

S N BOSE NATIONAL CENTRE FOR BASIC SCIENCES Block JD, Sector III, Salt Lake, Kolkata 700 106

DEPARTMENTAL SEMINAR

Condensed Matter Physics and Material Sciences

22nd June'2022

4.00 PM

ONLINE/ FERMION

SPEAKER

Dr. Subhankar Bedanta, Associate Professor, School of Physics, National Institute of Science Education and Research (NISER), Bhubaneswar

TITLE OF THE TALK

SPIN TO CHARGE CONVERSION WITH HEAVY METALS, TOPOLOGICAL INSULATORS AND ANTIFERROMAGNETS

ABSTRACT

The precession of magnetization in a ferromagnet (FM) can transmit pure spin current into an adjacent heavy metal (HM) via spin pumping. This pure spin current gets converted to a charge current due to high spin orbit coupling (SOC) of the HM due to the inverse spin Hall effect (ISHE). I will discuss recent ISHE results on Co2 Fe0.4 Mn0.6 Si/Pt bilayers, where Co2 Fe0.4 Mn0.6 Si is a full Heusler alloy. Damping analysis indicates the presence of significant spin pumping at the interface of Co2 Fe0.4 Mn0.6 Si and Pt [1]. I will also discuss ISHE experiments on some other combinations such as CoFeB/IrO 2 and manganite based La 0.66 Sr0.34 MnO 3 /Pt bilayers. [2-3] Recently AFM materials having high SOC have been found to be a good replacement of HM in spin current based study. We have performed the ISHE study of CoFeB (10 nm)/ AFM (d nm) where we considered various AFM such as Mn 2 Au, IrMn, Mn3 Ga, Co3 O 4 , NiMn etc. The systematic angle dependent ISHE measurements have been carried out to disentangle the different spin rectification effects viz. anisotropic magnetoresistance and anomalous Hall effect [4 - 7]. Further I will show the ISHE study on topological insulator (TI)/ferromagnetic Bi 2 Se3 /CoFeB films [8, 9]. ISHE experiments have also been performed to demonstrate that TIs are potential candidates to replace HM as they possess high spin-orbit coupling. Further, I will show that transition metal dichalcogenide MoS 2 exhibits high spin-to charge conversion due to its high spin-orbit coupling [10].

Acknowledgements: I like to thank my collaborators and group members. I also acknowledge various funding agencies for supporting our research activities.

- [1] B. B. Singh et al., NPJ Asia Materials 13, 9 (2021)
- [2] B. Sahoo et al. Adv. Quant. Techn. 2021, 2000146 (2021)
- [3] P. Gupta et al. Nanoscale 13, 2714 (2021)
- [4] B. B. Singh and S. Bedanta, Phys. Rev. Applied 13, 044020 (2020)
- [5] B. B. Singh et al., Phys. Rev. B 102, 174444 (2020)
- [6] K. Roy et al., J. Phys. D- Appl. Phys., 54, 425001 (2021)
- [7] K. Roy et al., (under review)
- [8] B. B. Singh et al., PSS Rapid 2018, 1800492 (2018).
- [9] B. B. Singh et al., ACS Applied Materials and Interface 12, 53409 (2020)
- [10] A. Mishra, (unpublished)

HOST FACULTY

Prof. Anjan Barman