

S N BOSE NATIONAL CENTRE FOR BASIC SCIENCES Block JD, Sector III, Salt Lake, Kolkata 700 106

DEPARTMENTAL SEMINAR Condensed Matter and Materials Physics

30th July 2025

4.00 PM

ONLINE / FERMION

SPEAKER

Dr. Isao H. Inoue, DSc., Senior Researcher at National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

TITLE OF THE TALK

Unveiling the Unexpected in SrTiO3 : Polar Metal States as a Superconductivity Enhancer

HOST FACULTY

Unveiling the Unexpected in SrTiO₃: Polar Metal States as a Superconductivity Enhancer

Yasuhide Tomioka¹, Naoki Shirakawa¹, and Isao H. Inoue¹

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan

Nb:(Sr,Ba)TiO₃, achieved by substituting Ti⁴⁺ with Nb⁵⁺ in the ferroelectric (Sr,Ba)TiO₃ matrix, exhibits metallic behaviour. Remarkably, the broken spatial inversion symmetry characteristic of ferroelectrics persists up to an electron concentration of $n < n^*$, defining the so-called "polar metal" state. In this regime, electrical resistance increases below a characteristic temperature $T_{\rm K}$ [1]. The fact that $T_{\rm K}$ and the resistivity upturn remain unaffected under an applied magnetic field rules out the influence of magnetic impurities. The value of $T_{\rm K}$ rises monotonically as n decreases, converging with the Curie temperature of the ferroelectric matrix when n approaches zero [2].

The superconducting transition temperature T_c of Nb:(Sr,Ba)TiO₃ exhibits a dome-shaped dependence on carrier concentration, mirroring that of Nb:SrTiO₃ (Fig. 1, bottom). Intriguingly, despite substantial shifts in n^* with varying Ba concentrations, the peak of the superconducting dome consistently resides around 10^{20} cm⁻³ (Fig. 1, middle). While increasing Ba content significantly enhances the peak T_c , the difference ΔT_c —defined as the T_c of Nb:(Sr,Ba)TiO₃ minus that of Nb:SrTiO₃— remains minimal (below 0.1 K) near n^* (Fig. 1, top). However, ΔT_c dramatically increases in the low carrier density regime ($n < n^*$), where screening effects are weak.

These results suggest the broken spatial inversion symmetry not only fails to suppress superconductivity but actively enhances it in $n < n^{\ast}$. Notably, even at an ultralow carrier density of $3.8 \times 10^{17} \, {\rm cm^{-3}}$ with 7.5 % Ba substitution, superconductivity emerges at 0.4 K, yielding an unusually large $T_{\rm c}/T_{\rm F}$ ratio of approximately 0.04. This discovery challenges conventional understanding and calls for a re-evaluation of the microscopic models describing superconductivity in SrTiO_3.

Figure 1: Density plots of $\Delta T_{\rm c}$ (top) and $T_{\rm c}$ (middle) as functions of carrier concentration n at 5 K and Ba substitution. The white hexagon marks n^* , while the white dashed line delineates the boundary between polar and non-polar metallic regions. Experimental data points are indicated by black circles. In the superconducting dome (bottom panel), the error bars represent the onset and completion temperatures of the superconducting transition.

*This study received support from JSPS KAKENHI (19H01844, 23K25832, and 23H01135) and partial funding from the JST CREST (JPMJCR19K2).

- [1] Y. Tomioka et al., *Nature Commun.* **10**, 738 (2019).
- [2] Y. Tomioka et al., npj Quantum Mater. 7, 1 (2022).