The Sorkin-Johnston State: Coupling to Gravity and Casimir Energy Andrés Reyes Lega

Current Developments in Quantum Field Theory and Gravity S. N. Bose National Centre for Basic Sciences Kolkata, 05.12.2018

Iniversidad de

Table of contents

• Motivation

• The Sorkin-Johnston state

• Causal diamond

• Casimir energy

Collaborators

- Nicolás Avilán
- Bruno Carneiro da Cunha
- Amilcar R. de Queiroz

Phys. Rev. D 90, 084036 (2014)

Motivation

• Causal set approach to quantum gravity

• Entanglement entropy in QFT

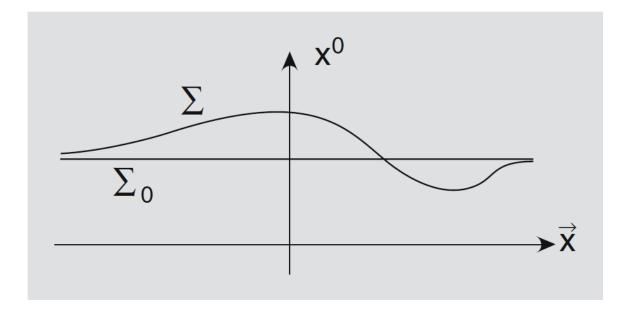
Cosmology

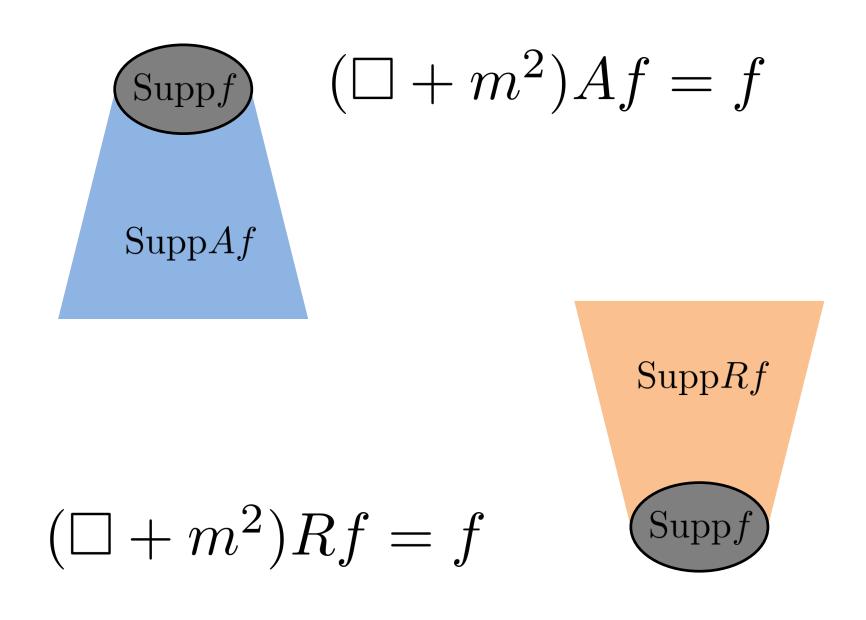
Scalar field in a curved spacetime background

- (M,g) : Globally hyperbolic spacetime.
- Klein-Gordon equation: $(\nabla_a \nabla^a + m^2) \varphi = 0$
- $\mathcal{S} = \{ \varphi \in C^{\infty}(M, \mathbb{R}) : (\nabla_a \nabla^a + m^2) \varphi = 0,$ $\varphi|_{\Sigma_0} \in C_0^{\infty}(\Sigma_0) \}$
- Breakdown of Stone-von Neumann theorem.

Symplectic structure

$$\sigma(\varphi_1,\varphi_2) := \int_{\sum_t} (\varphi_1 \nabla_\mu \varphi_2 - \varphi_2 \nabla_\mu \varphi_1) n_\mu \sqrt{-h} \, d^3 x$$





Ef := Af - Rf

$\Delta(x,y) = G_A(x,y) - G_R(x,y)$

Properties of the map $E: C_0^{\infty}(M) \to S$

(i) It is surjective: $\forall \varphi \in \mathcal{S} \quad \exists f_{\varphi} \text{ t.q. } \varphi = Ef_{\varphi}$

(ii) "Huge" kernel: $C_0^{\infty}(M)/\text{Ker}E \cong \mathcal{S}$

Quantization

- CCR: $[\Phi(f), \Phi(g)] = i\sigma(Ef, Eg)$
- Representation:
 - Complexification: $\mathcal{S} \to \mathcal{S}_{\mathbb{C}}$
 - Sesquilinear form: $(\varphi_1, \varphi_2)_{KG} := i\sigma(\bar{\varphi}_1, \varphi_2)$
 - Choice of $\mathcal{H} \leq \mathcal{S}_{\mathbb{C}}$ such that:

$$_{\circ}$$
 $S_{\mathbb{C}}=\mathcal{H}\oplus ar{\mathcal{H}}$

- $_{\circ}$ $(\mathcal{H}, (,)_{KG})$ becomes a Hilbert space
- Representation of CCR algebra on $\mathcal{F}_S(\mathcal{H})$

Sorkin-Johnston vacuum

- Properties of the integral kernel *E*:
 - Antisymmetric

– "Self-adjoint":
$$\overline{i\Delta(y,x)} = i\Delta(x,y)$$

• Consequence:

iE is (formally) self-adjoint on $L^2(M)$

• <u>Definition.</u>

$$\omega_{SJ}(\Phi(f)\Phi(g)) := \langle \bar{f}, (iE)^+g \rangle_{L^2(M)}$$

Concretely:

$$iEf(x) = \int_M i\Delta(x,y)f(y)dV_y$$

$$\int_{M} i\Delta(x, y) T_k(y) dV_y = \lambda_k T_k(x)$$

$$W(x,y) := \langle SJ | \hat{\phi}(x) \hat{\phi}(y) | SJ \rangle$$

=
$$\sum_{k=1}^{\infty} \lambda_k T_k^+(x) T_k^+(y)^* \quad (\lambda_k > 0)$$

Properties

- Conmutador: $i\Delta(x,y) = W(x,y) W^*(x,y)$
- Positividad: $\int_{\mathcal{M}} dV_x \int_{\mathcal{M}} dV_y f^*(x) W(x,y) f(y) \ge 0$
- Soportes ortogonales: $\int_{\mathcal{M}} dV_y W(x, y) W^*(y, z) = 0$
- The first two conditions have to be satisfied by the 2-point function of *any* state.
- The third condition singles out the SJ state.
- It can be interpreted as the requirement that the Wightman function be the ``positive frequency part" of the Pauli-Jordan function, regarded as an integral operator.

A simple example: SJ state for HO on the interval [-T, T]

"Field equation":

$$\ddot{q}(t) + \omega^2 q(t) = 0$$

Pauli-Jordan function:

$$i\Delta(t,t') = \frac{1}{2\omega} \left(e^{-i\omega(t-t')} - e^{i\omega(t-t')} \right)$$

Eigenvalue problem:

$$\int_{-T}^{T} i\Delta(t, t')\Psi(t')dt' = \lambda\Psi(t)$$

Ansatz:

$$\Psi(t) = Ae^{-i\omega t} + Be^{i\omega t}$$

Eigenvalue equation:

$$\begin{pmatrix} 2T & \frac{\sin(2\omega T)}{\omega} \\ -\frac{\sin(2\omega T)}{\omega} & -2T \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = 2\omega\lambda \begin{pmatrix} A \\ B \end{pmatrix}$$

Solution:

$$\lambda_{\pm} = \pm \frac{T}{\omega} \sqrt{1 - \frac{\sin^2(2\omega T)}{4\omega^2 T^2}},$$

 $(A, B) = (2\omega(\omega\lambda_{\pm} + T), -\sin(2\omega T)).$

Normalization (with respect to $L^2([-T,T])$ norm!):

 $\|\Psi\|^2 = 2T(A^2 + B^2) + 2AB\frac{\sin(2\omega T)}{\omega T}$ ω

2-point function:

$$\langle q(t)q(t')\rangle_{SJ} = \lambda_{+} \frac{\Psi_{+}(t)\Psi_{+}^{*}(t')}{\|\Psi_{+}\|^{2}}$$
$$= \lambda_{+} \frac{(Ae^{-i\omega t} + Be^{i\omega t})(Ae^{i\omega t'} + Be^{-i\omega t'})}{2T(A^{2} + B^{2}) + 2AB\frac{\sin(2\omega T)}{\omega}}$$
$$= \frac{\left(\frac{\lambda_{+}}{T}\right)\left(\frac{A}{T}e^{-i\omega t} + \frac{B}{T}e^{i\omega t}\right)\left(\frac{A}{T}e^{i\omega t'} + \frac{B}{T}e^{-i\omega t'}\right)}{2\left(\left(\frac{A}{T}\right)^{2} + \left(\frac{B}{T}\right)^{2}\right) + 2\frac{A}{T}\frac{B}{T}\frac{\sin(2\omega T)}{\omega T}}{\omega T}}$$

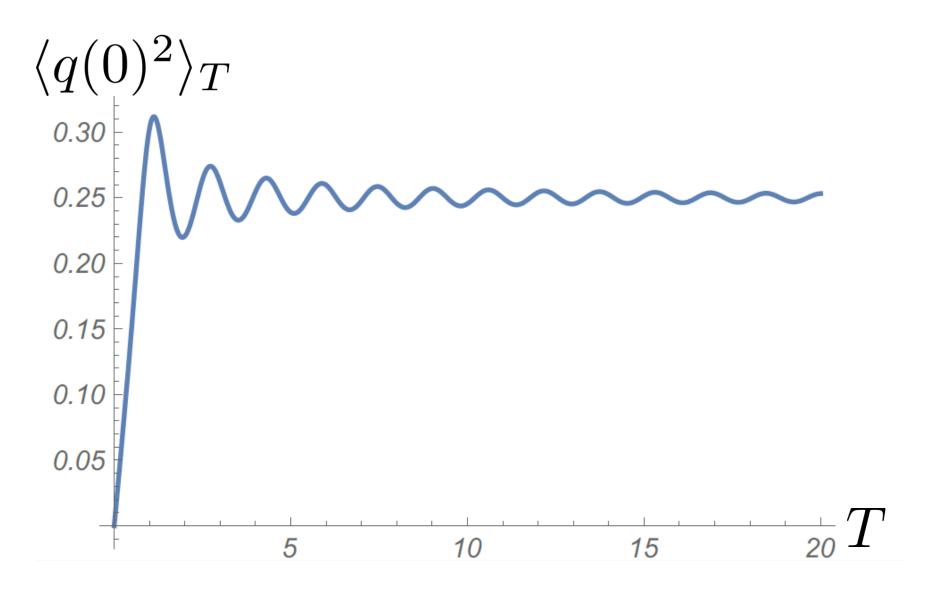
 $\frac{\lambda_{+}}{T} = \frac{1}{\omega} \sqrt{1 - \frac{\sin^{2}(2\omega T)}{4\omega^{2}T^{2}}} \xrightarrow[(T \to \infty)]{(T \to \infty)} \frac{1}{\omega},$

 $\frac{A}{T} = 2\omega \left(1 + \frac{\lambda_+}{T} \omega \right) \xrightarrow[(T \to \infty)]{(T \to \infty)} 4\omega,$

 $\frac{B}{T} = -\frac{\sin(2\omega T)}{T} \xrightarrow{(T \to \infty)} 0$

Limiting case:

 $e^{-i\omega(t-t')}$ $\lim_{T \to \infty} \langle q(t)q(t') \rangle_{SJ} =$ $\mathcal{D}_{\mathcal{W}}$



SJ state in a causal diamond (1+1)

$$u = \frac{1}{\sqrt{2}}(t+x), \quad u = \frac{1}{\sqrt{2}}(t-x)$$
$$\mathcal{M} : \{-\ell \le u \le \ell, -\ell \le v \le \ell\}$$
$$ds^2 = -2du \, dv, \qquad \partial_u \partial_v \phi(u,v) = 0.$$

Eigenfunctions with positive eigenvalues:

$$f_k(u, v) := e^{-iku} - e^{-ikv}, \quad k = \frac{n\pi}{\ell}, n = 1, 2, \dots$$

$$g_k(u, v) := e^{-iku} + e^{-ikv} - 2\cos(k\ell),$$

$$k_n \in \mathcal{K} = \{k \in \mathbb{R} | \tan(k\ell) = 2k\ell, k > 0\}$$

Wightman function

$$W_{SJ}(u,v;u'v') = \frac{1}{4\pi} \left\{ -\log\left[1 - e^{-\frac{i\pi(u-u')}{2\ell}}\right] - \log\left[1 - e^{-\frac{i\pi(v-v')}{2\ell}}\right] + \log\left[1 + e^{-\frac{i\pi(u-v')}{2\ell}}\right] + \log\left[1 + e^{-\frac{i\pi(v-u')}{2\ell}}\right] \right\} + \epsilon(u,v;u',v').$$
"correction" term

Coupling to gravity

- We are interested in the dynamics of a mssles field in two dimensions.
- Stress-energy tensor renormalization. We find a significative contribution from the "correction" term (ε).
- Backreaction.

Stress-energy tensor

$$T_{ab}^{ren}(x) = T_{ab}(x) - T_{ab}^{0}(x)$$

$$T_{ab}^{0} = \langle T_{ab}(x) \rangle_{\Omega} = \lim_{x' \to x} \mathcal{D}_{ab}(x, x') G^{(1)}(x, x');$$

$$\mathcal{D}_{A}(x, x') = \frac{1}{2} \left[\nabla_{A} \nabla_{A}' + \nabla_{A}' \nabla_{A} \right]$$

$$\mathcal{D}_{ab}(x,x') = \frac{1}{2} \left[\nabla_a \nabla_b' + \nabla_a' \nabla_b \right]$$
$$\frac{\partial}{\partial \ell} T^0_{ab}(x) = \lim_{x' \to x} \frac{\partial}{\partial \ell} \mathcal{D}_{ab}(x,x') G^{(1)}(x,x')$$

$$T^0_{ab} = T^{\rm box}_{ab} + T^{\epsilon}_{ab}$$

$$\langle T_{ab}(t,x) \rangle = -\frac{(1-\sigma)\pi}{96\ell^2} (\eta_{ab} + 2u_a u_b) - \left(\frac{\pi}{32\ell^2 \cos^2\left(\frac{\pi x}{2\sqrt{2\ell}}\right)} + \frac{x^2}{4\pi\ell^4} \log \tan^2\left(\frac{\pi x}{2\sqrt{2\ell}}\right) \right) \eta_{ab}$$

Expectation value of *T* (w.r.t SJ state) diverges, for finite ℓ , at the positions $x=\pm\sqrt{2}\ell$

\rightarrow Consider coupling to gravity

Coupling to gravity

• Introduce a metric according to the following ansatz:

$$ds^2 = \exp(2\varphi)(-dt^2 + dx^2)$$

- Impose $\nabla^a T_{ab} = 0$
- Result:

$$\exp(2\varphi) = \frac{\pi}{32\ell^2 \cos^2\left(\frac{\pi x}{2\sqrt{2}\ell}\right)} + \frac{x^2}{4\pi\ell^4} \log \tan^2\left(\frac{\pi x}{2\sqrt{2}\ell}\right)$$

• Curvature: $R = -2e^{-2\varphi}\partial_x^2\varphi$

Asymptotic behavior:

$$R = -\frac{8\pi}{\ell^2} + \frac{12\pi}{\ell^4} (x \pm \sqrt{2\ell})^2 + \dots$$

• Trace anomaly: $\langle T^a{}_a \rangle = \frac{c}{24\pi} R$

Casimir effect (on a cylinder)

$$\mathcal{W}(x,x') := \langle 0|\varphi(x) \ \varphi(y)|0\rangle = \frac{1}{2\pi} \int \frac{dp}{2E_p} e^{ip(x-x')},$$

$$\mathcal{W}_L(x,x') := \langle 0_L|\varphi_L(x) \ \varphi_L(y)|0_L\rangle = \frac{1}{L} \sum_{n \in \mathbb{Z}} \frac{e^{ik_n(x-x')}}{2E_n},$$

$$G^{(1)}(x,y) := \langle 0|\{\varphi(x),\varphi(y)\}|0\rangle = \frac{1}{\pi} K_0(\mu|x-y|),$$

$$G^{(1)}_L(x,y) := \langle 0_L|\{\varphi_L(x),\varphi_L(y)\}|0_L\rangle = \frac{1}{L} \sum_{n \in \mathbb{Z}} \frac{\cos(k_n(x-y))}{\sqrt{\mu^2 + k_n^2}}.$$

$$\langle 0_L | : \varphi_L(x)^2 : | 0_L \rangle := \lim_{x' \to x} \left(\mathcal{W}_L(x, x') - \mathcal{W}(x, x') \right)$$

$$\varphi(x)\varphi(y) = \frac{1}{2}\left(\varphi(x)\varphi(y) + \varphi(y)\varphi(x)\right) + \frac{1}{2}\left(\varphi(x)\varphi(y) - \varphi(y)\varphi(x)\right)$$

$$[\varphi(x),\varphi(y)] = i\Delta(x,y)$$

$$\langle 0_L | : \varphi_L(x)^2 : | 0_L \rangle = \lim_{x' \to x} \left(\frac{1}{2} G_L^{(1)}(x, x') - \frac{1}{2} G^{(1)}(x, x') \right).$$

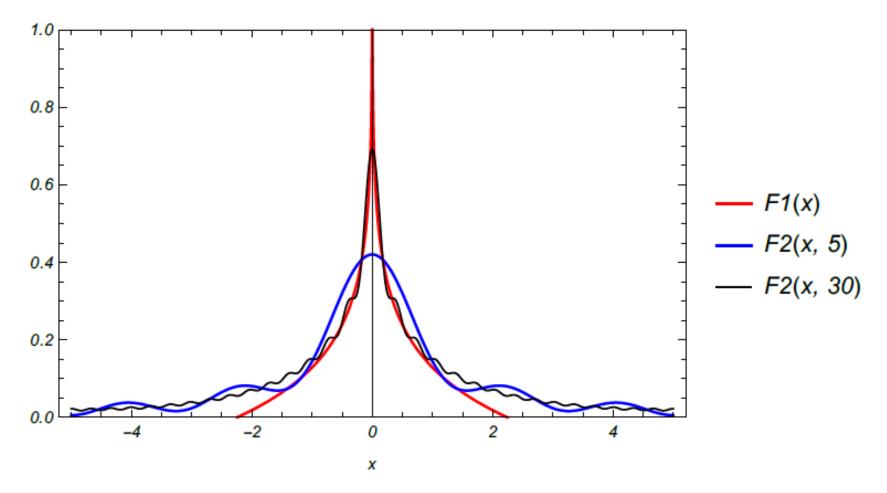
$$G^{(1)}(x^{1}, y^{1}) := \langle 0|\{\varphi(x), \varphi(y)\}|0\rangle \Big|_{x^{0}=y^{0}} = \frac{1}{\pi} K_{0}(\mu|x^{1} - y^{1}|),$$

$$G^{(1)}_{L}(x^{1}, y^{1}) := \langle 0_{L}|\{\varphi_{L}(x), \varphi_{L}(y)\}|0_{L}\rangle \Big|_{x^{0}=y^{0}} = \frac{1}{L} \sum_{n \in \mathbb{Z}} \frac{\cos(k_{n}(x^{1} - y^{1}))}{\sqrt{\mu^{2} + k_{n}^{2}}},$$

$$K_0(x) = -\ln x - \gamma_E + \ln 2 + o(x^2).$$

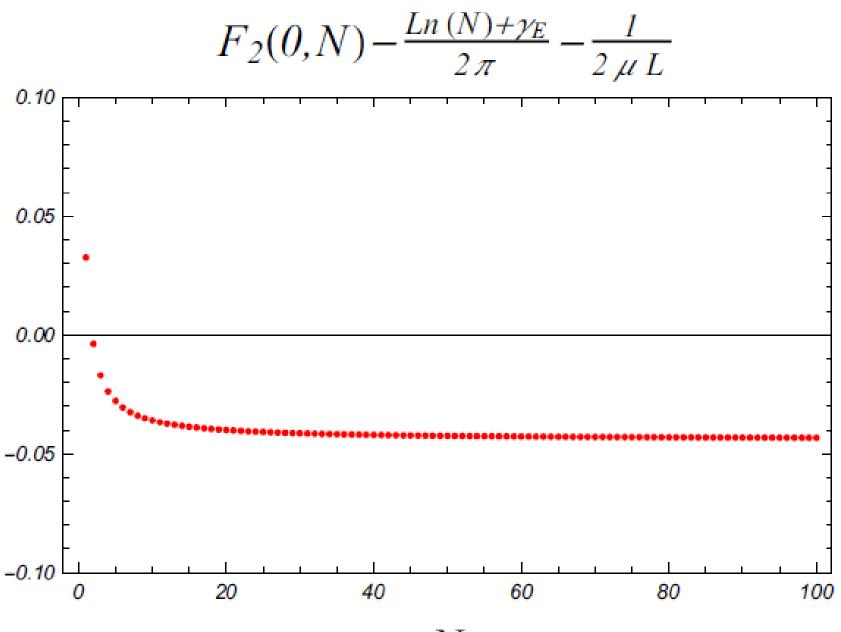
$$F_1(x) := \frac{1}{2\pi} \ln(2/\mu) - \frac{\gamma_E}{2\pi} + \frac{1}{2\pi} \ln \frac{1}{|x|},$$

$$F_2(x, N) := \frac{1}{L} \sum_{n=1}^N \frac{\cos k_n x}{\sqrt{\mu^2 + k_n^2}} + \frac{1}{2\mu L}.$$

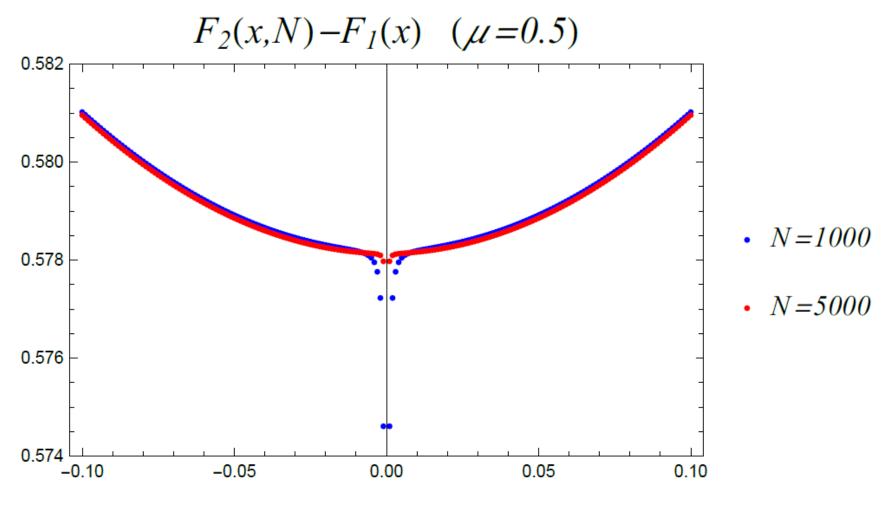


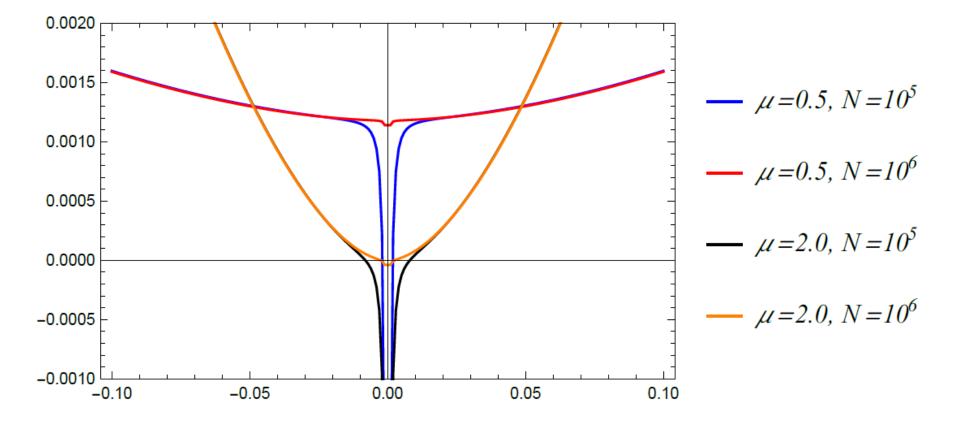
It is clear that both F1 and F2 have the same UV behavior. This just reflects the fact that the corresponding states are Hadamard. To visualize this, we plot both functions near x = 0.

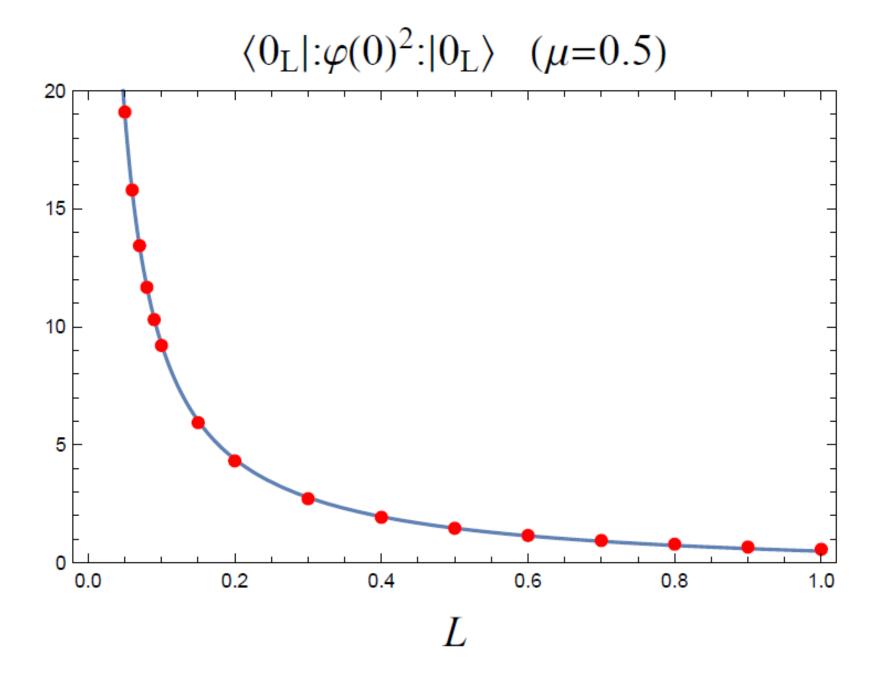
- We want to obtain a finite value for $\langle 0_L | : \varphi_L(0)^2 : | 0_L \rangle = \lim_{x \to 0} \lim_{N \to \infty} (F_2(x, N) - F_1(x)).$
- But we cannot do this directly, as $\lim_{x\to 0} F_1(x) = \infty$.
- We know $W_L(x,y) W(x,y)$ is smooth.
- Compute $\lim_{N\to\infty} F_2(x,N) F_1(x)$ at *fixed* x.
- Then we can repeat the same computation for a sequence {x_k}_k such that x_k approaches zero as k grows.



Ν







- Using the previous numerical analysis as a "benchmark", we can now turn to the computation of correlation functions using the SJ vacuum.
- But first we check our method against the familiar result

Casimir energy for the cylinder

$$\langle : \mathcal{H}(x) : \rangle = \frac{1}{2} ``\langle : \partial_0 \varphi(x) \partial_0 \varphi(x) + \partial_1 \varphi(x) \partial_1 \varphi(x) : \rangle"$$

$$:= \frac{1}{2} \lim_{y \to x} \left[(\partial_{x^0} \partial_{y^0} + \partial_{x^1} \partial_{y^1}) (\mathcal{W}_L(x, y) - \mathcal{W}(x, y)) \right].$$
Using the identity $\frac{\partial}{\partial x^{\nu}} \mathcal{W}_{(L)}(x, y) = -\frac{\partial}{\partial y^{\nu}} \mathcal{W}_{(L)}(x, y)$, we obtain:

$$\langle : \mathcal{H}(0) : \rangle = -\frac{1}{2} \lim_{x \to 0} \left(\partial_{x^0}^2 + \partial_{x^1}^2 \right) \left(\mathcal{W}_L(x,0) - \mathcal{W}(x,0) \right)$$

= $-\frac{1}{2} \lim_{x \to 0} \left(\partial_{x^0}^2 + \partial_{x^1}^2 \right) \left(-\frac{1}{4\pi} \ln \left(\left[1 - e^{-\frac{i}{R}(x^0 - x^1)} \right] \left[1 - e^{-\frac{i}{R}(x^0 - x^1)} \right] \right)$
+ $\frac{1}{4\pi} \ln \left(-(x^0)^2 + (x^1)^2 \right) \right).$

$$\langle : \mathcal{H}(0) : \rangle = -\frac{2}{4\pi} \lim_{u \to 0} \left(-\partial_u^2 \ln \left(1 - e^{-\frac{i}{R}u} \right) + \partial_u^2 \ln u \right)$$

$$= -\frac{1}{2\pi} \lim_{u \to 0} \left(-\frac{i}{R} \partial_u \left(\frac{e^{-\frac{i}{R}u}}{1 - e^{-\frac{i}{R}u}} \right) + \partial_u \frac{1}{u} \right)$$

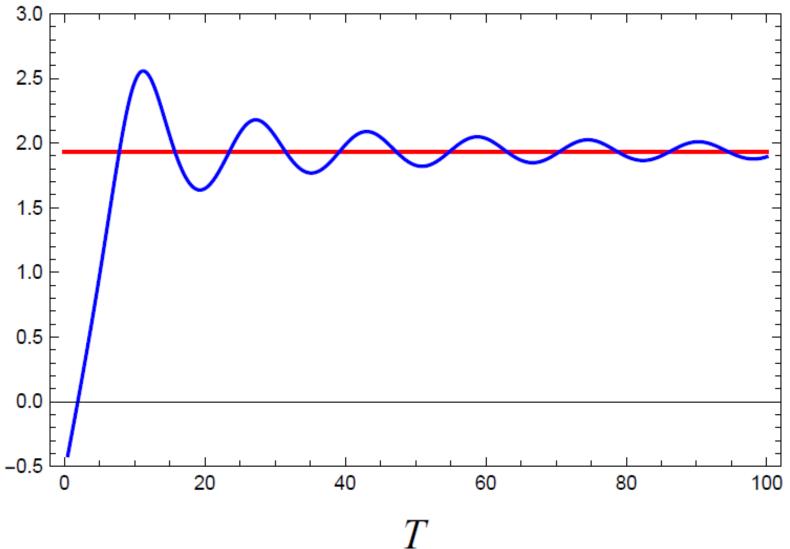
$$= -\frac{1}{2\pi} \lim_{u \to 0} \left[\left(\frac{i}{R} \right)^2 \frac{e^{\frac{i}{R}u}}{\left(e^{\frac{i}{R}u} - 1 \right)^2} - \frac{1}{u^2} \right]$$

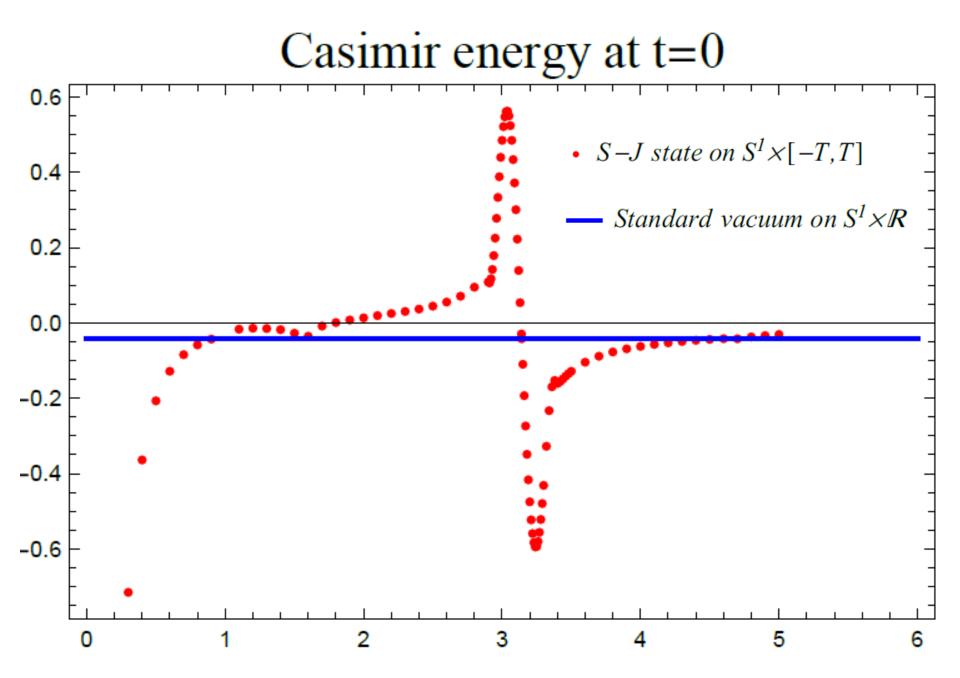
$$= -\frac{1}{2\pi} \lim_{u \to 0} \left(\frac{1}{R^2} \frac{1}{2(1 - \cos(u/R))} - \frac{1}{u^2} \right)$$

$$= -\frac{1}{24\pi R^2}.$$

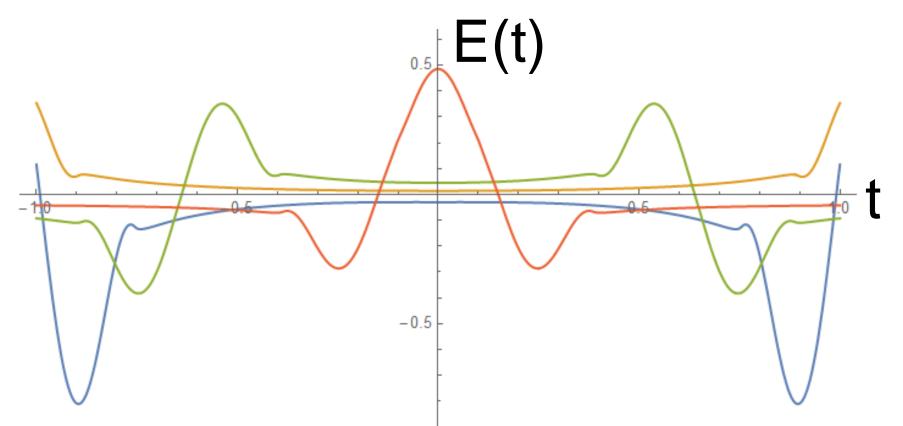
We turn now to the numerical computation, using the SJ state..

 $\langle SJ |: \varphi(0,0)^2 : |SJ \rangle$

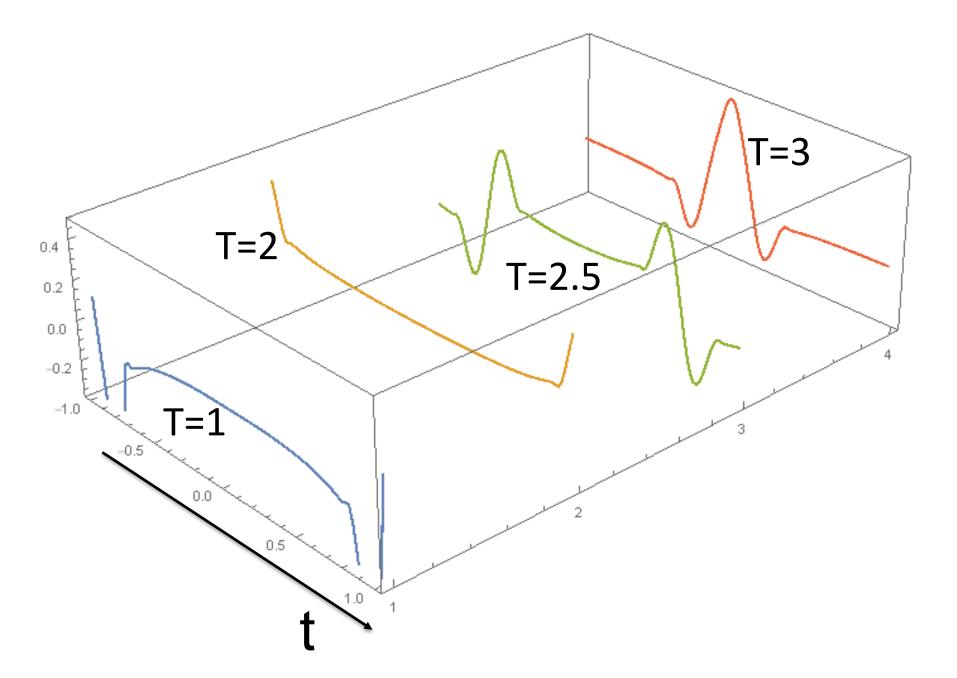


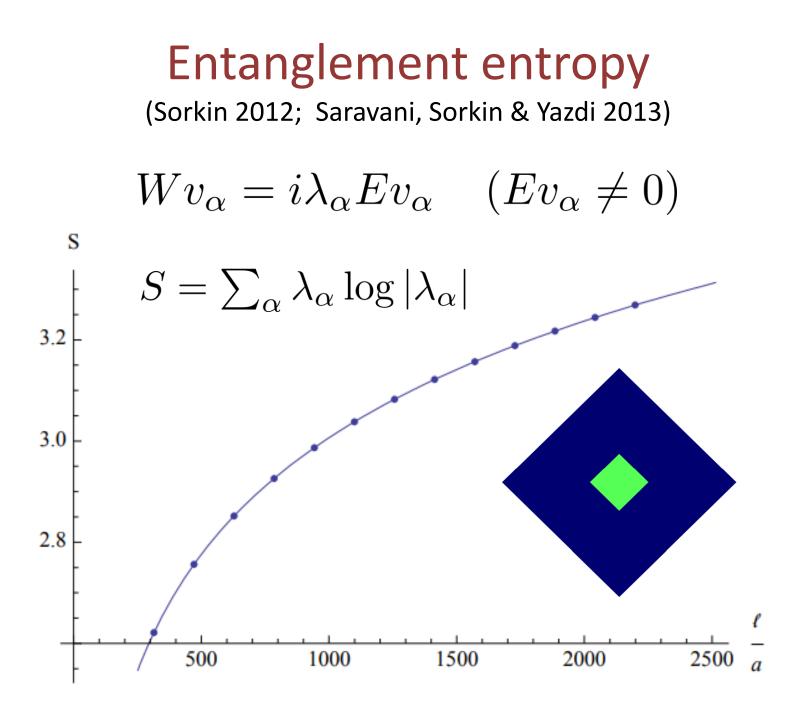


 \boldsymbol{T}



- Casimir energy as a function of time, for different values of T.
- T=1 (blue), T=2 (orange), T=2.5 (green)
 T=3 (red)





Thanks for your attention!