

S N BOSE NATIONAL CENTRE FOR BASIC SCIENCES Block JD, Sector III, Salt Lake, Kolkata 700 106

DEPARTMENTAL SEMINAR

Chemical, Biological & Macro-Molecular Sciences

16th November'2021

4.00 PM

ONLINE

SPEAKER

Dr. Sabyasachi Rakshit, Associate Professor, Department of Chemical Sciences Centre for Protein Science Design and Engineering Indian Institute of Science Education and Research, Mohali, Punjab, India

TITLE OF THE TALK

Dynamics of a tip-link couple in hearing

ABSTRACT

Discovery of mechanical transducers that help us to convert the touch into nerve impulses earned Professor Ardem Patapoutian the Nobel Prize in Physiology or Medicine 2021. Hearing is similarly a mechano transduction process where a protein-couple, jointly known as tip-links, serve as gating-springs and convey the input mechanical force of varying intensities from sound-stimuli to electrical signal. Importantly, tip-links maintain the integrity of their marriage under periodic tension from input sound. With an overarching objective to decipher the force-responsive behaviors of tip-link complexes and their alterations with aging, here we probe the viscoelastic properties of the tip-links directly under mechanical stimuli at the single-molecule level.

In this talk, I shall present how tip-links form a counterintuitive 'catch-bonds' to overcome the mechanical pulses from sound, and as gear-box, accelerate the lifetime of the complex while conveying force for transduction. Further, tip-links serve as guardians to the non-regenerative hair-cells from the sudden impact of loud noise and at the cost of their marriage. Tip-links dissociate, however, re-engage fast. Towards the end, I shall discuss how tip-link proteins undergo phase separation on a cell membrane to accelerate the re-formation of tip-links and cell-cell adhesion.

HOST FACULTY Prof. Rajib K Mitra and Dr. Suman Chakrabarty CHEMICAL, BIOLOGICAL & MACRO-MOLECULAR SCIENCES