

S N BOSE NATIONAL CENTRE FOR BASIC SCIENCES Block JD, Sector III, Salt Lake, Kolkata 700 106

DEPARTMENTAL SEMINAR Condensed Matter Physics and Material Sciences

12th January'2022

4.00PM

ONLINE

SPEAKER

Prof. Anjan Kumar Gupta Professor, Physics Department, Indian Institute of Technology, Kanpur

TITLE OF THE TALK Optimization of Nb μ-SQUIDs for single particle nano - magnetism Optimization of Nb μ-SQUIDs for single particle nano - magnetism ABSTRACT

Superconducting QUantum Interference Devices (SQUIDs) are the most sensitive magnetic field sensors with large number of applications. SQUIDs with size in micron or sub-micron range provide a much better coupling with nano-particles and thus such μ -SQUIDs have been successfully used in probing magnetism of single nano-particles. This technique can be further improved for higher speed and sensitivity with hysteresis-free μ -SQUIDs. In this talk we first review the basics of Josephson effect and working of a conventional SQUID magnetometer. Next we discuss how μ -SQUIDs have been realized and used in some of the nano-particle measurements. A limitation of these μ -SQUIDs, namely thermal hysteresis, will be discussed next. We then discuss how hysteresis can be eliminated followed by some of our recent measurements on nano-scale magnetic structures. If time permits, I can also share an interesting outcome of this thermal hysteresis (or bistability), namely stochastic resonance.

HOST FACULTY Dr. Thirupathaiah Setti

Assistant Professor & Seminar Coordinator, CONDENSED MATTER PHYSICS AND MATERIAL SCIENCES