

S N BOSE NATIONAL CENTRE FOR BASIC SCIENCES

Block JD, Sector III, Salt Lake, Kolkata 700 106

Condensed Matter Physics and Material Sciences

05th January'2022

4.00PM

ONLINE

SPEAKER

Dr. Surjeet Singh Associate Professor, IISER Pune

TITLE OF THE TALK

Impurities as a probe for determining the superconducting order parameter

ABSTRACT

Based on a variety of experiments, we currently have good reasons to believe that the gap symmetry in the so-called '122' family of iron-based superconductors is of s-type. However, due to the multiband nature of the superconductivity in these systems, the question of whether the gap symmetry is s_{++} or s_{\pm} has remained as yet unsettled. Here, I will first present the difficulties involved in solving this problem and how impurities can serve as a probe and shed light on this issue. The T_C suppression rate due to magnetic (Mn) and non-magnetic (Zn) impurities will be considered in the optimally electron-doped superconductor $Sr(Fe_{0.88}Co_{0.12})_2As_2$ superconductor. We show that in an as-grown $Sr(Fe_{0.88}Co_{0.12})_2As_2$ crystal the T_C suppression rate due to magnetic (Mn) impurities is ~ 35 mK/ $\mu\Omega$ cm. However, after prolonged annealing at low temperature, which supposedly heals the point-like crystallographic defects, the T_C suppression rate increases to ~ 325 mK/ $\mu\Omega$ cm, which we infer as the actual T_C suppression rate due to Mn impurities. These findings are then shown to support the s_{++} pairing symmetry in the optimally electron-doped $SrFe_2As_2$. The experiments with non-magnetic Zn-impurities confirm this assertion where the non-magnetic Zn impurity doping is found to not suppress but enhance the T_C upon annealing.

HOST FACULTY

Dr. Thirupathaiah Setti