@ Definitions, Notations etc.

XT=(X17X27"‘7XN)7 PT=(P17P2>-'-7PN)7
FT:(Fl,Fg,...,FN), F,‘EF,'(Xl,XQ,...,XN)
@ Generalized Momenta: 1 = P + AF

Ais N x N constant matrix.
@ Hamiltonian

H=N"MN+ V(xt,x0,...,xn), MT =M

M is N x N non-singular, constant matrix
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|—Hamilt:cmian Formulation: Many-body System

General Constructions

@ Definitions, Notations etc.

XT=(X17X27"‘7XN)7 PT=(P17P2>-'-7PN)7
FT:(Fl,Fg,...,FN), F,‘EF,'(Xl,XQ,...,XN)
@ Generalized Momenta: 1 = P + AF

Ais N x N constant matrix.
@ Hamiltonian

H=N"MN+ V(xt,x0,...,xn), MT =M
M is N x N non-singular, constant matrix
e Equations of Motion

. . oV

X —2DX +2M%L =0
+MEX

OF;

Oxj

U=+, R=AJ—(A)T, D:= MR
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e Hamiltonian = Balanced loss-gain [Tr(D) = 0]
MT =M, RT=—R, D" =D
{M,R} =0, {M,D}=0, {R,D}=0
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N =2m + 1: At least one eigenvalue of D is zero
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I—Hamiltonian Formulation: Many-body System

Generic features
@ Hamiltonian = Balanced loss-gain [Tr(D) = 0]
MT =M, RT=—R, D" =D
{M,R} =0, {M,D} =0, {R,D} =0
e Pair-wise balancing for N =2m,m € Z*
det(D) {1 - (-1)”] ~0

N =2m + 1: At least one eigenvalue of D is zero
@ H in the background of a Pseudo-Euclidean metric

My = OMOT (OTO:Izm>

= diagonal(A1, —A1, A2, — A2, ..., Amy, —Am)
X = OX, P=0P, M=0N
H = ﬁTMdﬁ—I—V(;{l,)?Q,...,)?N)
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Generic Feature: Taming the instability

o KE term is not positive-definite = instability

e DT #£D
e Anti-commutation relations involving M, R, D are not valid.
e Tr(D) =0, conservative system
e M can be semi-positive definite and leads to a +ve KE term

e Additional Lorentz interaction in the system makes DT # D

@ Stability: Magnitude of applied magnetic field > ‘analogous
magnetic field" due to loss/gain terms
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I—Hamiltonian Formulation: Many-body System

Generic Feature: Taming the instability

o KE term is not positive-definite = instability
e DT #D
e Anti-commutation relations involving M, R, D are not valid.

e Tr(D) =0, conservative system
e M can be semi-positive definite and leads to a +ve KE term

e Additional Lorentz interaction in the system makes DT # D

@ Stability: Magnitude of applied magnetic field > ‘analogous
magnetic field" due to loss/gain terms

e Landau Hamiltonian with balanced loss/gain
(i) Particle moves in an elliptic orbit with reduced cyclotron
frequency
(ii) Hall current is not necessarily in the perpendicular
direction to the applied electric field
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Representation of Matrices

@ A particular choice for N =2m
M=Il,®o0x A= Tlm®0y7 D=vxm®o;

1
IXmlij = §5ijQi(X17X2a S XN)
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|—Hamiltonian Formulation: Many-body System

Representation of Matrices

@ A particular choice for N =2m
M=Iln®ox,A= Tlm®0y7 D=yxm®o,
1
[Xm]lj = Ediji(X].vX% s 7XN)
@ Assumption based on Pairwise Balancing:

Foi—1 = Foi—1(xi—1,x2i), Foi = Fai(xi—1, x2i)
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|—Hamiltcmian Formulation: Many-body System

Representation of Matrices

@ A particular choice for N =2m
M=Il,®o0x A= Tlm®0y7 D=vxm®o;

1
IXmlij = §5UQ,'(X1,X2, CXN)
@ Assumption based on Pairwise Balancing:
Foi—1 = Foi—1(x0i—1, %), F2i = Foi(x0i—1, x2i)

@ J has the expression: J =37, U,-(m) ® \/,-(2)

(m) @) OF2,—1  OF2a—1
m _ — OXpa— 0.
(U] =it VI = T O

y Ox2a—1 Ox2a
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|—Hamilt:cmian Formulation: Many-body System

Representation of Matrices
@ A particular choice for N =2m
M=Il,®o0x A= Tlm®0y7 D=vxm®o;
1
[Xm]lj = Ediji(X].vX% s 7XN)
@ Assumption based on Pairwise Balancing:
Fai-1 = Fai—1(xei-1,%2i), Fai = Fai(x2i-1, %2i)
@ J has the expression: J =37, U,-(m) ® \/,-(2)

OF2a—1  0F2.—1
m] Z ) Po1 00
(U] =i VP = T B

y Ox2a—1 Ox2a

0 Q.(x201,%22) = Trace(V{?)
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|—Hamiltonian Formulation: Many-body System

An interpretation

o 0= \/lé [Im ® (0x + 0)] diagonalizes M and generates the
Co-ordinate transformation

1 1,.
Z,-:t = E(Xm‘—l :f:X2,‘), le,i = :l:z (Z::t - 7Fi:F)

1
Fif = 5 (Rt Fa), B = R 7))

1 ]



PT -symmetric systems:Integrability, Symmetry & Related Aspects
LIntegrable Many-body System With Balanced Loss & Gain

|—Hamilt:cmian Formulation: Many-body System

An interpretation

o 0= \/lé [Im ® (0x + 0)] diagonalizes M and generates the
Co-ordinate transformation
1 1,.
Z,-:t = E(Xg_l :f:X2,')7 le;t = :l:z (Z,:t — ")/F,-q:)
1 _
Fir= 7 (Fai1 % Fai), F-=FH(zt,2)
@ H describes a system of m particles on a Pseudo-Euclidean
plane interacting with each other through V

0= (o3 - (-3

i=1



PT -symmetric systems:Integrability, Symmetry & Related Aspects

LIntegrable Many-body System With Balanced Loss & Gain

I—Hamiltonian Formulation: Many-body System

An interpretation

o 0= \/lé [Im ® (0x + 0)] diagonalizes M and generates the
Co-ordinate transformation
1 1,.
Z,-:t = E(Xg_l :f:X2,')7 le;t = :|:§ (Z,:t — ")/F,-q:)
1 _
Fir= 7 (Fai1 % Fai), F-=FH(zt,2)
@ H describes a system of m particles on a Pseudo-Euclidean
plane interacting with each other through V

H = zm: [(Pzr + %F,—)2 ~ (P, - %Fﬁﬂ +V

@ The i'th particle is subjected to magnetic field Q;
B OF"  OF-

@ 8z,-+ + 0z
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|—Hamiltonian Formulation: Many-body System

Quantization

° z,.jE and P;F ;= —i0,+ are treated as operators with the

non-vanishing commutation relations(%

=1)
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|—Hamiltcmian Formulation: Many-body System

Quantization

° zjE and Pi —i0, + are treated as operators with the
non-vanishing commutation relations(h = 1):

e Generalized momenta [+ := —id_+ £ %FfF
1 1

{ﬁﬁ,ﬁf] =0, |:ﬁzlf7|/_\|zj+:| u 2 Q,( 1 Zj )
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I—Hamiltonian Formulation: Many-body System

Quantization

° zjE and Pi —i0, + are treated as operators with the
non-vanishing commutation relations(h = 1):

e Generalized momenta [+ := —id_+ £ %FfF
1 1

e fe] =0, [0, | = =67 Q7. 2)

i 2
o In general, H is non-hermitian for standard B.C.
i & a2 2 a2 2 + +
A=Y [(.u) - () ] V()
=

Normalizable wf only in appropriate Stoke wedges
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|—Hamiltonian Formulation: Many-body System

Integrability
e Translational invariant system(TIS)
V=V(z,zy,....z,), Qi=Qi(z1,2z,...,2,)



PT -symmetric systems:Integrability, Symmetry & Related Aspects
LIntegrable Many-body System With Balanced Loss & Gain

|—Hamiltonian Formulation: Many-body System

Integrability
e Translational invariant system(TIS)
V=V(z,zy,....z,), Qi=Qi(z1,2z,...,2,)
@ Symmetry transformation:
X2i—1 > X2j—1 + 1iy X2j —> X2 + 1)

7; are m independent parameters



PT -symmetric systems:Integrability, Symmetry & Related Aspects
LIntegrable Many-body System With Balanced Loss & Gain

|—Hamiltcmian Formulation: Many-body System

Integrability
e Translational invariant system(TIS)
V=V(z,zy,....z,), Qi=Qi(z1,2z,...,2,)
@ Symmetry transformation:
X2i—1 > X2j—1 + 1iy X2j —> X2 + 1)

7; are m independent parameters
@ Integrals of motion
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|—Hamilt:cmian Formulation: Many-body System

Integrability
e Translational invariant system(TIS)
V=V(z,zy,....z,), Qi=Qi(z1,2z,...,2,)
@ Symmetry transformation:
X2i—1 > X2j—1 + 1iy X2j —> X2 + 1)

7; are m independent parameters
@ Integrals of motion

M; =2P,« +~vF~ —fy/Q,-(zl_,z;,...,z;)dzi_

o Partial(complete) integrability for m > 1(m=1)
{H.Ni}pg =0 {M;,N;}pg =0



PT -symmetric systems:Integrability, Symmetry & Related Aspects
LIntegrable Many-body System With Balanced Loss & Gain

I—Hamiltonian Formulation: Many-body System

Integrability
e Translational invariant system(TIS)
V=V(z,zy,....z,), Qi=Qi(z1,2z,...,2,)
@ Symmetry transformation:
X2i—1 > X2j—1 + 1iy X2j —> X2 + 1)

7; are m independent parameters
@ Integrals of motion

M =2P,+ +~vF~ — fy/ Qilzy,2zy 5., 2,)dz
o Partial(complete) integrability for m > 1(m=1)
{H,Ni}pg =0 {N;,M;}pg =0

@ Similar results for
_ + _+ _ + _+
V=V(z,z,....24), Qi = Qi(z .,z ,...,z})
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I—Hamiltonian Formulation: Many-body System

Integrability
e Translational invariant system(TIS)
V=V(z,zy,....z,), Qi=Qi(z1,2z,...,2,)

Symmetry transformation:

X2j—1 = X2j—1 F Nj; X2j —» X2i +1;
7; are m independent parameters
Integrals of motion
n, = 2PZ,-+ +F — fy/ Qilzy,2zy 5., 2,)dz
Partial(complete) integrability for m > 1(m=1)
{H,Ni}pg =0 {N;,M;}pg =0
Similar results for

V=V(z, 2z, ..., z5), Qi = Qi(z .z ..., 2)
Quantum Integrability: {.,.}pg — [, ]
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|—Hamiltonian Formulation: Many-body System

Rotational Invariant Systems

@ Parametrization of co-ordinates

ziJr = ricoshb);, z~ = risinh6;
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|—Hamiltonian Formulation: Many-body System

Rotational Invariant Systems

@ Parametrization of co-ordinates

ziJr = ricoshb);, z~ = risinh6;

@ Symmetry transformation
+

Hyperbolic rotation in each 'z, — z"' plane
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|—Hamiltcmian Formulation: Many-body System

Rotational Invariant Systems

@ Parametrization of co-ordinates

ziJr = ricoshb);, z~ = risinh6;

@ Symmetry transformation
Hyperbolic rotation in each ‘z;" — z,.Jr
@ Condition for invariance of action

V=V(n,...,rm)
I Zl g(r17"'7rm)7 i ZI g(rl,...,rm)

" plane
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|—Hamiltcmian Formulation: Many-body System

Rotational Invariant Systems

@ Parametrization of co-ordinates

ziJr = ricoshb);, z~ = risinh6;

@ Symmetry transformation
Hyperbolic rotation in each ‘z;" — z,.Jr
@ Condition for invariance of action

V=V(n,...,rm)
I Zl g(r17"'7rm)7 i ZI g(rl,...,rm)

" plane

@ Integrals of motion

Li = —rl-zéi +’Yri2g(r1""’rm)
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|—Hamilt:cmian Formulation: Many-body System

Rotational Invariant Systems

@ Parametrization of co-ordinates

ziJr = ricoshb);, z~ = risinh6;

Symmetry transformation
Hyperbolic rotation in each ‘z;" — z,.Jr
Condition for invariance of action

V=V(n,...,rm)
i Zi g(r17’--7rm)7 i Z; g(rl,...,rm)

" plane

Integrals of motion

Li = —rl-zéi +’Yri2g(r1""’rm)

Partial(complete) integrability for m > 1(m=1)
{H.Litpg =0 {L;,Lj}pg =0
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I—Hamiltonian Formulation: Many-body System

Rotational Invariant Systems

@ Parametrization of co-ordinates

ziJr = ricoshb);, z~ = risinh6;

Symmetry transformation
Hyperbolic rotation in each ‘z;" — z,.Jr
Condition for invariance of action

V=V(n,...,rm)
i Zi g(r17’--7rm)7 i Z; g(rl,...,rm)

" plane

Integrals of motion

Li = —rl-zéi +’Yri2g(r1""’rm)

Partial(complete) integrability for m > 1(m=1)
{H.Litpg =0 {L;,Lj}pg =0
Quantum Integrability: {.,.}pg — [., ]
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I—Exactly Solvable Calogero-type Model

Classical Hamiltonian

—zm:2w(2J(Zi_)2 - Zm: _g72_7
i=1 2(z; )2

ij=1
i<j
z; twz; Z _)3 =0
J(ﬁﬁ) %

(t)—2’y/ (Dt + G, i=1,2...m

Unlike RCM, V), (second term of V) is not invariant under
permutation symmetry Sy, If each pair (xp;_1, x2;) is considered
as an element, then, V), is invariant under S,

wo wo

Exactly solvable with periodic solutions for ~ <7<
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|—Exactly Solvable Calogero-type Model

Quantum Hamiltonian in translational invariant gauge

R m 2
o= [(—iaf -1—72,-_) - Pj_] + Ve
i=1 !
Energy eigenvalues:
1 A mk2w?
E=-2Q)2n+ 1+ Em-i- Em(m -]+ gz

W W
0= (W -29%), ——% <y < 2

V2 T
@ k=0: E is bounded from below for Q < 0
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|—Exactly Solvable Calogero-type Model

Quantum Hamiltonian in translational invariant gauge

=Y [(—iazlf +7z,.—)2 — Pi_] Ve
i=1
Energy eigenvalues: |
E=-2Q2n+ 1+ %m-i— %m(m -]+ %22&,2’
0 = Z(wg —297), —% << %
@ k=0: E is bounded from below for 2 < 0
@ E consists of discrete as well as continuous spectra
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|—Exactly Solvable Calogero-type Model

Quantum Hamiltonian in translational invariant gauge

m

N 2
o= [(—i% +977) - Pj_] b Ve
i=1 !
Energy eigenvalues:
1 A mk2w?
E=-2Q)2n+ 1+ Em-i- Em(m -]+ gz
L > wo

=W -27), — 2 <y 2

va

@ k=0: E is bounded from below for Q2 < 0
@ E consists of discrete as well as continuous spectra
@ Box normalization: 0 < z,.Jr <L, Vi

1 A 2mm2w?k?
E=2[Q2n+1+sm+om(m—1)]+ —505—
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L Exact Correlation Functions via Matrix Model

Normalization of wave-functions

@ Asymptotic form of the wave function x

m
2
Ix|? ~ expl|Q] > 2]
=
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L Exact Correlation Functions via Matrix Model

Normalization of wave-functions

@ Asymptotic form of the wave function x
m
2
Ix|? ~ expl|Q] > 2]
j=1

@ Eigenfunctions are not normalizable along real z; lines.
Normalizable solutions in complex z;-planes

zi = riexp[if], Zcos(20;) <0
i=1
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L Exact Correlation Functions via Matrix Model

Normalization of wave-functions

@ Asymptotic form of the wave function x

m
2
x|~ expl|Q] ) 2]
j=1

@ Eigenfunctions are not normalizable along real z; lines.
Normalizable solutions in complex z;-planes

zi = riexp[if], Zcos(20;) <0
i=1

@ Possible solution: 6; = 6 V i, a pair of Stoke wedges with
opening angle 7 and centered about the positive and negative
imaginary axes
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L Exact Correlation Functions via Matrix Model

Correlation functions

Ra(x1, X2, cuXp) = ﬁ/m/oo H dx;

TJToo 0 j=p+1

X 6t 0, i) [P 1< N

Define y; = \/gz,-. Results from RMT & RCM may be used

@ Integrations over z. in proper Stoke Wedges
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L Exact Correlation Functions via Matrix Model

Correlation functions

X 6t 0, i) [P 1< N

Define y; = \/gz,-. Results from RMT & RCM may be used

@ Integrations over z. in proper Stoke Wedges

e Mapping to integrals of RCM only for even n (y = y1)

P Nsn/\;ll)(2m—y2)%, y2 <2m
2 0, y2 >2m.

Differs from RCM by a constant multiplicative factor
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[ Integrable Model

Non-local Nonlinear Schrodinger Equation

Ablowitz & Musslimani, PRL 110, 064105(2013)
Sinha & Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124

ie(x, t) = —%%bxx(& t)+g T (—x, t)h(x, t)Y(x, t), g € R.
V(x,t)

e Standard NLSE(SNLSE): Vs(x, t) = ¢*(x, t)i(x, t)
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Non-local Nonlinear Schrodinger Equation

Ablowitz & Musslimani, PRL 110, 064105(2013)
Sinha & Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124

ie(x, t) = —%%bxx(& t)+g T (—x, t)h(x, t)Y(x, t), g € R.
V(x,t)

e Standard NLSE(SNLSE): Vs(x, t) = ¢*(x, t)i(x, t)

e V(x,t)is PT-symmetric for the stationery solution
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[ Integrable Model

Non-local Nonlinear Schrodinger Equation

Ablowitz & Musslimani, PRL 110, 064105(2013)
Sinha & Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124

ie(x, t) = —%%bxx(& t)+g T (—x, t)h(x, t)Y(x, t), g € R.
V(x,t)

e Standard NLSE(SNLSE): Vs(x, t) = ¢*(x, t)i(x, t)
e V(x,t) is PT-symmetric for the stationery solution

@ Integrable with infinite number of conserved quantities
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[ Integrable Model

Non-local Nonlinear Schrodinger Equation

Ablowitz & Musslimani, PRL 110, 064105(2013)
Sinha & Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124

ie(x, t) = —%%bxx(& t)+g T (—x, t)h(x, t)Y(x, t), g € R.
V(x,t)

Standard NLSE(SNLSE): Vs(x, t) = ¢*(x, t)i(x, t)

V(x,t) is PT-symmetric for the stationery solution
Integrable with infinite number of conserved quantities

In contrast to SNLSE, both bright & dark solitons for g < 0.
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[ Integrable Model

Non-local Nonlinear Schrodinger Equation

Ablowitz & Musslimani, PRL 110, 064105(2013)
Sinha & Ghosh, PRE 91, (2015) 042908; PLA 381, (2017) 124

i¢t(x’ t) = _%¢XX(X’ t) +g ¢*(7X7 t)T/)(Xa t) 1/’(Xa t)7 4 € §R
V(x,t)

Standard NLSE(SNLSE): Vs(x, t) = ¢*(x, t)i(x, t)

V(x,t) is PT-symmetric for the stationery solution
Integrable with infinite number of conserved quantities

In contrast to SNLSE, both bright & dark solitons for g < 0.

Vector Nonlocal NLSE is integrable & share all the properties
of scalar Nonlocal NLSE
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[ Integrable Model

Lagrangian formulation of non-local NLSE

e Standard NLSE: Independent fields #(x, t) and ¢*(x, t)
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[ Integrable Model

Lagrangian formulation of non-local NLSE

e Standard NLSE: Independent fields #(x, t) and ¢*(x, t)
@ Non-local NLSE: Independent fields ¢(x, t) and ¢*(Px, t)



PT -symmetric systems:Integrability, Symmetry & Related Aspects
L7»”7’-Symmetri<: Non-relativistic Field Theory

[ Integrable Model

Lagrangian formulation of non-local NLSE

e Standard NLSE: Independent fields (x, t) and ¥*(x, t)
@ Non-local NLSE: Independent fields ¢(x, t) and ¢*(Px, t)
@ Lagrangian density of a d + 1 dimensional NLSE

L= W (Px, t)atw(x,t)—%w*(m, £) - Vib(x, £)

& gy +1
s 1 WP )p(x 1)},
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[ Integrable Model

Lagrangian formulation of non-local NLSE

e Standard NLSE: Independent fields (x, t) and ¥*(x, t)
@ Non-local NLSE: Independent fields ¢(x, t) and ¢*(Px, t)
@ Lagrangian density of a d + 1 dimensional NLSE

L= W (Px, )0(x,t) — 3VU"(Px, 1) Vib(x, 1
_ g * —+1
(P (x0T

@ Equation of motion

el 1) = 3 V(0 1) + 8 (0 (P, (e, ) 0, 1)



PT -symmetric systems:Integrability, Symmetry & Related Aspects
L7»”7’-Symmetri<: Non-relativistic Field Theory

L Schrédinger invariance

Real-valued Charges
@ Density p = ¢*(Px, t)i(x,t) is complex-valued.
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L Schrédinger invariance

Real-valued Charges

e Density p = ¥*(Px, t)i(x, t) is complex-valued.
o N = [dp(x,t) is real-valued and non-positive-definite

W= [ ¥ (loelx 0 = [0o(x, )

e and 1), are P-even and P-odd fields, respectively
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L Schrédinger invariance

Real-valued Charges
e Density p = ¥*(Px, t)i(x, t) is complex-valued.
o N = [dp(x,t) is real-valued and non-positive-definite
W= [ ¥ (loelx 0 = [0o(x, )

e and 1), are P-even and P-odd fields, respectively
@ Hamiltonian H is real-valued and non-positive-definite

H o= ;/ddx [Vibe(x, )2 = [Vibo(x, 1)

Non-positive definite Kinetic Energy

(23]
8 A (DR P Gl e
P k=0

p = pr+ pe, pr(pc) =real(complex) part of p
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L Schrédinger invariance

Complex-valued Charges

e Continuity equation

Op
ot

3= L[ 0x )V (P, 1) — o (P, )V, )]
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L Schrédinger invariance

Complex-valued Charges

e Continuity equation

Op
ot

3= L[ 0x )V (P, 1) — o (P, )V, )]

@ Momentum P, center of mass X and boost B are complex

P=/J dx, x:% xp(x,t)dx, B=1t P — X
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L Schrédinger invariance

Complex-valued Charges

e Continuity equation

Op
ot

3= L[ 0x )V (P, 1) — o (P, )V, )]

@ Momentum P, center of mass X and boost B are complex

P=/J dx, x:% xp(x,t)dx, B=1t P — X

@ Angular momenta Lj;,V i, are real for odd d only

Lj = /(X,-Jj—xjj,-)ddx, ij=1,2,...d
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L Schrédinger invariance

Conformal Symmetry for pd = 2

_at+f -
7(t) = Py ad — By =1,
X = xp =7 2(t)x, t—T=1(t)
(%, t) = Yp(Xp, 7) = %%exp(—i;—%xﬁ)w(x, t)

P (Px,t) = Yh(Pxp, 7) = %%exp(i%xﬁ)w*(Px, t),

e Time-translation:7(t) =t +
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L Schrédinger invariance

Conformal Symmetry for pd = 2

at+ [
= — — :1

X = xp =7 2(t)x, t—T=1(t)

(%, t) = Yp(Xp, 7) = %%exp(—i%xﬁ)w(x, t)

P (Px,t) = Yh(Pxp, 7) = %%exp(i%xﬁ)w*(Px, t),

e Time-translation:7(t) =t +
e Dilation: 7(t) = ot
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L Schrédinger invariance

Conformal Symmetry for pd = 2

at+ [
= — — :1

X = xp =7 2(t)x, t—T=1(t)
(%, t) = Yp(Xp, 7) = %%exp(—i;—%xﬁ)w(x, t)

P (Px,t) = Yh(Pxp, 7) = %%exp(i%xﬁ)w*(Px, t),

e Time-translation:7(t) =t +
e Dilation: 7(t) = ot

@ Special conformal transformation: 7(t) = £

1+t
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L Schrédinger invariance

Symmetry: Schrodinger Invariance

1 1
h(t) = E/ddx X2 p(x,t), h(t)= E/ddx x-J,
D=tH—b, K=—t?H+2tD+ 1

@ D and K are real
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L Schrédinger invariance

Symmetry: Schrodinger Invariance
1 d 2 1 d
h(t) = 5 d% x“ p(x,t), h(t)= 5 d% x-J,
D=tH—b, K=—t?H+2tD+ 1

@ D and K are real
e H,D,K,P,L;,B form d + 1 dimensional Schrodinger algebra
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L Schrédinger invariance

Symmetry: Schrodinger Invariance

1 1
h(t) = E/ddx X% p(x,t), h(t)= E/ddx x-J,
D=tH—b, K=—t?H+2tD+ 1

@ D and K are real
e H,D,K,P,L;,B form d + 1 dimensional Schrodinger algebra

@ Complex charges have no physical significance. It is to be
seen, whether the corresponding quantum charges could be
hermitian wrt some modified norm or not.
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LEpilogue

Summary

@ Hamiltonian formulation of generic many-particle systems
with space-dependent balanced loss & gain is presented along
with general features

@ Constructed partial & completely integrable systems related to
underlying translation and rotational symmetry

@ A Calogero-type model with balanced loss/gain is introduced
and solved at the classical as well as quantum level including
exact 2n-particle correlation functions for the ground-state
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Ongoing & Future Works

@ Analysis of solitons, quantum behaviour etc. of collective field
theory corresponding to many-particle systems with balanced
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Ongoing & Future Works

@ Analysis of solitons, quantum behaviour etc. of collective field
theory corresponding to many-particle systems with balanced
loss & gain

@ Quantization of Non-local NLSE

@ Reductions of Matrix models to Many-particle systems is well
known. Do the many-particle systems with balanced loss &
gain correspond to any many matrix model?
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LEpilogue

Ongoing & Future Works

@ Analysis of solitons, quantum behaviour etc. of collective field
theory corresponding to many-particle systems with balanced
loss & gain

@ Quantization of Non-local NLSE

@ Reductions of Matrix models to Many-particle systems is well
known. Do the many-particle systems with balanced loss &
gain correspond to any many matrix model?

o QFT formulations
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Graffiti

MURRAY GELL-MANN's totalitarian principle in QM

Everything (that is) not forbidden is compulsory

THANK YOU
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