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Closed Timelike Curves

Einsteins field equations allow the existence of closed timelike
curves (CTC’s), in certain exotic spacetime geometries
So what are CTCs?

TIME TRAVEL!
CTCs, if followed, allow a time traveler (human being or
elementary particle) to interact with his/her former self.
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But.. this got issues!

grandfather-like paradox: Our time traveller, accidentally or on
purpose, kills her grandfather as young man before he as had any
children. So, she does not exist; so, she cannot go to the past and
kill her grandfather,” (issue of the self-consistency of dynamics)

unproven theorem paradox: Our time traveller learns an elegant
proof of a theorem in a conference and goes back in time and
submits and presents the proof at the same conference, where she
learnt the proof in the first place. (issue of indeterminacy)
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Physicists to the rescue!

Deutsch suggested imposing a self-consistency condition, in context of
Hilbert Space, postulating self-consistency conditions for the states that
enter and exit the closed-timelike curve,
The Deutschian model of CTCs (D-CTCs) impose a boundary condition,
in which the density operator of the CTC system that interacts with a
chronology respecting (CR) system is the same, both before and after it
enters the wormhole.
Formally,

ρCTC = Φ(ρCTC ) = TrCR
(
U(ρCR ⊗ ρCTC )U†)

where ρCR is the density matrix for chronology-respecting system, ρCTC is
the initial density matrix of the qubit traveling along the closed timelike
curve, and U is the interaction unitary.
Mathematically, this can be seen as nature finding a fixed point solution
of the map, Φ, that depends on the chronology respecting system.
Other formulations are physically equivalent, transition probability CTCs
(T-CTCs), postselected CTCs (P-CTCs)
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CTC and Quantum Information

A different line of research has sought to understand the
implications of CTCs, supposing they existed, for quantum
mechanics, computation and information and now has a significant
body of results in the quantum information literature.
CTC-assisted models of computation can,

I Solve PSPACE problems in P

I Distinguish between non-orthogonal states

I Clone Quantum States (with arbitrary accuracy)

I ...

I Nature of entanglement?
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What we already know about entanglement

Cannot discriminate between Bell States using LOCC (Ghosh, Kar,Roy,

Sen,Sen, PRL 2002)

Discriminate between any set bipartite entangled states?
Cannot create entanglement using LOCC
Entanglement is monogamous
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Bob recovers the state |ψ〉, after CC from Alice and attempts to
distinguish the states {α |0〉 ± β |1〉 , α |1〉 ± β |0〉}
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ρCTC

€ 

ρCTCU00# U01# U10# U11#

b1#
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U00 =

[
α β
−β α

]
⊗ I, U01 = (X ⊗ X ) ◦ (

[
β α
α −β

]
⊗ I),

U10 = (X ⊗ I) ◦ (

[
β α
−α β

]
⊗ I), U11 =

[
α β
β −α

]
⊗ X

Measurements State Identified Conclusive
Outcomes, b1, b2 by Bob Bell State

0,0 α |0〉+ β |1〉
∣∣Φ+

〉
0,1 α |0〉 − β |1〉

∣∣Φ−〉
1,0 α |1〉+ β |0〉

∣∣Ψ+
〉

1,1 α |1〉 − β |0〉
∣∣Ψ−〉
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The same idea can be extended to discriminate between any set
bipartite entangled states,

{Σd
j=0λ

(i)
j

∣∣∣a(i)
j

〉 ∣∣∣b(i)
j

〉
}ni=1

using LOCC as well, which is again known to be impossible
conventionally.
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Detour: Smolin States

“A four-party quantum state which cannot be written in a
separable form and from which no pure entanglement can be
distilled by LOCC among the parties, and yet when any two of the
parties come together in the same laboratory they can perform a
measurement which enables the other two parties to create a pure
maximally entangled state between them without coming
together.”

A four-party unlockable bound-entangled state,

ρ = 1
4

(
∣∣Φ+

〉 〈
Φ+

∣∣AB ⊗ ∣∣Φ+
〉 〈

Φ+
∣∣CD +

∣∣Φ−〉 〈Φ−
∣∣AB ⊗ ∣∣Φ−〉 〈Φ−

∣∣CD +∣∣Ψ+
〉 〈

Ψ+
∣∣AB ⊗ ∣∣Ψ+

〉 〈
Ψ+

∣∣CD +
∣∣Ψ−〉 〈Ψ−

∣∣AB ⊗ ∣∣Ψ−〉 〈Ψ−
∣∣CD)
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Open time-like curves

The same results hold true for Open time-like curves as well.
Open time-like curves (Pienaar et al, Phys. Rev. Lett. 110, 060501
(2013)) modelled the effects of such physical systems, where there
was no interaction in the CTC, i.e. the Unitaries are Identity
operators. Here, with entanglement between the qubits travelling
along a timelike curve and an external chronology-respecting
system, the self consistency conditions become,

ρOTC⊗CR = TrCR(ρOTC⊗CR)⊗ TrOTC (ρOTC⊗CR) = ρOTC ⊗ ρCR

where ρOTC⊗CR is a bipartite system, and one of the systems is
sent through the OTC.
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I Alice prepares the state |ψ〉 = α |0〉+ β |1〉, s.t.,
0 ≤ α 6= β ≤ 1 and |2αβ − (α2 − β2)| > 0. Then they follow
the same strategy as before and Alice teleports the state to
Bob.

I Bob now has the state |ψ′〉 ∈ {α |0〉 ± β |1〉 , β |0〉 ±α |1〉} and
needs to determine the exact state to conclude the Bell state.

I To do this, Bob uses the circuit depicted in Fig 2. The unitary
Ub1b2 is chosen based on Alice’s Bell measurement outcomes
b1b2. The unitaries are defined as

U00 =

[
α β
−β α

]
, U01 = X ◦

[
β α
α −β

]

U10 = X ◦
[
β α
−α β

]
, U11 =

[
α β
β −α

]
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Table lists he corresponding Bell States Alice & Bob share. The first column corresponds to Alice’s Bell
measurements, and the first row lists the possible measurement outcomes for Bob who has an OTC assisted

computer. Alice and Bob share the Bell state that is listed in the cell in row and column corresponding to their
measurement outcomes. Here γ = (α2 − β2)2 and δ = (2αβ)2

Bob Sees
Alice’s All meas. |0〉 All meas. |1〉 γN meas. result in |0〉 and δN meas. result in |0〉 and

Bell Measurements δN meas. result in |1〉 γN meas. result in |1〉
b1, b2

0,0
∣∣∣Φ+

〉 ∣∣∣Ψ−
〉 ∣∣∣Φ−

〉 ∣∣∣Ψ+
〉

0,1
∣∣∣Φ+

〉 ∣∣∣Ψ−
〉 ∣∣∣Φ−

〉 ∣∣∣Ψ+
〉

1,0
∣∣∣Ψ−

〉 ∣∣∣Φ+
〉 ∣∣∣Ψ+

〉 ∣∣∣Φ−
〉

1,1
∣∣∣Ψ−

〉 ∣∣∣Φ+
〉 ∣∣∣Ψ+

〉 ∣∣∣Φ−
〉
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Conclusion

Can discriminate between Bell States using LOCC
Can discriminate between any set bipartite entangled states
Can increase entanglement using LOCC

if there exists Deutschian CTCs or Open time-like curves

1. Moulick, S. R. and Panigrahi, P. K. Timelike curves can
increase entanglement with LOCC. Sci. Rep. 6, 37958 (2016).
2. Ghosh, S., Adhikary, A., Paul, G. Quantum Signaling to the
Past Using P-CTCS. Quantum Information & Computation, vol.
18, no. 11 & 12, pp. 965-974 (2018).
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Quantum Cost Efficient Scheme for Violating the Holevo
Bound and Cloning in the Presence of Deutschian Closed
Timelike Curves

I We can perfectly distinguish a dictionary of non-orthogonal
states in the presence of a D-CTC.

I Thus, we can transmit any amount of information via a single
qubit (violating the Holevo bound).

I We demonstrate a scheme to do this in an quantum cost
efficient way.

I We also show that this scheme can be modified to clone a
qubit, while maintaining efficiency.
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Dictionary of non-orthogonal states

I Alice wants to send information to Bob. Alice prepares one of
these single qubit states.

I These states are evenly spaced and lie on the XZ plane of the
Bloch sphere.

I Here, for example, Alice can choose from 8 different states
(3-bits of information).
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Encoding of an n-bit register in a single qubit

|an〉

|an−1〉
...

|a1〉

|0〉 Ry(π) Ry(
π
2 ) Ry(

π
2n−1 )

...

|ψk〉

I Alice can employ this circuit to prepare her qubit.

I To encode k = (an...a1), the total rotation performed on |0〉 is
Ry ( 2πk

2n ).

I |ψk〉 is the states in our dictionary, which corresponds to the
value k. She sends this to Bob.
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Retrieving the n-bit register from the encoded qubit

|ψ〉

CR

CTC

|0〉
...

|0〉

||

||
...

||

Ry(−π) Ry(
−π
2 ) Ry(

−π
2n−1 )

H

H

Ry(
π
n ) Ry(

π
n )

an

an−1

...

a1

||

||
...

||

S R

T W

C

I Bob employs this circuit to retrieve k .

I S swaps the CR and CTC registers.

I R is the circuit in the previous slide, although the rotation is
performed in the opposite direction.
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Retrieving the n-bit register from the encoded qubit

I If the CTC system is initialized to |k〉, R yields |0〉. T and W
have no influence and C copies k to the CTC. The
self-consistency condition is satisfied.

I if the CTC system is not initialized to |k〉, R does not rotate
|Ψk〉 to |0〉.

I Then, T and W transforms the CTC system in a
superposition of all the computational basis states. The
action of C still yields a complete superposition.

I the output of the CTC has a non-zero projection onto |k〉.
This ensures that there are no other solutions to the
self-consistency condition.

I Thus, the CTC system always is initialized as |k〉. Bob can
simply measure the qubits to retrieve k .
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CTC-assisted circuit to clone a single qubit state

|ψ〉

|0〉

|0〉

|0〉

||

||

||

||

Rz(−π) Rz(−π2 ) Ry(−π2 ) Ry(−π4 )

H

H

H

Ry(
π
4 ) Ry(

π
4 ) Ry(

π
4 )

a1

a2

b1

b2

||

||

||

||

I We can extend our dictionary of distinguishable states by
rotation along both the Y and Z axis.

I Rotation along Z: Azimuthal angle; Rotation along Y: Polar
angle

I Here, (a1, a2) gives the polar angle and (b1, b2) gives
azimuthal angle.
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(a) (b)

I Cloning is imperfect. We can evaluate the fidelity of cloning
for the other states and plot this on a Bloch sphere.

I (a) corresponds to 3 qubits for both azimuthal and polar
angles. (b) corresponds to 4 qubits each.
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Quantum Signaling to the Past Using P-CTCS
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Entanglement Witness
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Entanglement Witness
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Quantum circuit for simulating the scheme.

|0〉 H X Rz(
φ
2 ) X Rz(−φLR

2 ) 1

|0〉 H X Rz(
φ
2 ) Rz(−φ2 ) X Rz(

φLR

2 ) Rz(
φLR

2 ) 2

∣∣0̃
〉

H H 3

∣∣0̃
〉

H H 4

a) b) c) d)

1 X Rz(−φRL

2 ) X Rz(
φ
2 ) H

2 X Rz(
φRL

2 ) Rz(
φRL

2 ) X Rz(
φ
2 ) Rz(−φ2 ) H

3 ↗

4 ↗

e) f) g)

Figure: |0〉 and |0̃〉 denote the mass quantum states and the spin
quantum states respectively. Step a: we create superposition of both
mass and spin quantum states using Hadamard gates. Step b: we
entangle the mass qubit with the corresponding spin qubit of either of
the test masses. Step c, d, e, f: we introduce the gravitational phase to
the system via ‘LOCC’. Step g: we disentangle mass and the spin qubits
and then measure the spin qubits in two complementary bases to
calculate entanglement witness W.
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Entanglement Witness
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Figure: Entanglement Witness (W) vs ∆φLR + ∆φRL plot. Data points
in the upper half of the horizontal red line denotes entangled states. The
section of the x-axis in between two vertical green lines are the
corresponding ∆ΦLR + ∆φRL values for which the state is entangled.
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Conservation Law for Massive Scale-Invariant Photons in
Weyl-Invariant Gravity
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Conservation Law for Massive Scale-Invariant Photons in
Weyl-Invariant Gravity

I It is demonstrated that a Stueckelberg-type gauge theory,
coupled to the scalar-tensor theory of gravity, is invariant
under both gauge and Weyl transformations.

I It is found that broken scale invariance leads to simultaneous
spontaneous breaking of the gauge symmetry.
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Main Results

Here is the following scalar-tensor lagrangian density;

LST =
1

κ

[ 1

12

√−gRϕ2 +
1

2

√−ggµν∂µϕ∂νϕ
]
. (1)

The infinitesimal Weyl symmetry,

δgµν = 2θ gµν , δϕ = θ ϕ, (2)

changes the Lagrangian by a total derivative, leading to off-shell
contribution to the conserved current as,

Xµ =
1

2κ

√−gϕ2gµν∂νθ. (3)
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Main Results

The use of Euler-Lagrange equations for ϕ and gµν , re-casts the
variation of the Lagrangian as a total derivative, leading to the
on-shell contribution to the Weyl current,

Kµ =
1

2κ

√−gϕ2gµν∂νθ. (4)

As both these contributions are equal, the conventional conserved
Nöther Weyl current vanishes: Jµ = Kµ − Xµ = 0, deeming the
Weyl symmetry as a fake one.
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The situation is unchanged upon application of Nöether’s second
theorem, appropriate for local symmetries, such as the Weyl
symmetry here. The present aim is to obtain an extended theory
having genuine generalized symmetry, instead of the ‘fake’ one,
thereby obtaining a non-vanishing current. Although the matter of
extended Weyl symmetries have been discussed earlier, with
additional fields, having general coupling to STG and massive
excitations, the issue of the conserved current was not addressed.
We have constructed the simplest example of a theory, non-trivially
coupled to the STG, yielding an extended, but genuine, Weyl
symmetry.

I R. Jackiw and S.-Y. Pi, Physical Review D 91, 067501 (2015).

I A. Shukla, K. Abhinav, P. K. Panigrahi, Classical and
Quantum Gravity 33, 235008 (2016).

I A. Shukla, K. Abhinav, P. K. Panigrahi, European Physical
Journal C 76(11) (2016).
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ThankYou
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