Noncommutative effects on holographic superconductors with power Maxwell electrodynamics

Suchetana Pal

Department of Physical Sciences Indian Institute of Science Education and Research - Kolkata

Conference on Current Developments in Quantum Field Theory and Gravity S.N. Bose National Centre for Basic Sciences

06/12/2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Outline

#### Motivation

Basics of superconductivity Holographic principle Constructing gravity dual

#### Guideline of my work

Basic set-up Equations of motion Boundary conditions Matching Method Critical temperature-charge density relationship Introducing magnetic field

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Summary and Conclusion

Acknowledgment

## Basics of superconductivity

- Electrical resistivity of some metals suddenly drops to zero when the temperature is lowered below a certain critical temperature T<sub>c</sub> - 1911.
- Magnetic field is expelled when  $T < T_c$  Meissner effect.
- BCS theory successfully described low temperature superconductors-Cooper pair formation-1957.
- High T<sub>c</sub> superconductors were discovered in 1986 -J.G.Bednorz and K.A.Muller -Nobel Prize - 1987.
- Example- cuprates  $(T_c=134k)$
- Pairing mechanism is not well understood for such strongly coupled system.
- Gauge/gravity duality provides a new tool to understand high *T<sub>c</sub>* superconductors.

# Holographic principle

- ► A weakly coupled gravity theory in AdS<sub>n+1</sub> spacetime is equivalent to a strongly coupled conformally invariant quantum field theory CFT<sub>n</sub> in one less dimension.(Maldacena 1998)
- also known as gauge/gravity duality.
- The name suggests that one can look at a two (spatial) dimensional superconductor and see a 3-dimensional image.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Constructing gravity dual

- To construct a proper gravitational dual of a superconductor we need to incorporate the following ideas in our theory
  - In the superconductor, we need a notion of temperature. On the gravity side, that role is played by a black hole.
  - In the superconductor, we also need a condensate. In the bulk, this is described by some field coupled to gravity.
- Static non-zero field outside a black hole corresponds to a non-zero condensate. This is usually called black hole hair.
- Hence, to describe a superconductor, we need a black hole that has hair at low temperatures, but no hair at high temperatures.
- consider

$$S = \int d^{d}x \sqrt{-g} [R - 2\Lambda - \beta (F_{\mu\nu}F^{\mu\nu})^{q} - |\nabla_{\mu}\psi - ieA_{\mu}\psi|^{2} - m^{2}|\psi|^{2}] \quad (1)$$

## Constructing gravity dual

- This is just general relativity with a, coupled to a power Maxwell field and charged scalar with mass m and charge e.
- It is easy to see why black holes in this theory might be unstable to forming scalar hair:
  - ► For an electrically charged black hole, the effective mass of  $\psi$  is  $m_{eff}^2 = m^2 + e^2 g^{tt} A_t^2$
  - ▶ But the last term is negative, so there is a chance that m<sup>2</sup><sub>eff</sub> becomes sufficiently negative near the horizon to destabilize the scalar field.
- The above mechanism does not work for asymptotically flat black holes. One has to choose a background metric that is asymptotically AdS.
- If one rescales A<sub>µ</sub> = Ã<sub>µ</sub>/e and ψ = ψ̃/e, then the matter action has a 1/e<sup>2</sup> in front, so the backreaction of the matter fields on the metric is suppressed when e is large. The limit e → ∞ with Ã<sub>µ</sub> and ψ̃ fixed is called the probe limit.

#### Basic set-up

The metric of a *d*-dimensional planar Schwarzschild-AdS black hole reads

$$ds^{2} = -f(r) dt^{2} + \frac{1}{f(r)} dr^{2} + r^{2} dx_{i} dx^{i}$$
(2)

- ► where,  $f(r) = r^2 \left( 1 \frac{r_+^{d-1}}{r^{d-1}} \frac{\gamma(\frac{d-1}{2}, \frac{r^2}{4\theta})}{\gamma(\frac{d-1}{2}, \frac{r^2}{4\theta})} \right).$ (ref:10.1016/j.physletb.2005.11.004,Piero Nicolini)
- $\gamma(s,x) = \int_0^x t^{s-1} e^{-t} dt$  lower incomplete gamma function
- r<sub>+</sub> horizon radius
- $\theta$  noncommutative parameter
- The Hawking temperature is given by

$$T = \frac{f'(r_{+})}{4\pi} = \frac{r_{+}}{4\pi} \left[ d - 1 - \frac{4MG_d}{\Gamma(\frac{d-1}{2})} \frac{e^{-\frac{r_{+}^2}{4\theta}}}{(4\theta)^{\frac{d-1}{2}}} \right]$$

#### Equations of motion

The equations of motion for the Maxwell and the scalar field obtained by varying the action mentioned previously :

$$\partial_z^2 \phi + \frac{1}{z} \left( 2 - \frac{d-2}{2q-1} \right) \partial_z \phi + \frac{2\phi(z)\psi^2(z)r_+^{2q}(\partial_z \phi)^{2(1-q)}}{z^{4q}2^{q+1}(-1)^{3q}\beta q(2q-1)f(z)} = 0 \quad (3)$$

$$\partial_z^2 \psi + \left(\frac{f'(z)}{f(z)} - \frac{d-4}{z}\right) \partial_z \psi + \frac{\phi^2 \psi r_+^2}{z^4 f^2(z)} - \frac{m^2 \psi r_+^2}{z^4 f(z)} = 0 .$$
(4)

▶ where we have chosen the ansatz  $A_t = \phi(r)$  and  $\psi = \psi(r)$  and made a variable change  $z = \frac{r_+}{r}$ .

• 
$$f(z) = \frac{r_+^2}{z^2} g_0(z); g_0(z) = \left(1 - z^{d-1} \frac{\gamma(\frac{d-1}{2}, \frac{r_+^2}{4\theta z^2})}{\gamma(\frac{d-1}{2}, \frac{r_+^2}{4\theta})}\right).$$

### Boundary conditions

- The boundary condition φ(r = r<sub>+</sub>) = 0 now becomes φ(z = 1) = 0.
- Near the boundary (z → 0, r → ∞), the scalar potential φ(z) and the scalar field ψ(z) can be approximated as :

$$\phi(z) = \mu - \frac{\rho^{\frac{1}{2q-1}}}{r_{+}^{\frac{d-2}{2q-1}-1}} z^{\frac{d-2}{2q-1}-1}; \ \psi(z) = \frac{\psi_{-}}{r_{+}^{\lambda_{-}}} z^{\lambda_{-}} + \frac{\psi_{+}}{r_{+}^{\lambda_{+}}} z^{\lambda_{+}}$$

where,  $\lambda$  is the conformal dimension of the condensation operator in the boundary field theory.

$$\lambda_{\pm} = \frac{1}{2} \left[ d - 1 \pm \sqrt{(d - 1)^2 + 4m^2} \right]$$
. (ref: Phys. Lett. B, 718 (2013), p. 1089, D. Roychowdhury)

- ► The coefficients ψ<sub>-</sub> and ψ<sub>+</sub> correspond to the vacuum expectation values of the condensation operator.
- μ and ρ are interpreted as the chemical potential and the charge density of the dual theory on the boundary.

## Matching Method

▶ In this method we expand the  $\phi(z)$  and  $\psi(z)$  field near the horizon  $(r = r_+, z = 1)$  and equate that to the asymptotic  $(r \to \infty, z \to 0)$  solution at some point  $z = z_m$ .  $\begin{bmatrix} \mu - \frac{\rho^{\frac{1}{2q-1}}}{r_+^{\frac{d-2}{2q-1}-1}} \end{bmatrix}_{z=z_m} = \begin{bmatrix} \phi(1) - \phi'(1)(1-z) + \frac{1}{2}\phi''(1)(1-z)^2 + O((1-z)^3) \end{bmatrix}_{z=z_m}$ 

• By doing so for  $\phi(z)$  field we get:

$$\mu - \frac{\rho^{\frac{1}{2q-1}} z_m^{\frac{d-2}{2q-1}-1}}{(r_+)^{\frac{d-2}{2q-1}-1}} = \nu(1-z_m) + \frac{1}{2}(1-z_m)^2 \times \left[ \left( 2 - \frac{d-2}{2q-1} \right) \nu - \frac{2r_+^{2(q-1)}\alpha^2(-\nu)^{3-2q}}{(-1)^{3q}2^{q+1}(\beta q)(2q-1)(g_0')} \right]$$
(5)

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

## Matching Method

• and for  $\psi(z)$  field we get :

$$\frac{\langle O_+ \rangle z_m^{\lambda_+}}{r_+^{\lambda_+}} = \alpha - (1 - z_m) \alpha \left(\frac{m^2}{g_0'(1)}\right) + \frac{1}{2} \alpha (1 - z_m)^2 \times \left[\frac{1}{2} \left(\frac{m^2}{g_0'(1)}\right) \left(d - 4 - \frac{g_0''(1)}{g_0'(1)} + \frac{m^2}{g_0'(1)}\right) - \frac{\tilde{v}^2}{2g_0'(1)^2}\right] .$$
 (6)

where v = -φ'(1), α = ψ(1) and ṽ = v/r<sub>+</sub>. and replaced φ"(1) and ψ'(1), ψ"(1) respectively form eq. (3) eq. and (4)
 taking derivative on both side of eq (5) and (6) yields:

$$-\frac{\rho^{\frac{1}{2q-1}} z_m^{\frac{d-2}{2q-1}-2}}{(r_+)^{\frac{d-2}{2q-1}-1}} \left(\frac{d-2}{2q-1}-1\right) = -\nu - (1-z_m) \times \left[\left(2-\frac{d-2}{2q-1}\right)\nu - \frac{2r_+^{2(q-1)}\alpha^2(-\nu)^{3-2q}}{(-1)^{3q}2^{q+1}(\beta q)(2q-1)g_0'(1)}\right]$$
(7)

## Matching method

#### and

$$\lambda_{+} \frac{\langle O_{+} \rangle z_{m}^{\lambda_{+}-1}}{r_{+}^{\lambda_{+}}} = \alpha \left( \frac{m^{2}}{g_{0}^{'}(1)} \right) - \alpha (1-z_{m}) \times \left[ \frac{1}{2} \left( \frac{m^{2}}{g_{0}^{'}(1)} \right) \left( d - 4 - \frac{g_{0}^{''}(1)}{g_{0}^{'}(1)} + \frac{m^{2}}{g_{0}^{'}(1)} \right) - \frac{\tilde{v}^{2}}{2g_{0}^{'}(1)^{2}} \right]. \quad (8)$$

From the above set of equations and using the expression for Hawking temperature it is simple to obtain :

$$\begin{aligned} \alpha^{2} &\equiv \alpha_{NC}^{2} = \\ &- \frac{(-1)^{5q-3}2^{q}(\beta q)(2q-1)g_{0}^{'}(1)}{\tilde{v}_{NC}^{2(1-q)}(1-z_{m})} \times \left[1 + \left(2 - \frac{d-2}{2q-1}\right)(1-z_{m})\right] \times \\ &\left(\frac{(T_{c})_{NC}}{T}\right)^{\frac{d-2}{2q-1}} \left[1 - \left(\frac{T}{(T_{c})_{NC}}\right)^{\frac{d-2}{2q-1}}\right] \end{aligned}$$

where

$$(T_c)_{NC} = \xi_{NC} \rho^{\frac{1}{d-2}}$$
 (9)

$$\xi_{NC} = -\frac{z_m^{\left(\frac{d-2}{2q-1}-2\right)\left(\frac{2q-1}{d-2}\right)}}{\tilde{v}_{NC}^{\frac{2q-1}{d-2}}} \left(\frac{g_0'(1)}{4\pi}\right) \times \frac{\left(\frac{d-2}{2q-1}-1\right)^{\frac{2q-1}{d-2}}}{\left[1+\left(2-\frac{d-2}{2q-1}\right)\left(1-z_m\right)\right]^{\frac{2q-1}{d-2}}} \quad (10)$$

Analytical results from eq.(10) → the critical temperature decreases with increase in the noncommutative parameter θ → condensate gets harder to form as the spacetime noncommutativity increases. Table: Analytical values of  $\xi_{NC}$  for different values of M and  $\theta$  [q = 1,  $m^2 = 0$ ,  $z_m = 0.5$  and d = 5]

| $\theta$ | ξης         |              |
|----------|-------------|--------------|
|          | $MG_d = 50$ | $MG_d = 100$ |
| 0.3      | 0.16933     | 0.1702       |
| 0.5      | 0.16058     | 0.1678       |
| 0.7      | 0.1492      | 0.1608       |
| 0.9      | 0.1418      | 0.1525       |

mass of the black hole increases → the critical temperature for a particular value of θ increases → the effects of spacetime noncommutativity becomes prominent for lower mass black holes. Table: Analytical values of  $\xi_{NC}$  for different values of M and  $\theta$  [q = 1,  $m^2 = -3$ ,  $z_m = 0.5$  and d = 5]

| $\theta$ | ξης         |              |
|----------|-------------|--------------|
|          | $MG_d = 50$ | $MG_d = 100$ |
| 0.3      | 0.2003      | 0.2015       |
| 0.5      | 0.18798     | 0.1977       |
| 0.7      | 0.1744      | 0.1883       |
| 0.9      | 0.1669      | 0.1782       |

Table: Analytical values of  $\xi_{NC}$  for different values of M and  $\theta$  [ q = 5/4,  $m^2 = -3$ ,  $z_m = 0.5$  and d = 5]

 $\theta$ ξης  $MG_{d} = 50$  $MG_{d} = 100$ 0.3 0.1126 0.1134 0.5 0.1067 0.1114 0.7 0.1008 0.1069 0.9 0.0980 0.1024

Table: Analytical values of  $\xi_{NC}$  for different values of M and  $\theta$  [ q = 7/4,  $m^2 = -3$ ,  $z_m = 0.5$  and d = 5]

| $\theta$ | ξης         |              |
|----------|-------------|--------------|
|          | $MG_d = 50$ | $MG_d = 100$ |
| 0.3      | 0.0177      | 0.0178       |
| 0.5      | 0.0171      | 0.0176       |
| 0.7      | 0.0167      | 0.0171       |
| 0.9      | 0.0168      | 0.0168       |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► the onset of power Maxwell electrodynamics (for a value of q ≠ 1) makes the condensate difficult to form and the effect of the power Maxwell theory on the formation of the condensate decreases with increase in the mass of the black holes.

### Introducing magnetic field

we have chosen the following ansatz to introduce an external magnetic field B in the bulk theory and observe how the condensation behaves for noncommutative black hole background in the bulk.

$$A_t = \phi(z)$$
 ,  $A_y = Bx$  ,  $\psi = \psi(x,z)$  .

- ► The intention is to find a critical magnetic filed B<sub>c</sub> above which the condensation vanishes.
- ► The equation of motion for the complex scalar field  $\psi$  that follows from the above ansatz reads:  $\partial_z^2 \psi(x,z) + \left(\frac{f'(z)}{f(z)} - \frac{d-4}{z}\right) \partial_z \psi(x,z) + \frac{\phi^2(z)\psi(x,z)r_+^2}{z^4f^2(z)} - \frac{m^2r_+^2\psi(x,z)}{z^4f(z)} + \frac{1}{z^2f(z)}(\partial_x^2\psi - B^2x^2\psi) = 0$ .

For solving the above equation, we write  $\psi(x, z)$  as  $\psi(x, z) = X(x)R(z)$ .

### Introducing magnetic field

and we get:

$$R^{''}(z) + \left(\frac{f'(z)}{f(z)} - \frac{d-4}{z}\right)R^{'}(z) + \frac{\phi^{2}(z)r_{+}^{2}R(z)}{z^{4}f^{2}(z)} - \frac{m^{2}r_{+}^{2}R(z)}{z^{4}f(z)} = \frac{BR(z)}{z^{2}f(z)}.$$
 (11)

Using the matching method as earlier after few algebraic steps a quadratic equation for B can be obtain:

$$B^{2} + pr_{+}^{2}B + nr_{+}^{4} - \phi'^{2}(1)r_{+}^{2} = 0$$
 (12)

• At  $B = B_c$ , the condensate vanishes  $\rightarrow \psi = 0$ 

# Introducing magnetic field

▶ Solving *eq*.(12) :

$$(B_{c})_{NC} = \frac{(-g_{0}^{'}(1))^{\frac{d-2}{2q-1}-2}}{2(4\pi)^{\frac{d-2}{2q-1}-2}\xi_{NC}^{\frac{d-2}{2q-1}}} (T_{c})_{NC}^{2} \times \left[\Omega_{NC}(d,q,m) - p\left(-\frac{4\pi\xi_{NC}}{g_{0}^{'}(1)}\right)^{\frac{d-2}{2q-1}} \left(\frac{T}{(T_{c})_{NC}}\right)^{\frac{d-2}{2q-1}}\right]$$
(13)

► where, 
$$p = 2m^2 + \left(d - 4 - \frac{g_0''(1)}{g_0'(1)}\right)g_0'(1) + 2g_0'(1) - \frac{4g_0'(1)(\lambda_+(1-z_m)+z_m)}{(1-z_m)(\lambda_+(1-z_m)+2z_m)}$$
  
►  $n = m^4 + m^2g_0'(1)\left[\left(d - 4 - \frac{g_0''(1)}{g_0'(1)}\right) - \frac{4(z_m + \lambda_+(1-z_m))}{(1-z_m)(2z_m + \lambda_+(1-z_m))}\right] + \frac{4\lambda + g_0'^2(1)}{(1-z_m)(2z_m + \lambda_+(1-z_m))}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Summary and Conclusion



Figure:  $B_c/T_c^2$  vs  $T/T_c$  plot :  $z_m = 0.5, MG_d = 100, d = 5$ 

・ロト ・聞ト ・ヨト ・ヨト

э

## Summary and Conclusion



Figure:  $B_c/T_c^2$  vs  $T/T_c$  plot :  $z_m = 0.5, MG_d = 100, d = 5$ 

- there exists a critical magnetic field as well as a critical temperature above which the superconducting phase vanishes.
- critical magnetic field above which the condensate vanishes increases with increase in the noncommutative parameter θ.

I would like to acknowledge Dr. Sunanadan Gangopadhyay for his proper guidance, Prof. P.K. Panigrahi for his support, DPS IISER KOLKATA and CSIR for providing me with fellowship.

## Thank You

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <