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Introduction & overview

de Sitter spacetime : Soln. of the Einstein eq. with a positive
cosmological constant Λ→ Gab + Λgab = 0. Inclusion of a mass with
charge and or angular momentum→ various star and black solutions in
the de Sitter universe.

Why de Sitter? a) high degree of homogeneity+ isotropy of the large
scale universe→ early universe underwent a very rapid phase of
accelerated expansion→ the inflation. For slow role→ de Sitter is a
very well motivated and successful model to describe the inflationary
scenario and various primordial perturbations built over it b) recent
phase of accelerated expansion of the universe→ a small but a positive
Λ. ΛCDM→ the simplest and phenomenologically most successful
description of the modern cosmology (e.g., S. Weinberg, (2007)).
Various alternative gravity models (e.g., C. Skordis et al, Phys. Rep.,
(2012)), but no phenomenological/conceptual superiority over ΛCDM so
far.



Introduction & overview

de Sitter spacetime : Soln. of the Einstein eq. with a positive
cosmological constant Λ→ Gab + Λgab = 0. Inclusion of a mass with
charge and or angular momentum→ various star and black solutions in
the de Sitter universe.

Why de Sitter? a) high degree of homogeneity+ isotropy of the large
scale universe→ early universe underwent a very rapid phase of
accelerated expansion→ the inflation. For slow role→ de Sitter is a
very well motivated and successful model to describe the inflationary
scenario and various primordial perturbations built over it b) recent
phase of accelerated expansion of the universe→ a small but a positive
Λ. ΛCDM→ the simplest and phenomenologically most successful
description of the modern cosmology (e.g., S. Weinberg, (2007)).
Various alternative gravity models (e.g., C. Skordis et al, Phys. Rep.,
(2012)), but no phenomenological/conceptual superiority over ΛCDM so
far.



The geometry of the de Sitter universe

In this talk → the field theoretic aspects of the early universe. In
particular, the non-local properties of the fermionic vacua.

dS spacetime : A maximally symmetric spacetime with a constant
positive curvature, R = 2n Λ/(n − 2) in n-spacetime dim. Could be
constructed via compactifying an (n + 1)-d Minkowski spacetime,
−T 2 + X 2 + Y 2 + Z 2 + W 2 + · · · = 3/Λ→ an Sn if we continue T to
imaginary values⇒ isometry group is SO(n, 1). Will take n = 4.

Most popular global covering of dS→ R1 × S3 → contracts from
τ → −∞ to τ = 0 and then expands (e.g. J. B. Griffiths and J. Podolsky,
2009)
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The geometry of the de Sitter universe

Figure: Schematic global dS. Vertical direction is ‘time’. The spatial section is
S3.



The geometry of the de Sitter universe

Only expanding part interesting for cosmology⇒ half of S3, the
cosmological dS :
ds2 = −dτ 2 + e2Hτ (dR2 + R2dΩ2) (H =

√
Λ/3)

One of the symmetries→ τ → τ + τ0 and R → e−Hτ0 R. ⇒ generator :
∂t = ∂τ ± HR ∂R Killing vector, timelike for R eHτ ≤ H−1. Defining also
r = eHτR,
ds2 = −(1− H2r 2)dt2 + (1− H2r 2)−1dr 2 + r 2dΩ2

Coordinates not well defined for r ≥ H−1. H−1 is the cosmological
event horizon→ maximum limit of the visible universe, set due to the
accelerated expansion. CH has thermal properties like black hole
horizon (G. W. Gibbons, S. W. Hawking, PRD, 1976; A. Higuchi,
K. Yamamoto,1808.02147). There are stationary BH soln.s within CH→
non-trivial vacuum structure due to existence of two temperatures (SB,
1810.13260 and Refs. therein).
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The hyperbolic de Sitter spacetime

Global, cosmological and static coordinates→ most popular coordinate
coverings of dS. Static patch→ near horizon geometry is Rindler→
Hilbert space inside and outside the horizon→ entanglement entropy
for a quantum field using Replica trick by tracing dof beyond CH→
Area/4 (S. N. Solodukhin, Liv. Rev. Rel., 2011).

Such measure of quantum correlations inside and outside the CH is
non-local but not long range. There are accumulation of accessible
microstates in the vicinity of a Killing horizon (T. Padmanabhan, PRL,
1998).

Question : how to discuss the long range quantum correlations in dS,
for observers located outside each other’s CH?→ hyperbolic dS
(M. Sasaki et al, PRD, 1995).
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The Penrose diagramme of the hyperbolic de Sitter

Figure: The hyperbolic de Sitter spacetime



The metric

Scheme : Compactify the 5-d Minkowski via complex coordinates
τ, ρ, θ, φ.

Analytically continue to real coordinate values to cover the whole dS :
tR = i

(
τ − π

2

)
, rR = iρ, (tR ≥ 0, rR ≥ 0)

tC = τ, rC = i
(
ρ− π

2

)
,

(
−π2 ≤ tC ≤ π

2 , 0 ≤ rC <∞
)

tL = i
(
−τ − π

2

)
, rL = iρ, (tL ≥ 0, rL ≥ 0)

The metrics :
ds2

R,L = H−2
(
−dt2

R,L + sinh2 tR,L(dr 2
R,L + sinh2 rR,LdΩ2)

)
ds2

C = H−2
(

dt2
C + cos2 tC(−dr 2

C + cosh2 rCdΩ2)
)

Three causally disconnected regions. R, L→ not separated by a wall
but by the entire region C ⇒ natural set up to investigate long range
quantum correlation between them.
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The entanglement entropy

Field theoretic derivation of EE for for a massive scalar with
non-minimal coupling ζ (J. Maldacena, G. L. Pimentel, JHEP, 2013).
Field quantisation (M. Sasaki et al, PRD, 1995)→ consider modes
having supports in R and L regions only (local modes) :

φ(x) =
∫

dp
∑

lm[aR
plm uR

plm(R) + aR†
plm u?R

plm(R) + aL
plm uL

plm(L) + aL†
plm u?L

plm(L)]

uR/L
plm (x) =

H P ip
ν (zR/L)√
z2

R/L−1
Yplm(r , θ, φ)

zR/L = cosh tR/L, v2 = 9/4− (m2 + 12ζH2)/H2, p ≥ 0
aR/L|R/L〉 = 0 (local vacua; u positive freq. in asymp. past. ).

Also global modes→ found via analytically continuing R modes to L
and vice versa. Gives a measure of the quantum correlation. zR = 1 is
continued through C to zL = 1. Spatial part remains intact⇒ take P ip

ν

from rhs of its branch point z = +1 to lhs of another branch point
z = −1 along Im(z) > 0⇒ P ip

ν (zR)→ P ip
ν (−zL) for R → L. Likewise for

L→ R.
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The entanglement entropy

P ip
ν (−zL) = e−πp[(eiπν + i sinπ(ν+ip)

sinhπp )P ip
ν (zL)− i sinπ(ν+ip) Γ(ν+1+ip)

sinhπp Γ(ν+1−ip)
P−ip
ν (zL)]

⇒ Mixing of positive and negative frequency modes.

Orthogonality of the mode functions : KG inner product
(u1, u2) = i

∫
dΣa(u?2∂au1 − u1∂au?2 ) For local modes→ t = const.

hypersurafce in respective regions. Global modes→ supports in both
regions→ two hypersurfaces in R and L connected through C. Latter
could be deformed such that it has vanishing contribution. Turns out
that global modes obtained via analytic continuation of local modes are
orthogonal→ normalise using KG inner product and the Wronskian⇒
field expansion in terms of the orthonormal global modes. Mixing of
positive and negative frequencies in global modes⇒ Bogoliubov
relations⇒ global and local vacua have to be different.

The Bogoliubov coeffs. ⇒ |0〉G = N exp(
∑

i,j=R,L mija†i a†j )|R〉 ⊗ |L〉
mij → by annihilating |0〉G by global annihilation operator and using the
Bogoliubov relations.
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The entanglement entropy

Matrix representation of ρglobal = |0〉G〈0|G → trace over R or L to obtain
the reduced density matrix→ EE = Tr(ρR ln ρR)→ long range
correlation, not area, final result obtained by numerically integrating over
momentum eigenvalues (J. Maldacena, G. L. Pimentel, JHEP, 2013).

Other measures of long range correlations such as : α-vacua, Bell’s
inequality violation, decoherence, negativity and discord investigated in
this framework (S. Kanno, J. Soda PRD, 2017; A. Albrecht et al,
1802.08794; S. Choudhury et al, 1809.02732 and Refs. therein);
quantum complexity (A. Reynolds, S. F. Ross, 1706.03788).

Possible observational effects : imprints of quantum correlation in the
primordial gravitational perturbations (S. Kanno, J. Soda, 1810.07604
and Refs. therein); effective action and its consequences on the power
spectrum by summing over fermion interaction with inflaton
(D. Boyanovsky 1804.07967 and Refs. therein)
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The case of fermions

Fermions can play important role during inflation, chiefly via Yukawa
coupling to the inflaton. Wish to compute EE for Dirac fermions in this
framework. Dirac eq. in curved spacetime : iγa∇aΨ−mΨ = 0.
∇a ≡ ∂a − iωaµν [γµ, γν ]/8, ωaµν := eb

µ∂aebν − Γb
acebµ ec

ν . Local R, L
modes (no normalisable modes in C) (R. Camporesi, A. Higuchi,
gr-qc/9505009; S. Kanno et al, JHEP, 2017) :

Ψ+R
(−) =

(
up(z)
vp(z)

)
χ

(−)
pjm Ψ−R

(−) =

(
−v?p (z)

u?p (z)

)
χ

(−)
pjm .

Ψ−R
(+) =

(
u?p (z)
−v?p (z)

)
χ

(+)
pjm Ψ+R

(+) =

(
vp(z)
up(z)

)
χ

(+)
pjm.

Ψ+L
(−) =

(
vp(zL)
−up(zL)

)
χ

(−)
pjm , Ψ−L

(−) =

(
u?p (zL)
v?p (zL)

)
χ

(−)
pjm

Ψ−L
(+) =

(
v?p (zL)
u?p (zL)

)
χ

(+)
pjm, Ψ+L

(+) =

(
−up(zL)

vp(zL)

)
χ

(+)
pjm



The case of fermions
Where

up(z) =
(

z2 − 1
)− 3

4
(

z + 1
z − 1

) ip
2

F
(
− im

H
,

im
H
,

1
2
− ip,

1− z
2

)

vp(z) =
(

z2 − 1
)− 1

4
(

z + 1
z − 1

) ip
2

F
(

1− im
H
, 1 +

im
H
,

3
2
− ip,

1− z
2

)
.

spatial part, χ± → orthonormal, spin-1/2 weighted 2-component
harmonics over H3. p ≥ 0 and continuous. u, v positive freq. in asymp.
past.

Dirac inner product (Local normalisation integral) :(
Ψ(a), Ψ(b)

)
:=

∫
(z2 − 1)3/2

√
h drdθdφΨ†(a) Ψ(b)

→ all local modes are orthonormal + asymp. positive/negative
frequency behaviour⇒ make the field expansion with
creation/annihilation op.s with suitable anti-commutation reln. imposed.
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The global fermionic modes

Analytic continuation of the local modes from R → L and vice versa. up,
vp have branch points at z = ±1, ∞. Choose the cut properly + analytic
properties of the hypergeometric fn. (suppressing χ±) R → L (S. Kanno
et al, JHEP, 2017) :

Ψ+R
(−)(zR) =

(
up(zR)
vp(zR)

)
, Ψ+R

(−)(zL) =

(
λ1 vp(zL) + λ2 u?p (zL)
−λ1 up(zL) + λ2 v?p (zL)

)
Ψ+R

(+)(zR) =

(
vp(zR)
up(zR)

)
, Ψ+R

(+)(zL) =

(
−λ1 up(zL) + λ2 v?p (zL)
λ1 vp(zL) + λ2 u?p (zL)

)
Ψ−R

(−)(zR) =

(
−v?p (zR)

u?p (zR)
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The global fermionic modes
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Constructing global orthonormal modes

Unlike the scalar field, the modes thus found do not form orthogonal set,
e.g.

(
Ψ+L

(−), Ψ−R
(−)

)
G

=
(

Ψ+L
(−), Ψ−R

(−)

)
z=zL

+
(

Ψ+L
(−), Ψ−R

(−)

)
z=zR

= −2λ?2

All eight modes grouped into four non-orthogonal pairs (inter-pair
orthogonality satisfied)

(Ψ+L
(−), Ψ−R

(−))G = (Ψ+L
(+), Ψ−R

(+) )G = −(Ψ+R
(−), Ψ−L

(−))G = −(Ψ+R
(+), Ψ−L

(+))G = −2λ?2

Cannot make any field expansion with such non-orthogonal basis of fn.
space for the resulting Bogoliubov coeff. would not preserve canonical
anti-commuation structure. (general theorem : e.g., M. Blasone, lecture
notes).

Orthogonalise first by forming intra-pair linear combinations. For

example,
{

Ψ̃+R
(−),Ψ

−L
(−)

}
, where Ψ̃+R

(−) = Ψ+R
(−) −

(Ψ+R
(−)

,Ψ−L
(−)

)G

(Ψ−L
(−)

,Ψ−L
(−)

)G
Ψ−L

(−)
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Constructing global orthonormal modes

Alternatively,
{

Ψ+R
(−), Ψ̃

−L
(−)

}
, with Ψ̃−L

(−) = Ψ−L
(−) −

(Ψ−L
(−)

,Ψ+R
(−)

)G

(Ψ+R
(−)

,Ψ+R
(−)

)G
Ψ+R

(−)

Recall global modes mix +ve and -ve frequencies→ the above do not
keep an equal footing between them⇒ introduce a spacetime indep.
parameter 0 ≤ θRL ≤ π/2,→ 1-parameter family of orthogonal fn.,

Ψ
′

= Ψ+R
(−) −

2λ2∆θ1

N2
b

Ψ−L
(−) Ψ

′′
= Ψ−L

(−) −
2λ?2 ∆θ2

N2
b

Ψ+R
(−), where

∆θ1 =
cos2 θRL

1− 2|λ2|
N2

b
sin2 θRL

∆θ2 =
sin2 θRL

1 + 2|λ2|
N2

b
cos2 θRL

(
0 ≤ θRL ≤ π

2

)
All other pairs can be orthogonalised in the same spirit. Could have
introduced four different parametrisation for four different pairs→ such
an abundance of parameter would weaken the theory’s predictability.
Now normalise and make the field expansions with new
creation/annihilation op.s→ find out the Bogoliubov coefficients→
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The Bogoliubov coefficients

a1 =
1

N1Nb

[
(1− α?λ2) cR

(−) + λ1cL
(−) + α?λ1dR†

(−) + (λ?2 − α?) dL†
(−)

]
a2 =

1
N2Nb

[
(1− β?λ2) cR

(+) + λ1cL
(+) + β?λ1dR†

(+) + (λ?2 − β?) dL†
(+)

]
a3 =

1
N1Nb

[
−λ1cR

(−) + (1− α?λ2) cL
(−) − (λ?2 − α?) dR†

(−) + α?λ1dL†
(−)

]
a4 =

1
N2Nb

[
−λ1cR

(+) + (1− β?λ2) cL
(+) − (λ?2 − β?) dR†

(+) + β?λ1dL†
(+)

]
b†1 =

1
N1Nb

[
−αλ1cR

(+) − (λ2 − α) cL
(+) + (1− αλ?2 ) dR†

(+) + λ1dL†
(+)

]
b†2 =

1
N2Nb

[
−βλ1cR

(−) − (λ2 − β) cL
(−) + (1− βλ?2 ) dR†

(−) + λ1dL†
(−)

]
b†3 =

1
N1Nb

[
(λ2 − α) cR

(+) − αλ1cL
(+) − λ1dR†

(+) + (1− αλ?2 ) dL†
(+)

]
b†4 =

1
N2Nb

[
(λ2 − β) cR

(−) − βλ1cL
(−) − λ1dR†

(−) + (1− βλ?2 ) dL†
(−)

]
where α = 2λ2∆θ1/N2

b , β = 2λ2∆θ2/N2
b , N1,N2,Nb are normalisations.



The θRL global vacua
The global vacuum :

|0〉global = N[|0c〉R ⊗ |0d 〉R ⊗ |0c〉L ⊗ |0d 〉L
+ξ1 {|1c〉R ⊗ |1d 〉R ⊗ |0c〉L ⊗ |0d 〉L + |0c〉R ⊗ |0d 〉R ⊗ |1c〉L ⊗ |1d 〉L}
+ξ2 {|1c〉R ⊗ |0d 〉R ⊗ |0c〉L ⊗ |1d 〉L + |0c〉R ⊗ |1d 〉R ⊗ |1c〉L ⊗ |0d 〉L}
+(ξ2

1 + ξ2
2)|1c〉R ⊗ |1d 〉R ⊗ |1c〉L ⊗ |1d 〉L]

ξ1 = −
2λ1λ

?
2

(
λ2

1 + 2 |λ2| cos 2θRL + |λ2|2 + 1
)

4 |λ2|
(
λ2

1 + 1
)

cos 2θRL + |λ2|2
(
2λ2

1 + cos 4θRL + 1
)

+ 2
(
λ2

1 + 1
)2

ξ2 = −
λ?2

(
2
(
λ2

1 + 1
)

cos 2θRL + 2 |λ2|2 cos 2θRL + |λ2| (cos 4θRL + 3)
)

4|λ2|
(
λ2

1 + 1
)

cos 2θRL + |λ2|2
(
2λ2

1 + cos 4θRL + 1
)

+ 2
(
λ2

1 + 1
)2

Any observable A, 〈A〉 = Tr(ρglobalA) would depend upon θRL. However
since this dS construction is more apt to describe two faraway causally
disconnected regions, will look for EE only.



Matrix representation of the reduced density
operator

ρglobal → partial trace over either R or L→ for the 4× 4 matrix
representation,

ρR ≡ |N|2


1 + |ξ1|2 0 0 ξ?1 + ξ1

(
ξ?2

1 + ξ?2
2
)

0 |ξ2|2 0 0
0 0 |ξ2|2 0

ξ1 + ξ?1
(
ξ2

1 + ξ2
2
)

0 0 |ξ1|2 +
∣∣ξ2

1 + ξ2
2

∣∣2


EE per mode per unit vol : Sp =
∑4

i=1 λi lnλi . Total EE : integrate over p
and volume. Vol. integration needs regularisation. Also computed the
Rényi entropy, a 1-parameter generalisation of EE :

Sq =
1

1− q
ln Trρq , q > 0.
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The entanglement entropy
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Figure: EE Vs. ν2 = 9/4−m2/H2 plots for various θRL. Green curve
corresponds to θRL = 0, π/2, red θRL = π/6, blue θRL = π/5, black
θRL = π/4, pink θRL = π/3. The result is symmetric under the interchange of
R and L (but no θRL → π/2− θRL symmetry)



Discussions and outlook
Discussed a 1-parameter freedom of the fermionic field theory in the
hyperbolic dS. Arises merely due to the necessity of orthonormalising
the global mode functions. Discussed EE. Such one-parameter family
in dS is analogous to the so called α-vacua, constructed as a one
parameter family of vacua over the Bunch-Davies vacuum (e.g.
H. Collins, PRD, 2005). The qualitative difference of this from our case
that the θRL’s are fundamental necessity of the theory, for the sake of
preserving the canonical structure. Also it does not seem to be present
for other coordinatisation of dS nor for real or complex scalar, massive
or massless vectors in any interesting coordinatisation of dS⇒ a very
unique feature of fermions in hyperbolic dS (SB, S. Chakrabortty,
S. Goyal, to be submitted, 2018).

Need to explore further to understand the full implication of the
parametrisation. Other measures of quantum correlations. Also global
excited states. q r s t u x
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