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Basic Preliminaries
I There are several different measures of quantum

information which are currently being studied in respect
of holography.

I For a bipartite system consisting of A and B, EE of a
subsystem A is the von Neumann entropy and is defined
as SA = −Tr(ρA log ρA), where ρA = TrB(ρtot).

I Seminal work of Ryu-Takayanagi: the holographic version
of this can be written as

SE (A) =
Area(γmin

A )

4GN

γmin
A is the minimal codimension 2 surface in AdSd+2

space with ∂γmin
A = ∂A and GN is the

(d + 2)-dimensional Newton’s constant.
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I Complexity is another measure of quantum information,
which quantifies the minimum number of quantum gates
needed to reach a target quantum state from a reference
state. (Quantum Mechanical POV)

I Susskind proposed something holographically in the
gravity side which is different from EE and he terms it as
complexity.

I Various motivations (e.g; Complexity = Volume,
Subregion Duality, RT formula) led Alishahiha to propose
another idea, namely Subregion Holographic Complexity,
by which one can quantify the complexity associated with
a subsystem of a bipartite system, using the bulk volume
(V (γ)) dual to a RT surface.

CV =
V (γ)

8πRGN
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I The solution we study here is of a Non-supersymmetric
D3 brane with finite temperature. The metric is of the
form

ds2 = F1(ρ)−
1
2G (ρ)−

δ2
8

[
−G (ρ)

δ2
2 dt2 +

∑3
i=1(dx i )2

]
+

F1(ρ)
1
2G (ρ)

1
4

[
dρ2

G(ρ) + ρ2dΩ2
5

]

e2φ = G (ρ)−
3δ2
2 +

7δ1
4 , F[5] =

1√
2

(1 + ∗)QVol(Ω5).

I The functions G (ρ) and F1(ρ) are defined as,

G (ρ) = 1+
ρ4

0

ρ4 , F1(ρ) = G (ρ)
α1
2 cosh2 θ−G (ρ)−

β1
2 sinh2 θ



I The solution we study here is of a Non-supersymmetric
D3 brane with finite temperature. The metric is of the
form

ds2 = F1(ρ)−
1
2G (ρ)−

δ2
8

[
−G (ρ)

δ2
2 dt2 +

∑3
i=1(dx i )2

]
+

F1(ρ)
1
2G (ρ)

1
4

[
dρ2

G(ρ) + ρ2dΩ2
5

]

e2φ = G (ρ)−
3δ2
2 +

7δ1
4 , F[5] =

1√
2

(1 + ∗)QVol(Ω5).

I The functions G (ρ) and F1(ρ) are defined as,

G (ρ) = 1+
ρ4

0

ρ4 , F1(ρ) = G (ρ)
α1
2 cosh2 θ−G (ρ)−

β1
2 sinh2 θ



I The parameters are not all independent but they satisfy
certain consistency relations.

I The solution has two interesting limits.
1. In parameter values δ2 = −2 δ1 = −12

7 and choice
α1 + β1 = 2, the solution reduces to standard black brane
solution.
2. When, δ2 = 0, it reduces to the zero temperature
nonsusy D3 brane solution.
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I We find the temperature to be

Tnonsusy =

(
−2δ2

(α1 + β1)2

) 1
4 1
πρ0 cosh θ

which is also consistent with the temperature of the
standard AdS black brane once the corresponding limit is
imposed (δ2 = −2 , α1 + β1 = 2).

I The Einstein frame metric after a few reparametrization,
looks like

ds2 = H(ρ)−
1
2

[
−G (ρ)

2+3δ2
8 dt2 + G (ρ)

2−δ2
8

3∑
i=1

(dx i )2

]
+

H(ρ)
1
2

[
dρ2

G(ρ) + ρ2dΩ2
5
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I The throat geometry of the Einstein frame metric is as
follows,

ρ ∼ ρ0 � ρ0 cosh
1
2 θ

In this limit, θ →∞ and the function H(ρ) can be
approximated as H(ρ) ≈ ρ4

1/ρ
4, but G (ρ) remains

unchanged.

I The metric then reduces to

ds2 =
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1
2 θ is the radius of the transverse

5-sphere which decouples from the five dimensional
asymptotically AdS5 geometry.
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HEE and Entanglement Thermodynamics
I The form of metric we deal with here is an asymptotically

AdS5 metric of the form

ds2 =
ρ2

ρ2
1
G (ρ)

1
4−

δ2
8

[
−G (ρ)

δ2
2 dt2 +

3∑
i=1

(dx i)2

]
+
ρ2

1

ρ2

dρ2

G (ρ)

I The asymptotic limit is ρ→∞, G (ρ)→ 1 where the
metric reduces to AdS5 form.

I After reducing our metric to FG form, a simple coordinate
transformation, and choosing the embedding x1 = x1(z)
the spacelike part takes the form

ds2 =
ρ2

1

z2

(1− δ2
8
z4

z4
0

) ∑
i=2,3

(dx i )2 + dz2
{

1 +

(
1− δ2

8
z4

z4
0

)
x ′

2

1 (z)

}
where z4

0 = ρ8
1/ρ

4
0.
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I For preciseness, the subsystem chosen here is the infinite
strip subsystem bounded by −`/2 ≤ x1 ≤ `/2 and
0 ≤ x2,3 ≤ L, where ` is very small and L is very large.

I We can now write the area integral as

A =

∫ ∫ ∫
dx2dx3dz

ρ3
1

z3

(
1− δ2

8
z4

z4
0

)√
1 +

(
1− δ2

8
z4

z4
0

)
x ′

2
1 (z)

and minimize the area integral using the Euler-Lagrange
equations.

I Now using the minimized area integral, we get the
entanglement entropy to be

SE = SE(0) +
ρ3

1L
2

4G(5)

∫ z∗

0
dz

 (−3δ2)z4

8z4
0

z3
√

1− z6

z6
∗

+

δ2z4

8z4
0

√
1− z6

z6
∗

z3
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I Using the turning point (z∗) value,

z∗ =
`Γ
(

1
6

)
2
√
πΓ
(

2
3

)
the change in entanglement entropy is found to be

∆SE =
(−δ2)ρ3

1L
2`2

320
√
πG(5)z4

0

Γ2
(

1
6

)
Γ
(

1
3

)
Γ2
(

2
3

)
Γ
(

5
6

) .

I Putting the AdS black hole limit, we get the change of
entanglement entropy to match with the black hole result
exactly.

∆SE =
ρ3

1L
2`2

160
√
πG(5)z4
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Entanglement thermodynamics
I By looking at the Fefferman-Graham form of the metric,

we extract the boundary stress tensor components using
the relation,

〈T (d+1)
µν 〉 =

(d + 1)ρd1
16πG(d+2)

h(d+1)
µν

I The stress tensor for the boundary theory of ‘black’
non-susy D3 brane is,

〈Ttt〉 =
−3ρ3

1δ2
32πG(5)

, 〈Txixj 〉 =
−ρ3

1δ2
32πG(5)

δij

I Using these values, we can write the change of HEE as,

∆SE =
L2`2
√
π

24
Γ2
(

1
6

)
Γ
(

1
3

)
Γ2
(

2
3

)
Γ
(

5
6

) [〈Ttt〉 −
3
5
〈Tx1x1〉

]
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∆E = TE∆SE +
3
5
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where, entanglement temperature TE is,
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Entropy Cross Over at high temperature

I Typically, in case of holographic theories, one can observe
a cross over between the HEE and the thermal entropy in
the high temperature limit.

I In this case, there is no such Bekenstein-Hawking kind of
entropy defined a priori as there isn’t any event horizon
present for the general solution. We take the high
temperature limit of the HEE and try to get a feel of
whether the high temperature HEE can give us some
notion of thermal entropy.

I The high temperature limit of HEE is the limit z∗ → z0.
This corresponds to increasing z∗ and thus ` to bigger
value where it covers most part of the system and
normally converges with thermal entropy.
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I The subsystem size integral can be written in general as,

`

2
= z∗

∫ 1

0

x3
√

1− x6

1 +
− 3δ2z4

∗
8z4
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+

3δ2z4
∗x

4

8z4
0

1− ( z
z∗

)6 +
δ2z

4
∗x

4

8z4
0

 dx = z∗I
(
z∗
z0

)

I Similarly, the area integral can be written in the form,

Amin =
2ρ3

1L
2

z2
∗

∫ 1

0

dx

x3

√√√√√
(
1− 5δ2

8
z4
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2ρ3

1L
2

z2
∗
Ĩ
(
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z0
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I In the high temperature limit z∗ → z0, both the integrals
I and Ĩ are dominated by the pole at x = 1, i.e., in this
limit

I
(
z∗
z0

)
≈ Ĩ

(
z∗
z0

)

I After replacing Ĩ
(

z∗
z0

)
by I

(
z∗
z0

)
, the entanglement

entropy in high temperature limit reduces to

SE =
Area(γmin

A )

4G(5)
=

ρ3
1L

2`

4G(5)z3
∗

=
π3ρ3

1V3

4G(5)(πz0)3

I The HEE of the nonsusy "black" D3 brane in high
temperature is found to have a cross over with the
thermal entropy of the standard AdS5 BH.
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Conclusion and Outlook

I The form of the Entanglement thermodynamics is
unchanged upto first order in case of Nonsupersymmetric
solution.

I The zero temperature nonsusy D3 brane carries the same
amount of information as the pure AdS case as per as
quantified by HEE.

I The entropy cross over between ‘black’ nonsusy D3 brane
and the standard black brane in high temperature hints a
possible crossover between the physics of the two.
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I We have also computed the 2nd order change in
subregion complexity (leading order), from which we can
comment on the quantum Fisher information of the dual
nonconformal, nonsupersymmetric QFT. It also seems
that the Fisher information metric is quite a robust and
universal quantity independent of the supersymmetry of
the underlying theory,
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