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The Kerr spacetime

The Kerr line-element in Boyer-Lindquist coordinates

. 2 . ein20 1. S sin?
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The Kerr spacetime and

xtemal i where p? =72 + a%cos?0, ¥ = (r? +a?)? — a?Asin?0, A = 1% +a® — 17

@ A =0 gives coordinate singularities at r, = % +/(%)” — a2

and r.=2% — /(%) —a2.

o The surface gravity at the event horizon >, = \/r2 — 4a2/2rr),
and the Hawking temperature 7y = s,/ (2rkp).

@ In extremal limit « — »,/2 surface gravity s, — 0 and 7y — 0.

@ The bogoliubov coefficients do not satisfy the required
normalization condition for extremal black holes'.
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Reduction of massless free scalar field action

Action for a minimally coupled massless free scalar field
So = [diz [-3v=g9" V. ®(x) v, @(2)] .

@ Decompose first o(t,r,0,¢) = 3, ¢, (t,r,0) and
Dpp(£,7,0) = S (0)pm (£, 1)/ V2 + a?.

@ Action in asymptotic regions far from the horizon becomes,
Se =31 Stms with 5, ~ [ didr, [%Olgofm&wm — 20y} 0r 01 -

® dr, = " 4r and solution to redefined reduced field equation

IS iy (1, 72) ~ Az e B0

TW

@ Near-null coordinates for observer 0— and O+
Tr=tF(A—ere; GG=—tFA+e)r.



Hamiltonian formulation?

For two observers line-elements ds> = § [~dr? + de} + 2drodés] .
@ Scalar field Hamiltonians 7} = [d¢.! H% +3(0e.9)? } +1I 8&4 .

momentum Ii(r.,&.) = €(d,, ) — (9, ) and poisson bracket
relation {p(re, &2), (e, €4)} = d(€x — L) -

@ Fourier transform ¢ = ﬁ S Prete; T = ﬁ S VG et

° Fourier field modes satisfy {¢;,7 .} = 5., and Hamiltonians
=31 K Tri_p + 5|k[oro A) -% <7Tk¢ k= T ka’kﬂ =Y LM + Dy).

@ Using relations ¢(r ¢ ) = ¢(ry, &), T(ry, &) = (06 /06 )TI(7 &)
WE EXPIESS o, = >, ¢ Fo(k, —r), T = S5 T Fi (k, —5).

2S. Barman, G. M. Hossain, and C. Singha, Phys. Rev. D97, 025016 (2018), arXiv:1707.03614



Number density of Hawking quanta

i Fo(£|k|,x) using

057 Lk{ FikEy .

@ A relation S_(k) — Si(k) = Y0 & [|Fo(—k. w)[> — [Fo(k,k)]?] =1
must satisfy from simultaneous satisfaction of Poisson
brackets {¢, 7"} = opp and {¢F, 7"} = 6,0

@ With a suitable redefinition of the field modes
HE = Sn7 + 1?0}, {6771} = 6, and the diffeomorphism
generators vanish.

@ In Fock quantization [0_) =[], ©[0;) and (H, ) = L.

@ Then the number density of Hawking quanta can be
expressed as N = N, = S00-) 1 g ),



Coefficient functions for extremal Kerr black holes

For extremal Kerr black hole tortoise coordinate
re=r+7In (2’;) — . isused to get relation

2r—rs

2r2

& =& +2rgIn (%) — &+ which approximates to ¢, ~ ¢ — 2

= -

° Introducing regulator ¢ the coefficient functions become

. CUN2r2K oo

i :I:L ,‘1 f de_ )7(<)+'1,) £ —[6|ktk|—i(rtk)] £ '

spacetime V=V ( )

@ We define quantities b = v2r, [8|r + k| — i (k £ k)], by = \/2rsx(6 + i),
€= (& /V2r), my = (KV_/27) = (|bo|V_/27V2rs), v = (V_/V) and get
Fo(dk, 1) = e (14 4) entathore

@ We evaluate the coefficient 7{(-«,~) separately and obtain
|ES (—k, k)2 = v [1 + O {In(m,)/m,}] .



Consistency condition

When v 0 we have F(+k, k) = \/% (”i}*fj) (22 K1 (24)]-

@ [hs of consistency 7 (r) — 8% (x) = [F§(—r,5)|> + 55 + 2500
where
Sls0,51) = ik, |2 {1EKIGE — 1} + 5= {ER ()P - 12K (2P
R s i and z = z(s) = \/4[bo[%s/m (3 + ).

in Kerr
spacetime

@ lim. o |2K1(2)| = 1, lim. o |2/ (2)] = 0 enables one to choose A, X,
such that |z(\m,)| < 1, Zom)| > 1 & ZK,(2)] < di, 2K, (12])]* < da.

@ We may express S(1,00) = S(Aimy, Aam,) + S(Aam, + 1,00) Where

S, Aomy) < (di + da) [m (if) + %], S(ham, + 1,00) = Ze VA [1 4+ O(5)].

@ We observe that 5§ — 0 leads to a violation of the consistency
condition.



Consistency condition and Number density

In the limit m, — co We get S_(x) — Sy (k) = v [1+ 555 ¢(2)] = L.

@ Now ¢(2) = i«?, then we must have ~ = (12/13) which says
volume regulators should be varied together as

(V) =12 (%)-

@ One can express % (x) = =5 [Sy (m, Aamy) + Sy (Aam, + 1,00)] by
defining S, (sg, s1) =S50, & 5;”*> |2k, (|2))|> where

§=50

St (my, Aamy) < do [ln()\g) -1+ )\712} s Sy(Aamy +1,00) = e e—4lbolVA2 {1 +0 ( )}

Hawking effect

@ In the limit m, — co we have s’ (x) < 0 and by definition
% (k) > 0. Then we have lim,,, ,~ S) (r) = 0.

@ The number density of Hawking quanta for extremal Kerr
black holes® become N = N,, .0, = (N) = 0.
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