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Basics of superconductivity

I Electrical resistivity of some metals suddenly drops to zero
when the temperature is lowered below a certain critical
temeperature Tc - 1911.

I Magnetic field is expelled when T < Tc - Meissner effect.

I BCS theory successfully described low temperature
superconductors-Cooper pair formation-1957.

I High Tc superconductors were discovered in 1986 -
J.G.Bednorz and K.A.Muller -Nobel Prize - 1987.

I Example- cuprates (Tc=134k)

I Pairing mechanism is not well understood for such strongly
coupled system.

I Gauge/gravity duality provides a new tool to understand high
Tc superconductors.



Holographic principle

I A weakly coupled gravity theory in AdSn+1 spacetime is
equivalent to a strongly coupled conformally invariant
quantum field theory CFTn in one less dimension.(Maldacena
1998)

I also known as gauge/gravity duality.

I The name suggests that one can look at a two (spatial)
dimensional superconductor and see a 3-dimensional image.



Constructing gravity dual

I To construct a proper gravitational dual of a superconductor
we need to incorporate the following ideas in our theory

I In the superconductor, we need a notion of temperature. On
the gravity side, that role is played by a black hole.

I In the superconductor, we also need a condensate. In the bulk,
this is described by some field coupled to gravity.

I Static non-zero field outside a black hole corresponds to a
non-zero condensate. This is usually called black hole hair.

I Hence, to describe a superconductor, we need a black hole
that has hair at low temperatures, but no hair at high
temperatures.

I consider

S =

∫
ddx
√
−g [R − 2Λ− β(FµνF

µν)q−

| 5µ ψ − ieAµψ|2 −m2|ψ|2] (1)



Constructing gravity dual

I This is just general relativity with a, coupled to a power
Maxwell field and charged scalar with mass m and charge e.

I It is easy to see why black holes in this theory might be
unstable to forming scalar hair:

I For an electrically charged black hole, the effective mass of ψ
is m2

eff = m2 + e2g ttA2
t

I But the last term is negative, so there is a chance that m2
eff

becomes sufficiently negative near the horizon to destabilize
the scalar field.

I The above mechanism does not work for asymptotically flat
black holes. One has to choose a background metric that is
asymptotically AdS.

I If one rescales Aµ = Ãµ/e and ψ = ψ̃/e, then the matter
action has a 1/e2 in front, so the backreaction of the matter
fields on the metric is suppressed when e is large. The limit
e →∞ with Ãµ and ψ̃ fixed is called the probe limit.



Basic set-up

I The metric of a d-dimensional planar Schwarzschild-AdS
black hole reads

ds2 = −f (r) dt2 +
1

f (r)
dr2 + r2dxidx

i (2)

I where, f (r) = r2

(
1− rd−1

+

rd−1

γ( d−1
2
, r2

4θ
)

γ( d−1
2
,

r2
+

4θ
)

)
.

(ref:10.1016/j.physletb.2005.11.004,Piero Nicolini)

I γ(s, x) =
∫ x

0 ts−1e−tdt - lower incomplete gamma function

I r+ - horizon radius

I θ - noncommutative parameter

I The Hawking temperature is given by

T = f
′
(r+)
4π = r+

4π

[
d − 1− 4MGd

Γ( d−1
2

)
e−

r2
+

4θ

(4θ)
d−1

2

]
.



Equations of motion

I The equations of motion for the Maxwell and the scalar field
obtained by varying the action mentioned previously :

∂2
zφ+

1

z

(
2− d − 2

2q − 1

)
∂zφ

+
2φ(z)ψ2(z)r2q

+ (∂zφ)2(1−q)

z4q2q+1(−1)3qβq(2q − 1)f (z)
= 0 (3)

∂2
zψ +

(
f
′
(z)

f (z)
− d − 4

z

)
∂zψ +

φ2ψr2
+

z4f 2(z)
−

m2ψr2
+

z4f (z)
= 0 . (4)

I where we have chosen the ansatz At = φ(r) and ψ = ψ(r)
and made a variable change z = r+

r .

I f (z) =
r2
+

z2 g0(z) ; g0(z) =

(
1− zd−1 γ( d−1

2
,

r2
+

4θz2 )

γ( d−1
2
,

r2
+

4θ
)

)
.



Boundary conditions

I The boundary condition φ(r = r+) = 0 now becomes
φ(z = 1) = 0.

I Near the boundary (z → 0, r →∞), the scalar potential φ(z)
and the scalar field ψ(z) can be approximated as :

φ(z) = µ− ρ
1

2q−1

r
d−2
2q−1−1

+

z
d−2
2q−1

−1; ψ(z) = ψ−

r
λ−
+

zλ− + ψ+

r
λ+
+

zλ+

where, λ is the conformal dimension of the condensation
operator in the boundary field theory.

λ± = 1
2

[
d − 1±

√
(d − 1)2 + 4m2

]
. (ref: Phys. Lett. B,

718 (2013), p. 1089, D. Roychowdhury)

I The coefficients ψ− and ψ+ correspond to the vacuum
expectation values of the condensation operator.

I µ and ρ are interpreted as the chemical potential and the
charge density of the dual theory on the boundary.



Matching Method

I In this method we expand the φ(z) and ψ(z) field near the
horizon (r = r+, z = 1) and equate that to the asymptotic
(r →∞, z → 0) solution at some point z = zm.[
µ− ρ

1
2q−1

r
d−2
2q−1−1

+

z
d−2
2q−1

−1

]
z=zm

=[
φ(1)− φ′(1)(1− z) + 1

2φ
′′

(1)(1− z)2 + O((1− z)3)
]

z=zm

I By doing so for φ(z) field we get:

µ− ρ
1

2q−1 z
d−2
2q−1

−1
m

(r+)
d−2
2q−1

−1
= v(1− zm) +

1

2
(1− zm)2×[(

2− d − 2

2q − 1

)
v −

2r
2(q−1)
+ α2(−v)3−2q

(−1)3q2q+1(βq)(2q − 1)(g
′
0)

]
(5)



Matching Method
I and for ψ(z) field we get :

〈O+〉 zλ+
m

rλ+
+

= α− (1− zm)α

(
m2

g
′
0(1)

)
+

1

2
α(1− zm)2×[

1

2

(
m2

g
′
0(1)

)(
d − 4− g

′′
0 (1)

g
′
0(1)

+
m2

g
′
0(1)

)
− ṽ2

2g
′
0(1)2

]
. (6)

I where v = −φ′(1), α = ψ(1) and ṽ = v
r+

. and replaced φ
′′

(1)

and ψ
′
(1), ψ

′′
(1) respectively form eq. (3) eq. and (4)

I taking derivative on both side of eq (5) and (6) yields:

− ρ
1

2q−1 z
d−2
2q−1

−2
m

(r+)
d−2
2q−1

−1

(
d − 2

2q − 1
− 1

)
= −v − (1− zm)×[(

2− d − 2

2q − 1

)
v −

2r
2(q−1)
+ α2(−v)3−2q

(−1)3q2q+1(βq)(2q − 1)g
′
0(1)

]
(7)



Matching method

I and

λ+
〈O+〉 zλ+−1

m

rλ+
+

= α

(
m2

g
′
0(1)

)
− α(1− zm)×[

1

2

(
m2

g
′
0(1)

)(
d − 4− g

′′
0 (1)

g
′
0(1)

+
m2

g
′
0(1)

)
− ṽ2

2g
′
0(1)2

]
. (8)



Critical temperature-charge density relationship
I From the above set of equations and using the expression for

Hawking temperature it is simple to obtain :
α2 ≡ α2

NC =

− (−1)5q−32q(βq)(2q−1)g
′
0(1)

ṽ
2(1−q)
NC (1−zm)

×
[
1 +

(
2− d−2

2q−1

)
(1− zm)

]
×(

(Tc )NC

T

) d−2
2q−1

[
1−

(
T

(Tc )NC

) d−2
2q−1

]
I where

(Tc)NC = ξNCρ
1

d−2 (9)

ξNC = −z
( d−2

2q−1
−2)( 2q−1

d−2
)

m

ṽ
2q−1
d−2

NC

(
g
′
0(1)

4π

)
×

( d−2
2q−1 − 1)

2q−1
d−2

[1 + (2− d−2
2q−1 )(1− zm)]

2q−1
d−2

. (10)



Critical temperature-charge density relationship

I Analytical results from
eq.(10) → the critical
temperature decreases with
increase in the
noncommutative parameter
θ → condensate gets harder
to form as the spacetime
noncommutativity increases.

Table: Analytical values of ξNC for
different values of M and θ [q = 1,
m2 = 0, zm = 0.5 and d = 5]

θ ξNC

MGd = 50 MGd = 100

0.3 0.16933 0.1702

0.5 0.16058 0.1678

0.7 0.1492 0.1608

0.9 0.1418 0.1525



Critical temperature-charge density relationship

I mass of the black hole
increases → the critical
temperature for a particular
value of θ increases → the
effects of spacetime
noncommutativity becomes
prominent for lower mass
black holes.

Table: Analytical values of ξNC for
different values of M and θ [q = 1,
m2 = −3, zm = 0.5 and d = 5]

θ ξNC

MGd = 50 MGd = 100

0.3 0.2003 0.2015

0.5 0.18798 0.1977

0.7 0.1744 0.1883

0.9 0.1669 0.1782



Critical temperature-charge density relationship

Table: Analytical values of ξNC for
different values of M and θ [
q = 5/4, m2 = −3, zm = 0.5 and
d = 5]

θ ξNC

MGd = 50 MGd = 100

0.3 0.1126 0.1134

0.5 0.1067 0.1114

0.7 0.1008 0.1069

0.9 0.0980 0.1024

Table: Analytical values of ξNC for
different values of M and θ [
q = 7/4, m2 = −3, zm = 0.5 and
d = 5]

θ ξNC

MGd = 50 MGd = 100

0.3 0.0177 0.0178

0.5 0.0171 0.0176

0.7 0.0167 0.0171

0.9 0.0168 0.0168

I the onset of power Maxwell electrodynamics (for a value of
q 6= 1) makes the condensate difficult to form and the effect of
the power Maxwell theory on the formation of the condensate
decreases with increase in the mass of the black holes.



Introducing magnetic field

I we have chosen the following ansatz to introduce an external
magnetic field B in the bulk theory and observe how the
condensation behaves for noncommutative black hole
background in the bulk.
At = φ(z) , Ay = Bx , ψ = ψ(x , z) .

I The intention is to find a critical magnetic filed Bc above
which the condensation vanishes.

I The equation of motion for the complex scalar field ψ that
follows from the above ansatz reads:

∂2
zψ(x , z) +

(
f
′
(z)

f (z) −
d−4

z

)
∂zψ(x , z) +

φ2(z)ψ(x ,z)r2
+

z4f 2(z)
−

m2r2
+ψ(x ,z)

z4f (z)
+ 1

z2f (z)
(∂2

xψ − B2x2ψ) = 0 .

I For solving the above equation, we write ψ(x , z) as
ψ(x , z) = X (x)R(z) .



Introducing magnetic field

I and we get:

R
′′

(z) +

(
f
′
(z)

f (z)
− d − 4

z

)
R
′
(z) +

φ2(z)r2
+R(z)

z4f 2(z)

−
m2r2

+R(z)

z4f (z)
=

BR(z)

z2f (z)
. (11)

I Using the matching method as earlier after few algebraic steps
a quadratic equation for B can be obtain:

B2 + pr2
+B + nr4

+ − φ
′2(1)r2

+ = 0 (12)

I At B = Bc , the condensate vanishes → ψ = 0



Introducing magnetic field

I Solving eq.(12) :

(Bc )NC =
(−g ′0(1))

d−2
2q−1

−2

2(4π)
d−2
2q−1

−2
ξ

d−2
2q−1

NC

(Tc )2
NC

×

[
ΩNC (d , q,m)− p

(
−4πξNC

g
′
0(1)

) d−2
2q−1

(
T

(Tc)NC

) d−2
2q−1

]
(13)

I where, p =

2m2 +

(
d − 4− g

′′
0 (1)

g
′
0(1)

)
g
′
0(1) + 2g

′
0(1)− 4g

′
0(1)(λ+(1−zm)+zm)

(1−zm)(λ+(1−zm)+2zm)

I n =

m4 + m2g
′
0(1)

[(
d − 4− g

′′
0 (1)

g
′
0(1)

)
− 4(zm+λ+(1−zm))

(1−zm)(2zm+λ+(1−zm))

]
+

4λ+g
′2
0 (1)

(1−zm)(2zm+λ+(1−zm)) .



Summary and Conclusion

I Figure: Bc/T
2
c vs T/Tc plot : zm = 0.5,MGd = 100, d = 5



Summary and Conclusion

Figure: Bc/T
2
c vs T/Tc plot :

zm = 0.5,MGd = 100, d = 5

I there exists a critical
magnetic field as well as a
critical temperature above
which the superconducting
phase vanishes.

I critical magnetic field above
which the condensate
vanishes increases with
increase in the
noncommutative parameter
θ.
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