A consistent search for the Hawking effect for extremal Kerr black holes

Subhajit Barman

Department of Physical Sciences
Indian Institute of Science Education and Research Kolkata

Current Developments in Quantum Field Theory and Gravity
SNBNCBS
06.12.2018

The Kerr spacetime

The Kerr spacetime and extremal limit

Massless free scalar field Kerr in spacetime

Hamiltonian formulation

Hawking effe in Kerr

spacetime

The Kerr spacetime

The Kerr

The Kerr spacetime and extremal limit

Massless free scalar field Kerr in spacetime

Hamiltonian formulation

Hawking effect in Kerr spacetime

Consistency conditions and Number density

• The Kerr line-element in Boyer-Lindquist coordinates

$$\begin{split} ds^2 &= -\left(1 - \frac{rr_s}{\rho^2}\right)dt^2 + \frac{\rho^2}{\Delta}dr^2 + \rho^2d\theta^2 + \frac{\Sigma\sin^2\theta}{\rho^2}d\phi^2 - \frac{2arr_s\sin^2\theta}{\rho^2}dtd\phi\;,\\ \text{where } \rho^2 &= r^2 + a^2\cos^2\theta, \, \Sigma = (r^2 + a^2)^2 - a^2\Delta\sin^2\theta, \, \Delta = r^2 + a^2 - rr_s. \end{split}$$

- $\Delta=0$ gives coordinate singularities at $r_h=\frac{r_s}{2}+\sqrt{\left(\frac{r_s}{2}\right)^2-a^2}$ and $r_c=\frac{r_s}{2}-\sqrt{\left(\frac{r_s}{2}\right)^2-a^2}$.
- The surface gravity at the event horizon $\varkappa_h = \sqrt{r_s^2 4a^2}/2r_s r_h$ and the Hawking temperature $T_H = \varkappa_h/(2\pi k_B)$.
- In extremal limit $a \to r_s/2$ surface gravity $\varkappa_h \to 0$ and $T_H \to 0$.
- The bogoliubov coefficients do not satisfy the required normalization condition for extremal black holes¹.

¹ F. G. Alvarenga, A. B. Batista, J. C. Fabris, and G. T. Marques, Phys. Lett. A320, 83 (2003), arXiv:gr-qc/03060300, @

Reduction of massless free scalar field action

The Kerr

The Kerr spacetime extremal limit

Massless free scalar field Kerr in spacetime Hamiltonian formulation

Hawking effe in Kerr

spacetime Consistency cond • Action for a minimally coupled massless free scalar field $S_{\Phi} = \int d^4x \left[-\frac{1}{2} \sqrt{-g} g^{\mu\nu} \nabla_{\mu} \Phi(x) \nabla_{\nu} \Phi(x) \right] .$

- Decompose first $\Phi(t, r, \theta, \phi) = \sum_{lm} e^{im\phi} \Phi_{lm}(t, r, \theta)$ and $\tilde{\Phi}_{lm}(t, r, \theta) \simeq \mathscr{S}_{lm}(\theta) \varphi_{lm}(t, r_{\star}) / \sqrt{r^2 + a^2}$.
- Action in asymptotic regions far from the horizon becomes, $S_{\Phi} = \sum_{lm} S_{lm}$, with $S_{lm} \simeq \int dt dr_{\star} \left[\frac{1}{2} \partial_t \varphi_{lm}^* \partial_t \varphi_{lm} \frac{1}{2} \partial_{r_{\star}} \varphi_{lm}^* \partial_{r_{\star}} \varphi_{lm} \right]$.
- $dr_{\star} = \frac{r^2 + a^2}{\Delta} dr$ and solution to redefined reduced field equation is $\varphi_{lm}(t, r_{\star}) \sim \frac{1}{\sqrt{2\pi\tilde{\omega}}} e^{-i\tilde{\omega}(t\pm r_{\star})}$.
- Near-null coordinates for observer \mathbb{O}^- and \mathbb{O}^+ $\tau_{\pm} = t \mp (1 - \epsilon)r_{+}$: $\xi_{\pm} = -t \mp (1 + \epsilon)r_{+}$.

Hamiltonian formulation²

The Kerr spacetime The Kerr spacetime and extremal limit Massless free scalar field Kerr in spacetime

Hawking effe in Kerr spacetime

formulation

- For two observers line-elements $ds^2 = \frac{\epsilon}{2} \left[-d\tau_{\pm}^2 + d\xi_{\pm}^2 + \frac{2}{\epsilon} d\tau_{\pm} d\xi_{\pm} \right]$.
- Scalar field Hamiltonians $H_{\varphi}^{\pm} = \int d\xi_{\pm} \frac{1}{\epsilon} \left[\left\{ \frac{\Pi^2}{2} + \frac{1}{2} (\partial_{\xi_{\pm}} \varphi)^2 \right\} + \Pi \partial_{\xi_{\pm}} \varphi \right]$. momentum $\Pi(\tau_{\pm}, \xi_{\pm}) = \epsilon(\partial_{\tau_{\pm}} \varphi) (\partial_{\xi_{\pm}} \varphi)$ and poisson bracket relation $\{ \varphi(\tau_{\pm}, \xi_{\pm}), \Pi(\tau_{\pm}, \xi'_{\pm}) \} = \delta(\xi_{\pm} \xi'_{\pm})$.
- Fourier transform $\varphi = \frac{1}{\sqrt{V_{\pm}}} \sum_{k} \tilde{\phi}_{k} e^{ik\xi_{\pm}}; \ \Pi = \frac{1}{\sqrt{V_{\pm}}} \sum_{k} \sqrt{q} \ \tilde{\pi}_{k} e^{ik\xi_{\pm}}.$
- Fourier field modes satisfy $\{\tilde{\phi}_k, \tilde{\pi}_{-k'}\} = \delta_{k,k'}$ and Hamiltonians $H_{\varphi}^{\pm} = \sum_k \frac{1}{\epsilon} \left[\left(\frac{1}{2} \tilde{\pi}_k \tilde{\pi}_{-k} + \frac{1}{2} |k|^2 \tilde{\phi}_k \tilde{\phi}_{-k} \right) \frac{ik}{2} \left(\tilde{\pi}_k \tilde{\phi}_{-k} \tilde{\pi}_{-k} \tilde{\phi}_k \right) \right] = \sum_k \frac{1}{\epsilon} (\mathcal{H}_k^{\pm} + \mathcal{D}_k^{\pm}).$
- Using relations $\varphi(\tau_-, \xi_-) = \varphi(\tau_+, \xi_+)$, $\Pi(\tau_+, \xi_+) = (\partial \xi_- / \partial \xi_+) \Pi(\tau_-, \xi_-)$ we express $\tilde{\phi}_{\kappa} = \sum_k \tilde{\phi}_k F_0(k, -\kappa)$, $\tilde{\pi}_{\kappa} = \sum_k \tilde{\pi}_k F_1(k, -\kappa)$.

² S. Barman, G. M. Hossain, and C. Singha, Phys. Rev. D97, 025016 (2018), arXiv:1707.03614 (2018)

Number density of Hawking quanta

The Kerr spacetime their

extremal limit

Massless free scalar
field Kerr in spacetime

Hamiltonian

formulation

Hawking effect in Kerr spacetime Consistency condition

- Coefficient functions satisfy $F_1(\pm |k|, \kappa) = \mp \frac{\kappa}{|k|} F_0(\pm |k|, \kappa)$ using their general form $F_n(k, \kappa) = \frac{1}{\sqrt{V_- V_+}} \int d\xi_+ \left(\frac{\partial \xi_-}{\partial \xi_+}\right)^n e^{ik\xi_- + i\kappa\xi_+}$.
- A relation $\mathbb{S}_{-}(\kappa) \mathbb{S}_{+}(\kappa) \equiv \sum_{k>0} \frac{\kappa}{k} \left[|F_{0}(-k,\kappa)|^{2} |F_{0}(k,\kappa)|^{2} \right] = 1$ must satisfy from simultaneous satisfaction of Poisson brackets $\{\tilde{\phi}_{k}^{-}, \tilde{\pi}_{-k'}^{-}\} = \delta_{k,k'}$ and $\{\tilde{\phi}_{\kappa}^{+}, \tilde{\pi}_{-k'}^{+}\} = \delta_{\kappa,\kappa'}$.
- With a suitable redefinition of the field modes $\mathcal{H}_k^{\pm} = \frac{1}{2}\pi_k^2 + \frac{1}{2}k^2\phi_k^2$, $\{\phi_k^2, \pi_{k'}^2\} = \delta_{k,k'}$ and the diffeomorphism generators vanish.
- In Fock quantization $|0_-\rangle = \prod_k \otimes |0_k\rangle$ and $\langle \hat{\mathcal{H}}_k^- \rangle = \frac{1}{2}|k|$.
- Then the number density of Hawking quanta can be expressed as $N_{\tilde{\omega}} = N_{\kappa} \equiv \frac{\langle -0 | \hat{\mathcal{H}}_{\kappa}^{+} | 0_{-} \rangle}{\kappa} \frac{1}{2} = \mathbb{S}_{+}(\kappa)$.

Coefficient functions for extremal Kerr black holes

The Kerr spacetime
The Kerr spacetime and extremal limit
Massless free scalar field Kerr in spacetime
Hamiltonian

Hawking effect in Kerr spacetime

- For extremal Kerr black hole tortoise coordinate $r_{\star} = r + r_s \ln \left(\frac{2r r_s}{r_s} \right) \frac{r_s^2}{2r r_s}$ is used to get relation $\xi_+ = \xi_- + 2r_s \ln \left(\frac{\xi_-}{\sqrt{2}r_s} \right) \frac{2r_s^2}{\xi_-}$ which approximates to $\xi_+ \approx \xi_- \frac{2r_s^2}{\xi_-}$.
- Introducing regulator δ the coefficient functions become $F_0^{\delta}(\pm k,\kappa) = \int \frac{d\xi_-}{\sqrt{V_-V_+}} \left(1 + \frac{2r_s^2}{\xi_-^2}\right) e^{-(\delta+i)\frac{2r_s^2\kappa}{\xi_-^2} [\delta|\kappa\pm k| i(\kappa\pm k)] |\xi_-|}$.
- We define quantities $b_{\pm} = \sqrt{2}r_s \left[\delta|\kappa \pm k| i \left(\kappa \pm k\right)\right]$, $b_0 = \sqrt{2}r_s\kappa(\delta+i)$, $\xi = (\xi_-/\sqrt{2}r_s)$, $m_{\star} \equiv (\kappa V_-/2\pi) = (|b_0|V_-/2\pi\sqrt{2}r_s)$, $\gamma \equiv (V_-/V_+)$ and get $F_0^{\delta}(\pm k,\kappa) = \frac{\sqrt{2} \ r_s}{\sqrt{V_-V_+}} \int_{\xi_L}^{\xi_R} d\xi \left(1 + \frac{1}{\xi^2}\right) \ e^{-b\pm\xi-b_0/\xi}$.
- We evaluate the coefficient $F_0^{\delta}(-\kappa,\kappa)$ separately and obtain $|F_0^{\delta}(-\kappa,\kappa)|^2 = \gamma \left[1 + \mathcal{O}\left\{\ln(m_{\star})/m_{\star}\right\}\right]$.

Consistency condition

The Kerr spacetime

The Kerr spacetime and extremal limit Massless free scalar field Kerr in spacetime Hamiltonian formulation

Hawking effect in Kerr spacetime

- When $b_{-} \neq 0$ we have $F_{0}^{\delta}(\pm k, \kappa) = \frac{\sqrt{2} \, r_{s}}{\sqrt{V_{-}V_{+}}} \left(\frac{b_{0} + b_{\pm}}{b_{0} \, b_{\pm}}\right) [z_{\pm}K_{1}(z_{\pm})].$
- *lhs* of consistency $\mathbb{S}^{\delta}_{-}(\kappa) \mathbb{S}^{\delta}_{+}(\kappa) = |F_0^{\delta}(-\kappa,\kappa)|^2 + \frac{\gamma\zeta(2)}{2\pi^2} + \frac{\gamma S(1,\infty)}{4\pi^2m_{\star}}$, where

$$\begin{array}{l} \mathcal{S}(s_0,s_1) = \sum_{s=s_0}^{s_1} \left[\frac{2m_\star}{s^2} \left\{ |\tilde{z}K_1(\tilde{z})|^2 - 1 \right\} + \frac{(s-m_\star)}{s^2} \left\{ |\tilde{z}K_1(\tilde{z})|^2 - |\tilde{z}K_1(|\tilde{z}|)|^2 \right\} \right] \\ \text{and } \tilde{z} \equiv \tilde{z}(s) = \sqrt{4|b_0|^2 s/m_\star} \ (\delta+i). \end{array}$$

- $\lim_{z\to 0} |zK_1(z)| = 1$, $\lim_{z\to \infty} |zK_1(z)| = 0$ enables one to choose λ_1 , λ_2 such that $|\tilde{z}(\lambda_1 m_\star)| \ll 1$, $|\tilde{z}(\lambda_2 m_\star)| \gg 1$ & $|\tilde{z}K_1(\tilde{z})|^2 \leq d_1$, $|\tilde{z}K_1(|\tilde{z}|)|^2 \leq d_2$.
- We may express $S(1, \infty) = S(\lambda_1 m_\star, \lambda_2 m_\star) + S(\lambda_2 m_\star + 1, \infty)$ where $S(\lambda_1 m_\star, \lambda_2 m_\star) \leq (d_1 + d_2) \left[\ln \left(\frac{\lambda_2}{\lambda_1} \right) + \frac{\lambda_2 \lambda_1}{\lambda_2 \lambda_1} \right]$, $S(\lambda_2 m_\star + 1, \infty) = \frac{\pi}{2\delta} e^{-4|b_0|\delta\sqrt{\lambda_2}} [1 + \mathcal{O}(\delta)]$.
- We observe that $\delta \to 0$ leads to a violation of the consistency condition.

Consistency condition and Number density

• In the limit $m_{\star} \to \infty$ we get $\mathbb{S}_{-}(\kappa) - \mathbb{S}_{+}(\kappa) = \gamma \left[1 + \frac{1}{2\pi^{2}} \zeta(2)\right] = 1$.

• Now $\zeta(2) = \frac{1}{6}\pi^2$, then we must have $\gamma = (12/13)$ which says volume regulators should be varied together as $\left(\frac{\xi_-^L}{\sqrt{2}r_s}\right) = 12\left(\frac{\sqrt{2}r_s}{\xi_-^R}\right)$.

- One can express $\mathbb{S}^{\delta}_{+}(\kappa) = \frac{\gamma}{4\pi^{2}m_{\star}}\left[\mathcal{S}_{+}(m_{\star}, \lambda_{2}m_{\star}) + \mathcal{S}_{+}(\lambda_{2}m_{\star} + 1, \infty)\right]$ by defining $\mathcal{S}_{+}(s_{0}, s_{1}) = \sum_{s=s_{0}}^{s_{1}} \frac{(s-m_{\star})}{s^{2}} |\tilde{z}K_{1}(|\tilde{z}|)|^{2}$ where $\mathcal{S}_{+}(m_{\star}, \lambda_{2}m_{\star}) \leq d_{2} \left[\ln(\lambda_{2}) 1 + \frac{1}{\lambda_{2}}\right]$, $\mathcal{S}_{+}(\lambda_{2}m_{\star} + 1, \infty) = \frac{\pi}{2}e^{-4|b_{0}|\sqrt{\lambda_{2}}}\left[1 + \mathcal{O}\left(\frac{1}{\lambda_{2}}\right)\right]$.
- In the limit $m_{\star} \to \infty$ we have $\mathbb{S}^{\delta}_{+}(\kappa) \leq 0$ and by definition $\mathbb{S}^{\delta}_{+}(\kappa) > 0$. Then we have $\lim_{m_{\star} \to \infty} \mathbb{S}^{\delta}_{+}(\kappa) = 0$.
- The number density of Hawking quanta for extremal Kerr black holes³ become $N_{\tilde{\omega}} = N_{\omega m\Omega_h} = \langle \hat{N}_{\kappa}^+ \rangle = 0$.

Hawking effect

Consistency condition and Number density

in Kerr spacetime

³S. Barman and G. M. Hossain (2018), arXiv:1809.09430

The Kerr

The Kerr spacetime a

extremal limit

field Kerr in space

Hamiltonian

formulation

Hawking effect in Kerr

spacetime

Consistency condition and Number density

THANK YOU FOR LISTENING!