Constraints on the Generalized Uncertainty Principle and Rainbow Gravity functions from black-hole thermodynamics

Abhijit Dutta

Department of Physics, Kandi Raj College, Kandi, Murshidabad 742137, India

December 7, 2018

Ab	ohii	iit	D	ut	ta

<ロト < 同ト < ヨト < ヨト

Outline

Introduction

- 2 Constraints on the GUP from Black Hole Thermodynamics
 - Schwarzschild black hole in *d*-dimensions and the GUP
 - Thermodynamics of Schwarzschild black hole in *d*-dimension
 - Black hole thermodynamics in various dimensions
- 3 Constraints on rainbow gravity functions
 - Thermodynamics of rainbow gravity inspired Sch. black holes
 - Thermodynamics of rainbow gravity inspired R-N black holes
 - 4 Conclusion

3 Acknowledgment

<ロト < 同ト < ヨト < ヨト

INTRODUCTION

Abhijit Dutta

・ロト ・部ト ・ヨト ・ヨ

Minimum measurable length and it's consequences

- The idea of existence of an observer independent minimal length scale arises naturally in Quantum Gravity theories in the form of effective minimal uncertainty in position.
- This minimal length expected to be close or equal to the Planck length occurs in String theory, black hole physics, doubly special relativity, Lorentzian dynamical triangulations, non-commutative geometry, loop quantum gravity, to name a few.
- One of the manifestations of the inclusion of a minimal length is the modification of Heisenberg Uncertainty Principle to the so-called Generalized Uncertainty Principle(GUP). (*Fabio Scardigli, Phys.Lett.B452:39-44,1999*)
- Alternatively an observer independent invariant length scale indicates the possibility of generalization of the Einstein special relativity (SR) which is called Doubly Special Relativity(DSR).
- In curved space-time it is possible to make generalization of DSR leading to double general relativity, where the geometry is represented by a one parameter family of energy-dependent metrics forming a rainbow of metrics or gravity's rainbow.

Motivations

- We have studied the following thermodynamic properties of different black holes by use of several GUP representations and Rainbow Gravity functions, available in the literature:
 - ▷ The mass-temperature relation
 - ▷ Heat capacity expression
 - The critical masses(below which the thermodynamic quantities become ill-defined)
 - ▷ The remnant masses (at which the radiation process stops)
 - ▷ The Entropy
- By using the expression of Entropy the well known area theorem has been derived.
- The existence of a logarithmic correction to the entropy of a black hole is a universal predication coming from all approaches which analyze leading-order corrections to the entropy of a black hole.
- The leading-order corrections to the entropy of a black hole has to have the form of a logarithmic correction.

・ロット (雪) (日) (日) (日)

Constraints on the GUP from black hole thermodynamics

Abhijit Dutta

CDQFTG 2018

December 7, 2018 6 / 26

▲ 伊 ▶ ▲ 三 ▶

Metric in *d*-dimension and the simplest GUP

• The metric for a Schwarzschild black hole with mass M in d-dimensions can be written as

$$ds^{2} = -\left(1 - \frac{\mu}{r^{d-3}}\right)dt^{2} + \frac{1}{\left(1 - \frac{\mu}{r^{d-3}}\right)}dr^{2} + r^{2}d\Omega_{d-2}^{2}$$
(1)

where

$$\mu = \frac{16\pi G_d M}{(d-2)\Omega_{d-2}}; \quad G_d = \frac{1}{M_{\rho}^{d-2}}; \quad \Omega_{d-2} = \frac{2\pi^{\left(\frac{d-1}{2}\right)}}{\Gamma\left(\frac{d-1}{2}\right)} . \tag{2}$$

• The simplest GUP is given by (R.J. Adler, P. Chen, D.I. Santiago, Gen. Rel. Grav. 33 (2001) 2101.)

$$\delta \times \delta \rho \ge \frac{\hbar}{2} \left\{ 1 + \frac{\beta^2 l_p^2}{\hbar^2} (\delta \rho)^2 \right\}$$
(3)

where l_p is the Planck length and β is a dimensionless constant.

• We use natural units $c = 1 = \hbar$ and $k_B = 1$.

Momentum and Position uncertainty for Schwarzschild black Hole in *d*-dimension

• Near the horizon the position uncertainty of an emitted particle will be order of the Schwarzschild radius:

$$\delta x = \varepsilon r_h \tag{4}$$

where ε is a calibration factor.

• Uncertainty in the momentum for the particle can be written as

$$\delta p = T. \tag{5}$$

<ロト < 同ト < ヨト < ヨト

• The temperature of the emitted particle will be identical to the temperature of the black hole.

Abinitic Ducca	Ab	hijit	Du	tta
----------------	----	-------	----	-----

Mass-Temperature Relation, Heat Capacity and Entropy for Schwarzschild black Hole in *d*-dimension

• Thus the mass-temperature relation of the black hole would be

$$M = a' \left[\frac{1}{T} + \frac{\beta^2}{M_p^2} T \right]^{d-3} \tag{6}$$

where

$$a' = \left(\frac{d-3}{4\pi}\right)^{(d-3)} \left[\frac{(d-2)\Omega_{d-2}M_p^{d-2}}{16\pi}\right]; \quad l_p = M_p^{-1}.$$
 (7)

• The heat capacity of the black hole reads

$$C = \frac{dM}{dT} = a'(d-3) \left[\frac{1}{T} + \frac{\beta^2}{M_p^2}T\right]^{d-4} \left[-\frac{1}{T^2} + \frac{\beta^2}{M_p^2}\right].$$
 (8)

• The black hole entropy from the first law of black hole thermodynamics can be determined as

$$S = \int c^2 \frac{dM}{T} = \int C \frac{dT}{T} . \tag{9}$$

Entropy of the five dimensional Schwarzschild BH

• Considering the simplest GUP the entropy then can be calculated as follows

$$S = 2a'_{(d=5)} \left(\frac{1}{3T^3} + \frac{\beta^4}{M_{\rho}^4}T\right).$$
 (10)

- This expression of entropy is not an acceptable form for the entropy of a black hole as the leading order corrections have to be logarithmic in nature.
- Now we consider a more general form of GUP, namely linear GUP (*Das S., Vagenas E. C. and Ali A. F., Phys. Lett. B, 690 (2010) 407*)

$$\delta \times \delta p \geq \frac{\hbar}{2} \left\{ 1 - \frac{\alpha l_p}{\hbar} \delta p + \frac{\beta^2 l_p^2}{\hbar^2} (\delta p)^2 \right\}.$$
(11)

• The expression for the entropy of the black hole thus can be obtained as

$$S = \frac{A}{4l_{p}^{3}} + \frac{3\alpha}{(128\pi)^{\frac{1}{3}}} \left(\frac{A}{4l_{p}^{3}}\right)^{\frac{2}{3}} - \frac{3\beta^{2}}{(256\pi^{2})^{\frac{1}{3}}} \left(\frac{A}{4l_{p}^{3}}\right)^{\frac{1}{3}} - \frac{3\alpha\beta^{2}}{16\pi} \ln\left[\frac{\alpha}{M_{p}} + \frac{(16\pi)^{\frac{1}{3}}}{M_{p}} \left(\frac{A}{4l_{p}^{3}}\right)^{\frac{1}{3}}\right]_{\text{Figure 1}}$$
(12)

Entropy of the six dimensional Schwarzschild BH

• The corrections to the entropy from the simplest GUP reads

$$S = \frac{A}{4l_{p}^{4}} - \beta^{2} \frac{3\sqrt{3}}{4\sqrt{2}\pi} \left(\frac{A}{4l_{p}^{4}}\right)^{\frac{1}{2}} - \frac{\beta^{4}}{M_{p}^{4}} - \frac{\beta^{4}}{M_{p}^{4}} \ln\left[\left(\frac{128\pi^{2}}{M_{p}}\right)^{\frac{1}{4}}l_{p}\left(\frac{A}{4l_{p}^{4}}\right)^{\frac{1}{4}}\right].$$

• The corrections to the entropy from the linear GUP reads

$$S = \frac{A}{4l_{p}^{4}} + \frac{\alpha}{\sqrt{\pi}} \left(\frac{2}{3}\right)^{\frac{1}{4}} \left(\frac{A}{4l_{p}^{4}}\right)^{\frac{3}{4}} - \frac{(\alpha^{2} - \beta^{2})}{\pi} \frac{3\sqrt{3}}{4\sqrt{2}} \left(\frac{A}{4l_{p}^{4}}\right)^{\frac{1}{2}} - \frac{27\alpha^{2}\beta^{2}}{16\pi^{2}} + \frac{27\alpha^{2}\beta^{2}}{32\pi^{2}} \ln\left[\frac{\alpha}{M_{p}} + \frac{4\pi}{3M_{p}} \left(\frac{3}{2}\right)^{\frac{1}{4}} \left(\frac{A}{4l_{p}^{4}}\right)^{\frac{1}{4}}\right].$$
 (14)

(日) (四) (三) (三)

(13)

Entropy of the seven dimensional Schwarzschild BH

• Entropy of a black hole from the simplest GUP can be obtained as

$$S = \frac{A}{4l_{\rho}^{5}} - \frac{5\beta^{2}}{(4\pi)^{\frac{4}{5}}} \left(\frac{A}{4l_{\rho}^{5}}\right)^{\frac{3}{5}} + 5\beta^{2}\frac{M_{\rho}^{3}}{6\pi^{2}} .$$
 (15)

• Corrections to the entropy from the linear GUP reads

$$S = \frac{A}{4l_{p}^{5}} - 5\alpha \frac{(2)^{\frac{3}{5}}}{(\pi)^{\frac{2}{5}}} \left(\frac{A}{4l_{p}^{5}}\right)^{\frac{4}{5}} + \frac{5\beta^{2}}{3(2\pi)^{\frac{4}{5}}} \left(\frac{A}{4l_{p}^{5}}\right)^{\frac{3}{5}} + \frac{45\alpha\beta^{2}}{(2)^{\frac{11}{5}}(\pi)^{\frac{6}{5}}} \left(\frac{A}{4l_{p}^{5}}\right)^{\frac{2}{5}} + \frac{5\beta^{4}}{(2)^{\frac{8}{5}}(\pi)^{\frac{3}{5}}} \left(\frac{A}{4l_{p}^{5}}\right)^{\frac{1}{5}} - \frac{19\alpha\beta^{4}}{8\pi^{2}} + \frac{3\alpha\beta^{4}}{4\pi^{2}} \ln \left[\frac{\alpha}{M_{p}} + (2\pi)^{\frac{2}{5}} \left(\frac{A}{4l_{p}^{5}}\right)^{\frac{1}{4}}\right].$$
 (16)

(日) (四) (三) (三)

Entropy for modified GUP in five dimensions

• A modified GUP containing a cubic and quadratic powers of the momentum uncertainty can be proposed as

$$\delta \times \delta p \geq \frac{\hbar}{2} \left\{ 1 + \frac{\beta^2 l_p^2}{\hbar^2} (\delta p)^2 + \frac{\gamma^3 l_p^3}{\hbar^3} (\delta p)^3 \right\}$$
(17)

where γ is a suitable parameter in the theory.

• The entropy corresponding to this GUP can now be written as

$$5 = \frac{A}{4l_{p}^{3}} - \frac{3\beta^{2}}{(16\pi)^{\frac{2}{3}}} \left(\frac{A}{4l_{p}^{3}}\right)^{\frac{1}{3}} + \frac{33\beta^{2}\gamma^{3}}{2(16\pi)^{\frac{5}{3}}} \left(\frac{A}{4l_{p}^{3}}\right)^{-\frac{2}{3}} - \frac{3\gamma^{3}}{16\pi} - \frac{2\gamma^{3}}{16\pi} \ln(4\pi) - \frac{2\gamma^{3}}{16\pi} \ln A .$$
(18)

• Coefficient of the logarithmic term depends upon the coefficient of the cubic power of the momentum uncertainty in this new GUP.

イロト イボト イヨト イヨト

Constraints on rainbow gravity functions

Abhijit Dutta

CDQFTG 2018

December 7, 2018 14 / 26

∃ →

Basics of rainbow gravity

• Rainbow gravity generalizes the modified dispersion relations in DSR to curved spacetime

$$E^{2}f^{2}(E/E_{p}) - p^{2}g^{2}(E/E_{p}) = m^{2}c^{4}$$
(19)

where E_p is the Planck Energy and the functions $f(E/E_p)$ and $g(E/E_p)$ are called rainbow functions.

- These functions are responsible for the modification of the energy-momentum relation in the ultraviolet limit.
- In the infrared limit, they reproduce standard dispersion relation

$$\lim_{E/E_{\rho} \to 0} f(E/E_{\rho}) = 1 ; \lim_{E/E_{\rho} \to 0} g(E/E_{\rho}) = 1 .$$
 (20)

• In the limit $E/E_p \rightarrow 0$, usual general relativity is recovered.

イロト イボト イヨト イヨト

• The field equations of Einstein are also modified as

$$G_{\mu\nu}(E/E_{\rho}) = 8\pi G(E/E_{\rho}) T_{\mu\nu}(E/E_{\rho})$$
(21)

where the energy dependent Newton's universal gravitational constant $G(E/E_p)$ becomes the conventional Newton's universal gravitational constant G = G(0) in the limit $E/E_p \rightarrow 0$.

- As a consequence, corresponding black hole metrics also get redefined.
- We have considered specific rainbow gravity functions which are motivated from Loop quantum gravity

$$f(E/E_p) = 1 ; g(E/E_p) = \sqrt{1 - \eta \left(\frac{E}{E_p}\right)^n}$$
(22)

where η is the rainbow parameter.

(日)

The Schwarzschild metric, Entropy

• The metric is being considered

$$ds^{2} = -\frac{1}{f^{2}(E/E_{p})} \left(1 - \frac{2MG}{r}\right) dt^{2} + \frac{1}{g^{2}(E/E_{p})} \left(1 - \frac{2MG}{r}\right)^{-1} dr^{2} + \frac{r^{2}}{g^{2}(E/E_{p})} d\Omega^{2}.$$
 (23)

• The expression for the entropy can be recast in the form

$$S = \frac{A}{4} + \frac{\pi^{\frac{n}{2}}\eta}{(2-n)} \frac{1}{\left(\frac{A}{4}\right)^{\left(\frac{n}{2}-1\right)}} + \frac{3\pi^{n}\eta^{2}}{8(1-n)} \frac{1}{\left(\frac{A}{4}\right)^{(n-1)}} + \mathcal{O}(\eta^{3})$$
(24)

where we have set $l_p = 1$.

• It is evident that the integration is not valid for n = 1, 2. That means there are no logarithmic corrections to the semi-classical result for the values of $n \ge 3$.

<ロト < 同ト < ヨト < ヨト

Entropy for n = 1 and n = 2

- Taking into account the universality of the logarithmic corrections then the values of n gets restricted to n = 1, 2.
- For n = 1, the entropy expression upto $\mathscr{O}(\eta^2)$ in terms of horizon area yields

$$S = \frac{A}{4} + \eta \sqrt{\pi} \sqrt{\frac{A}{4}} + \frac{3\pi \eta^2}{8} \ln\left(\frac{A}{4}\right) + \frac{3\pi \eta^2}{8} \ln(4\pi).$$
(25)

• For n=2, the entropy expression upto $\mathscr{O}(\eta^2)$ becomes

$$S = \frac{A}{4} + \frac{\eta \pi}{2} \ln\left(\frac{A}{4}\right) + \frac{\eta \pi}{2} \ln\left(4\pi\right) - \frac{3\pi^2 \eta^2}{8} \frac{1}{\left(\frac{A}{4}\right)} .$$
(26)

The RN metric and the Entropy

• The rainbow gravity inspired RN black hole metric reads

$$ds^{2} = -\frac{1}{f(E/E_{p})^{2}} \left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right) dt^{2} + \frac{1}{g(E/E_{p})^{2}} \left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)^{-1} dr^{2} + \frac{r^{2}}{g(E/E_{p})^{2}} d\Omega^{2} .$$
(27)

- The expression for the entropy for a small argument η yields

$$S = S_{BH} + \frac{\pi^{\frac{n}{2}}\eta}{(2-n)} \frac{1}{S_{BH}^{(\frac{n}{2}-1)}} + \frac{3\pi^{n}\eta^{2}}{8(1-n)} \frac{1}{S_{BH}^{(n-1)}} + \mathcal{O}(\eta^{3}) .$$
(28)

- $S_{BH} = \pi r_0^2$ is the semi-classical Bekenstein-Hawking entropy for the rainbow gravity inspired RN black hole.
- Once again no logarithmic corrections are present in the expression for the entropy.

Abhijit Dutta

Entropy for n = 1 and n = 2

• For n = 1, the entropy expression upto $\mathscr{O}(\eta^2)$ in terms of horizon area yields

$$S = \frac{A}{4} + \eta \sqrt{\pi} \sqrt{\frac{A}{4}} + \frac{3\pi \eta^2}{8} \ln\left(\frac{A}{4}\right).$$
⁽²⁹⁾

• For n=2, the entropy expression upto $\mathscr{O}(\eta^2)$ becomes

$$S = \frac{A}{4} + \frac{\eta \pi}{2} \ln\left(\frac{A}{4}\right) - \frac{3\pi^2 \eta^2}{8} \frac{1}{\left(\frac{A}{4}\right)} .$$
(30)

Conclusion

Abhijit Dutta

December 7, 2018 21 / 26

э

(日) (日) (日) (日) (日)

Conclusion

- Modifications of the thermodynamic properties of Schwarzschild and Reissner-Nordström black holes taking into account the effects of generalized uncertainty principle as well as rainbow gravity functions have been investigated.
- Findings of Reissner-Nordström black holes reduced to Schwarzschild black hole in the $Q \rightarrow 0$ limit.
- The leading-order corrections to the entropy of any thermodynamic system are logarithmic in nature to constraint the form of the GUP.
- In higher dimensional space time the presence of logarithmic term in the entropy expression does not refer to arbitrary choice of GUP.
- Rather the order(s) of the momentum uncertainty in GUP depends upon the dimension of the black hole.
- In all even dimensions the simplest form of the GUP might be enough to produce the correct form for the corrections to the entropy of a black hole.

<ロト < 同ト < ヨト < ヨト

Conclusion (cont.)

- In odd dimensions an odd power of momentum uncertainty in the GUP might be needed to produce the correct form for the corrections to the entropy of a black hole.
- The computation of the entropy does not contain the universal logarithmic corrections for all values of the parameter n appearing in the rainbow gravity functions.
- Only for the values of n = 1,2 appearing in the rainbow gravity functions that the logarithmic corrections to the semi-classical area law for the entropy are found to exist.

This talk is based on the work I have done in collaboration with Dr. Sunandan Gangopadhyay.

< A > <

References

- S Gangopadhyay, A Dutta, Mir Faizal, "Constraints on the Generalized Uncertainty Principle from Black Hole Thermodynamics"; 'EPL, 112 (2015) 20006'.
- S Gangopadhyay, A Dutta, "Constraints on rainbow gravity functions from black hole thermodynamics" ; 'EPL, 115 (2016) 50005'.

<ロト < 同ト < ヨト < ヨト

THANK YOU...

Abhijit Dutta

・ロト ・四ト ・ヨト ・ヨ