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Introduction

Minimum measurable length and it's consequences

e The idea of existence of an observer independent minimal length scale arises
naturally in Quantum Gravity theories in the form of effective minimal
uncertainty in position.

e This minimal length expected to be close or equal to the Planck length
occurs in String theory, black hole physics, doubly special relativity,
Lorentzian dynamical triangulations, non-commutative geometry, loop
quantum gravity, to name a few.

e One of the manifestations of the inclusion of a minimal length is the
modification of Heisenberg Uncertainty Principle to the so-called Generalized
Uncertainty Principle(GUP). (Fabio Scardigli, Phys.Lett.B452:39-44,1999)

e Alternatively an observer independent invariant length scale indicates the
possibility of generalization of the Einstein special relativity (SR) which is
called Doubly Special Relativity(DSR).

e In curved space-time it is possible to make generalization of DSR leading to
double general relativity, where the geometry is represented by a one
parameter family of energy-dependent metrics forming a rainbow of metrics
or gravity's rainbow.
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Motivations

e We have studied the following thermodynamic properties of different black
holes by use of several GUP representations and Rainbow Gravity functions,
available in the literature:

> The mass-temperature relation

> Heat capacity expression

> The critical masses(below which the thermodynamic quantities become
ill-defined)

> The remnant masses (at which the radiation process stops)

> The Entropy

e By using the expression of Entropy the well known area theorem has been
derived.

e The existence of a logarithmic correction to the entropy of a black hole is a
universal predication coming from all approaches which analyze leading-order
corrections to the entropy of a black hole.

e The leading-order corrections to the entropy of a black hole has to have the
form of a logarithmic correction.
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Constraints on the GUP from black hole
thermodynamics
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Schwarzschild black hole in d-dimensions and the GUP
Metric in d-dimension and the simplest GUP

e The metric for a Schwarzschild black hole with mass M in d-dimensions can
be written as

1
ds? = — (1 - %) A2+ dr? 1 r2d02 (1)
’ (1-7#5)
r
where
~ l6aGyM 1 2nl7h) 2
T (d-22  ME? TP (R

e The simplest GUP is given by (R.J. Adler, P. Chen, D.I. Santiago, Gen. Rel.
Grav. 33 (2001) 2101.)

B2 2
Oxép > = 5 {1+(5p) } 3)

where I, is the Planck length and B is a dimensionless constant.
e We use natural units c=1=h and kg = 1.
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Constraints on the GUP from Black Hole Thermodynamics Thermodynamics of Schwarzschild black hole in d-dimension

Momentum and Position uncertainty for Schwarzschild
black Hole in d-dimension

e Near the horizon the position uncertainty of an emitted particle will be order
of the Schwarzschild radius:

Ox =¢r (4)

where € is a calibration factor.

e Uncertainty in the momentum for the particle can be written as
op=T. (5)

e The temperature of the emitted particle will be identical to the temperature
of the black hole.
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Constraints on the GUP from Black Hole Thermodynamics Thermodynamics of Schwarzschild black hole in d-dimension

Mass-Temperature Relation, Heat Capacity and Entropy
for Schwarzschild black Hole in d-dimension

e Thus the mass-temperature relation of the black hole would be

1 ﬁ2 d-3
M_a'[+T} (6)
T M3
where J ~
(43I [d-22amg ) -
-\ 4n 167 LR TR
e The heat capacity of the black -hole reads
r d—4
am 1 B? 1 p?
=—= =3)|=+—=5T -+
C a7 a(d 3)_T+MF2, T2+Mg (8)

e The black hole entropy from the first law of black hole thermodynamics can

be determined as
dM dT
p— 27 p— —
5—/c - /c + - (9)
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Constraints on the GUP from Black Hole Thermodynamics Black hole tt

ics in various dil

Entropy of the five dimensional Schwarzschild BH

e Considering the simplest GUP the entropy then can be calculated as follows

S=2a 1 B T
= 23(d:5) ﬁ + ﬁg . (10)
e This expression of entropy is not an acceptable form for the entropy of a
black hole as the leading order corrections have to be logarithmic in nature.

e Now we consider a more general form of GUP, namely linear GUP (Das S.,
Vagenas E. C. and Ali A. F., Phys. Lett. B, 690 (2010) 407 )

h ol 22
3x8p > {1ﬁpap+h;(5p)2}. (11)

e The expression for the entropy of the black hole thus can be obtained as
A 3 AN 32 A3
= a3t ——1\l73 N )
4lp°  (1287)3 \4lp (25672)3 \4lp

sep? [ (16m)f (A
16 |[M, M, \4l}
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Black hole t s n various di
Entropy of the six dimensional Schwarzschild BH

e The corrections to the entropy from the simplest GUP reads

s A 33 (A) i
N A M}

1 1
B* 12872 # A4
W n ", I L : (13)

e The corrections to the entropy from the linear GUP reads

) () =G

727a2B2+27a2ﬁ2| o 4 3 AN
16n2 ' 3272 | M, 3M, alt
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Entropy of the seven dimensional Schwarzschild BH

e Entropy of a black hole from the simplest GUP can be obtained as

3
A 5p? ( ) 2 Mp
= +5p2 2 15
413 (475)% 41,° p 2 (15)
e Corrections to the entropy from the linear GUP reads
A (28 / A\5S 582 [ A
;% e lgs) T T\ 25
413 ()5 \4p 3(2m)s \4/p°
as5aB2 [ ANS 54 [ A
Jrﬁ 2115 Jrﬁ 2115
(2)5 (m)5 \4p (2)8(m)3 \4/p°
19ap*  3ap* 2/ A
oz gz |, (2 F
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Black hole s n various i
Entropy for modified GUP in five dimensions

e A modified GUP containing a cubic and quadratic powers of the momentum
uncertainty can be proposed as

sxop > 2{1 ’32’2(6 Py W 5,,)} (17)

where 7 is a suitable parameter in the theory.

e The entropy corresponding to this GUP can now be written as

LA 3 (AN 33 AN
4L (16m)3 (4lp3> +2(16n)% (4Ip3)
373 2y3 273

N

e Coefficient of the logarithmic term depends upon the coefficient of the cubic
power of the momentum uncertainty in this new GUP.
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Constraints on rainbow gravity functions

Basics of rainbow gravity

e Rainbow gravity generalizes the modified dispersion relations in DSR to
curved spacetime

E2F (E/E,)  p*g? (E/Ep) = m’c® (19)

where Ej is the Planck Energy and the functions f (E/Ep) and g(E/Ep) are
called rainbow functions.

e These functions are responsible for the modification of the energy-momentum
relation in the ultraviolet limit.

e In the infrared limit, they reproduce standard dispersion relation

lim f(E/E,)=1;

li E/E,))=1. 20
E/Ep—0 E/E.}Log( /) (20)

e In the limit E/E, — 0, usual general relativity is recovered.
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Constraints on rainbow gravity functions

e The field equations of Einstein are also modified as
Guv (E/Ep) = 8mG(E/Ep) Tuv (E/Ep) (21)

where the energy dependent Newton's universal gravitational constant
G (E/Ep) becomes the conventional Newton's universal gravitational
constant G = G(0) in the limit E/E, — 0.

e As a consequence, corresponding black hole metrics also get redefined.

e We have considered specific rainbow gravity functions which are motivated
from Loop quantum gravity

FE/E) =1 g(E/En)=[1-n (,f) (22)

where 1 is the rainbow parameter.
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Constraints on rainbow gravity functions Thermodynamics of rainbow gravity inspired Sch. black holes

The Schwarzschild metric, Entropy

e The metric is being considered

1 2MG
2 _ _ 1— 2
@ f2<E/Ep)< : )dt
1 oMG\ ! r2
+ 1— > dr’ + ————dQ°. 23
gz(E/Ep)< ; £2(E/E,) (23)

e The expression for the entropy can be recast in the form

A 3 1 31"n>2 1
s_A, '

4+ @) (28D 8- n) (4)0 D +0(1) (24)

where we have set [, = 1.

e It is evident that the integration is not valid for n=1,2. That means there
are no logarithmic corrections to the semi-classical result for the values of
n>3.
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Constraints on rainbow gravity functions Thermodynamics of rainbow gravity inspired Sch. black holes

Entropy for n=1and n=2

e Taking into account the universality of the logarithmic corrections then the
values of n gets restricted to n=1,2.

e For n=1, the entropy expression upto &(n?) in terms of horizon area yields

A A 3mm? [(A\ 3mn?
sz+n\/ﬁw/z+ 5 In <4> +—3 In(47). (25)
e For n=2, the entropy expression upto &(n?) becomes

_A nm (AN nm 372n? 1
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Constraints on rainbow gravity functions Thermodynamics of rainbow gravity inspired R-N black holes

The RN metric and the Entropy

e The rainbow gravity inspired RN black hole metric reads

1 oM Q2
2 e x 2
ds* = 7)‘(E/Ep)2 (1 p + r2)dt
1 2M Q2>1 ) r2 )
(1= ) drP e ————d0? . 27
g(E/Ep)2( R S(E/E,) @)

e The expression for the entropy for a small argument 7 yields

nin 1 3n"n? 1

3
2= 553D 8= sgy M) (28)

S=5S5gy+

e Sgy= nrg is the semi-classical Bekenstein-Hawking entropy for the rainbow
gravity inspired RN black hole.

e Once again no logarithmic corrections are present in the expression for the
entropy.
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Constraints on rainbow gravity functions Thermodynamics of rainbow gravity inspired R-N black holes

Entropy for n=1and n=2

e For n=1, the entropy expression upto &(n?) in terms of horizon area yields

A A 3?2 (A
5_4+n\/ﬁ\/:+ 3 |n<4>. (29)

e For n=2, the entropy expression upto &(n?) becomes

2.2
S:A nnn(A>_37rn 1

4

4+2 5 @. (30)
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Conclusion

Conclusion

e Modifications of the thermodynamic properties of Schwarzschild and
Reissner-Nordstrom black holes taking into account the effects of generalized
uncertainty principle as well as rainbow gravity functions have been
investigated.

e Findings of Reissner-Nordstrém black holes reduced to Schwarzschild black
hole in the @ — 0 limit.

e The leading-order corrections to the entropy of any thermodynamic system
are logarithmic in nature to constraint the form of the GUP.

e In higher dimensional space time the presence of logarithmic term in the
entropy expression does not refer to arbitrary choice of GUP.

o Rather the order(s) of the momentum uncertainty in GUP depends upon the
dimension of the black hole.

e In all even dimensions the simplest form of the GUP might be enough to
produce the correct form for the corrections to the entropy of a black hole.

EBRETEIE0T0 Desember 7120181527156



Conclusion

Conclusion (cont.)

e In odd dimensions an odd power of momentum uncertainty in the GUP might
be needed to produce the correct form for the corrections to the entropy of a
black hole.

e The computation of the entropy does not contain the universal logarithmic
corrections for all values of the parameter n appearing in the rainbow gravity
functions.

e Only for the values of n=1,2 appearing in the rainbow gravity functions that
the logarithmic corrections to the semi-classical area law for the entropy are
found to exist.
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