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2 Kinetics of Phase Transitions

1.1 INTRODUCTION

Many systems exist in multiple phases, depending on the values of external parame-
ters, for example, temperature (T ), pressure (P), and so on. In this context, consider
a fluid (e.g., water), which can exist in three phases, viz., liquid, solid, and gas. The
phase diagram of this fluid in the (T , P)-plane is shown in Figure 1.1. The chosen
phase at a particular (T , P)-value is the one with lowest Gibbs potential G(T , P). This
phase diagram is characterized by a range of fascinating features, for example, lines
of first-order phase transitions, a second-order critical point, a triple point, and so on.
The correct understanding of these features is of great scientific and technological
importance. We have gained a thorough understanding of the equilibrium aspects of
phase transitions (and phase diagrams) through many important works, starting with
the seminal contribution of Van der Waals [1,2].

There is also a fascinating class of problems involving the kinetics of phase transi-
tions, that is, the evolution dynamics of a system that is rendered thermodynamically
unstable by a rapid change of parameters. In the context of Figure 1.1, consider a
situation in which the fluid in the solid phase is rapidly heated to a temperature where
the preferred equilibrium state is the liquid phase. Clearly, the solid will convert to
liquid on some timescale, so the initial and final states of the system are well under-
stood. However, we have less knowledge about the dynamical processes that occur as
the solid converts to liquid. These processes play a crucial role in our everyday life.
Over the years, our understanding of the kinetics of phase transitions has improved
greatly [3–6]. This book provides an overview of developments in this area.

(Tc, Pc)

P

(Tt, Pt)

Solid Liquid

Gas

T

FIGURE 1.1 Phase diagram of a fluid in the (T , P)-plane. The system can exist in either of
three phases—liquid, gas, or solid. The solid lines denote lines of first-order phase transitions.
At the triple point (Tt , Pt), all three phases coexist. The point labeled (Tc, Pc) is the critical
point of the system.
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Before we proceed, it is relevant to develop the appropriate terminology first.
One is often interested in the evolution of systems whose parameters have been
drastically changed. Such systems are referred to as far-from-equilibrium systems, and
their evolution is characterized by nonlinear evolution equations and spatiotemporal
pattern formation. In most cases, we are unable to obtain exact solutions for the time-
dependent evolution of the system. However, the presence of domain boundaries
or defects in these systems provides a convenient analytical tool to understand the
resultant pattern dynamics.

Let us consider two other problems in this context. These will serve as paradigms
for understanding the kinetics of phase transitions. First, consider a ferromagnet whose
phase diagram is shown in Figure 1.2. Focus on the case with zero magnetic field
(h = 0). At high temperatures, the magnet is in a disordered or paramagnetic state. If
the temperature is suddenly quenched to T < Tc, this system now prefers to be in the
magnetized state with spins pointing in the “up” or “down” directions. The evolution
of the system is characterized by the emergence and growth of domains enriched in
either up or down spins. As time t → ∞, the system approaches a spontaneously
magnetized state.

Second, consider a binary (AB) mixture whose phase diagram is shown in
Figure 1.3. The system is mixed or homogeneous at high temperatures. At time t = 0,
the mixture is suddenly quenched below the coexistence curve or miscibility gap. This
system now prefers to be in the phase-separated state and proceeds to its equilibrium
state via the growth of domains that are either A-rich or B-rich. The nonequilibrium
dynamics of the magnet or binary mixture is usually referred to as domain growth or
coarsening or phase-ordering kinetics.

T

h

(Tc, hc)

Up

Down

FIGURE 1.2 Phase diagram of a ferromagnet. The system parameters are the temperature
(T ) and the magnetic field (h). The point (Tc, hc = 0) is a second-order critical point. The line
(T < Tc, h = 0) corresponds to a line of first-order transitions. At low temperatures (T < Tc),
the system can be in either of two phases, up or down, depending on the orientation of the
magnetic spins.
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FIGURE 1.3 Phase diagram of a binary (AB) mixture. The system parameters are the
concentration of A (cA = 1 − cB) and the temperature (T ). The point (cA = 0.5, T/Tc = 1)

corresponds to a second-order critical point. Above the coexistence curve (solid line), the sys-
tem is in a homogeneous or disordered state. Below the coexistence curve, the system is in a
segregated or phase-separated state, characterized by A-rich and B-rich regions. The dashed
lines denote spinodal curves. The homogeneous system is metastable between the coexistence
and spinodal curves and unstable below the spinodal lines.

There have been many studies of the kinetics of phase transitions. Problems in this
area arise in diverse contexts, ranging from clustering dynamics in the early universe
to the growth of nanostructures. This book is a pedagogical exposition of develop-
ments in this area and is organized as follows. This chapter reviews the framework of
phase-ordering kinetics and develops the tools and terminology used in later chapters.
The subsequent chapters are written by leading experts in this area and focus on prob-
lems of special interest in the context of phase-ordering dynamics.All the chapters are
written in textbook style and are accessible at the level of the advanced undergraduate
student. At this point, we should stress that our understanding of this area has been
greatly facilitated by numerical simulations of appropriate models. Therefore, two
chapters of this book are dedicated to tutorial-level discussions of numerical simula-
tions in this field. The first of these is written by Barkema (Chapter 3)—this chapter
focuses on Monte Carlo simulations of kinetic Ising models. The second of these is
written by Gonnella andYeomans (Chapter 4) and describes the application of lattice
Boltzmann algorithms to study phase-ordering systems.

This chapter is organized as follows. In Section 1.2, we introduce the Ising model
for two-component mixtures and study its equilibrium properties in the mean-field
(MF) approximation. This will enable us to obtain the phase diagrams shown in
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Figures 1.2 and 1.3. In Section 1.3, we study kinetic versions of the Ising model.
In Section 1.4, we discuss domain growth with a nonconserved order parameter, for
example, ordering dynamics of a ferromagnet into up and down phases. In this section,
we separately examine cases with scalar and vector order parameters. In Section 1.5,
we discuss domain growth with a conserved order parameter, for example, kinetics
of phase separation of an AB mixture. We will separately focus on segregation in
binary alloys that is driven by diffusion, and segregation in binary fluids where flow
fields drastically modify the asymptotic behavior. Finally, Section 1.6 concludes this
chapter with a summary and discussion.

1.2 PHASE DIAGRAMS OF TWO-COMPONENT MIXTURES

1.2.1 ISING MODEL AND ITS APPLICATIONS

The simplest model of an interacting many-body system is the Ising model [7], which
was first introduced as a model for phase transitions in magnetic systems. How-
ever, with suitable generalizations, it has wide applications to diverse problems in
condensed matter physics.

Consider a set of N spins {Si}, which are fixed on the sites {i} of a lattice. The
two-state (spin-1/2) Ising Hamiltonian has the following form:

H = −J
∑
〈ij〉

SiSj, Si = ±1, (1.1)

where J is the strength of the exchange interaction between spins. We consider the case
with nearest-neighbor interactions only, denoted by the subscript 〈ij〉 in Equation 1.1.

Although the Hamiltonian in Equation 1.1 is formulated for a magnetic system, it is
clear that a similar description applies for any interacting two-state system, as the two
states can be mapped onto S = +1 or −1. A well-known example is the lattice gas or
binary (AB) mixture [7]. We can describe this system in terms of occupation-number
variables nα

i = 1 or 0, depending on whether or not a site i is occupied by species α(A
or B). Clearly, nA

i + nB
i = 1 for all sites. A more convenient description is obtained in

terms of spin variables Si = 2nA
i − 1 = 1 − 2nB

i . We associate an interaction energy
−εαβ between species α and β, located at neighboring sites i and j, respectively. The
corresponding Hamiltonian is

H = −
∑
〈ij〉

[
εAAnA

i nA
j + εBBnB

i nB
j + εAB

(
nA

i nB
j + nB

i nA
j

)]

= −
(

εAA + εBB − 2εAB

4

)∑
〈ij〉

SiSj − q(εAA − εBB)

4

N∑
i=1

Si

− Nq

8
(εAA + εBB + 2εAB). (1.2)

In Equation 1.2, q denotes the coordination number of a lattice site. The second term
on the right-hand side (RHS) is constant because

∑
i Si = NA − NB, where Nα is the
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number of α-atoms in the system. Further, the third term on the RHS is also a constant.
The Hamiltonian in Equation 1.2 is analogous to that in Equation 1.1 if we identify

J = εAA + εBB − 2εAB

4
. (1.3)

The Ising model and its variants are not restricted to two-state systems and can be
easily generalized to the case of multiple-state systems. Thus, three-state systems can
be mapped onto a spin-1 Hamiltonian; four-state systems onto a spin-3/2 Hamiltonian;
and so on. In general, higher-spin models have a larger number of possible interaction
terms (and parameters) in the Hamiltonian.

We can obtain phase diagrams for magnets (cf. Figure 1.2) and binary mixtures
(cf. Figure 1.3) by studying the Ising model in the mean-field (MF) approximation,
as described below.

1.2.2 PHASE DIAGRAMS IN THE MEAN-FIELD APPROXIMATION

The equilibrium properties of the Ising model in Equation 1.1 are described in the
MF approximation by the Bragg–Williams (BW) form of the Gibbs free energy [7].
This is obtained as follows. Consider a homogeneous state with spatially uniform
magnetization 〈Si〉 = ψ. We approximate the energy as

E(ψ) � −J
∑
〈ij〉

〈Si〉〈Sj〉 = −NqJ

2
ψ2. (1.4)

The corresponding probabilities for a site to have up (↑) or down (↓) spins are

p↑ = 1 + ψ

2
,

p↓ = 1 − ψ

2
.

(1.5)

Therefore, the entropy for a lattice with N sites is

S(ψ) = −NkB

[(
1 + ψ

2

)
ln

(
1 + ψ

2

)
+
(

1 − ψ

2

)
ln

(
1 − ψ

2

)]
, (1.6)

where kB is the Boltzmann constant.
Then, the Gibbs free energy is obtained as

G(ψ) = E(ψ) − hM − TS(ψ), (1.7)

where h is the magnetic field, and M (=Nψ) is the overall magnetization.
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This yields the free energy per spin as

g(T , h, ψ) = G(T , h, ψ)

N

= −1

2
qJψ2 − hψ

+ kBT

[(
1 + ψ

2

)
ln

(
1 + ψ

2

)
+
(

1 − ψ

2

)
ln

(
1 − ψ

2

)]
.

(1.8)

The RHS of Equation 1.8 is a variational function of the magnetization ψ = 〈Si〉. If
we Taylor-expand the entropy term in Equation 1.8, the Gibbs free energy assumes
the customary ψ4-form:

g(T , h, ψ) = 1

2
(kBT − qJ) ψ2 − hψ + kBT

12
ψ4 + O(ψ6) − kBT ln 2. (1.9)

The order parameter ψ in Equation 1.8 or Equation 1.9 can describe both
ferromagnetic and antiferromagnetic order, with J < 0 in the latter case. Furthermore,
in the antiferromagnetic case, ψ refers to the sublattice magnetization or staggered
magnetization [7].

The equilibrium value of ψ at fixed (T , h) is obtained from Equation 1.8 by
minimizing the Gibbs free energy:

∂g

∂ψ

∣∣∣∣
ψ=ψ0

= 0. (1.10)

This yields the well-known transcendental equation [β = (kBT)−1]:

ψ0 = tanh(βqJψ0 + βh). (1.11)

For h = 0, we identify the MF critical temperature

Tc = qJ

kB
. (1.12)

For T > Tc and h = 0, the transcendental equation has only one solution ψ0 = 0,
which corresponds to the paramagnetic state. For T < Tc, Equation 1.11 has three
solutions ψ0 = 0, ±ψ(T). The state with ψ0 = 0 has a higher free energy than do the
equivalent states +ψ(T) and −ψ(T). Further, ψ(T) → 1 as T → 0, and ψ(T) → 0
as T → T−

c . The relevant phase diagram in the (T , h)-plane is shown in Figure 1.2.
Next, let us consider the case of the binary mixture (or lattice gas) with NA (=cAN)

atoms of species A and NB (=cBN) atoms of species B (N = NA + NB). The appro-
priate order parameter in this case is the local density difference, ψ = 〈nA

i 〉 − 〈nB
i 〉.

The above analysis has to be modified because the appropriate ensemble for a binary
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mixture is characterized by a fixed magnetization rather than a fixed magnetic field.
The relevant free energy to be minimized is the Helmholtz potential

F(T , ψ) = E(ψ) − TS(ψ). (1.13)

For the BW free energy, we have the expression

f (T , ψ) = F(T , ψ)

N

= −1

2
qJψ2 + kBT

[(
1 + ψ

2

)
ln

(
1 + ψ

2

)
+
(

1 − ψ

2

)
ln

(
1 − ψ

2

)]
.

(1.14)

For a system that undergoes phase separation, there are two possibilities:

(a) We can have a homogeneous (or one-phase) state with order parameter
ψh = cA − cB.

(b) We can have a phase-separated state where the system segregates into two
regions having order parameter ψ1 (with fraction x) and ψ2 [with fraction
(1 − x)]. The quantity x is determined from the lever rule

ψh = xψ1 + (1 − x)ψ2. (1.15)

Let us minimize the Helmholtz potential f for the phase-separated state. (The
homogeneous state is the limit ψ1 = ψ2.) The quantity f is obtained as

f = xf (ψ1) + (1 − x)f (ψ2). (1.16)

This has to be minimized subject to the constraint in Equation 1.15. We implement
this constraint by introducing the Lagrange multiplier λ and minimizing the quantity

A = xf (ψ1) + (1 − x)f (ψ2) − λ[xψ1 + (1 − x)ψ2 − ψh]. (1.17)

This yields the equations

∂A

∂x
= f (ψ1) − f (ψ2) − λ(ψ1 − ψ2) = 0,

∂A

∂ψ1
= xf ′(ψ1) − λx = 0,

∂A

∂ψ2
= (1 − x)f ′(ψ2) − λ(1 − x) = 0,

∂A

∂λ
= xψ1 + (1 − x)ψ2 − ψh = 0.

(1.18)
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The first three equations yield

λ = f (ψ1) − f (ψ2)

ψ1 − ψ2
= f ′(ψ1) = f ′(ψ2), (1.19)

which is referred to as Maxwell’s double-tangent construction. This is valid for
arbitrary functional forms of the Helmholtz free energy.

The specific form for f (T , ψ) in Equation 1.14 is an even function of ψ with
f (T , −ψ) = f (T , ψ). Further, f (T , ψ) has a single minimum at ψ = 0 for T >

Tc = qJ . Thus, the only solution of the double-tangent construction is ψ1 = ψ2.
In that case, the constraint in Equation 1.15 yields ψ1 = ψh, corresponding to the
homogeneous state.

For T < Tc, f (T , ψ) has a symmetric double-well structure with extrema at
f ′(T , ψ0) = 0, that is,

ψ0 = tanh(βqJψ0). (1.20)

The states with non-zero ψ0 correspond to lower free energy than the state with
ψ0 = 0. Thus, a possible solution to the double-tangent construction is

ψ1 = −ψ0, ψ2 = +ψ0, (1.21)

where ψ0 is the positive solution of Equation 1.20. However, this is only an acceptable
solution if the lever rule can be satisfied, that is, −ψ0 < ψh < ψ0. Thus, phase sep-
aration occurs at T < Tc only if |ψh| < ψ0. When phase separation does occur, the
segregated states have the composition −ψ0 (B-rich) and +ψ0 (A-rich), respectively.
The resultant phase diagram in the (cA, T/Tc)-plane is shown in Figure 1.3.

The phase diagrams in Figures 1.2 and 1.3 will provide the basis for our subsequent
discussion of phase-ordering dynamics.

1.3 KINETIC ISING MODELS

1.3.1 INTRODUCTION

The above discussion has clarified the utility of Ising-like models in a wide range
of problems. We next consider the issue of kinetics of Ising models. For simplicity,
we restrict our discussion to the spin-1/2 model described by Equation 1.1. The
generalization to higher-spin models is straightforward. The Ising spin variables do
not have intrinsic dynamics, as is seen by constructing the relevant Poisson bracket.
In order to associate kinetics with the Ising model, we assume that it is placed in
contact with a heat bath that generates stochastic spin-flips (Si → −Si) in the system
[6]. The heat bath can be interpreted as consisting of phonons that induce spin-flips
via a spin-lattice coupling. The resultant kinetic Ising model is referred to as the
spin-flip or Glauber model [8] and is appropriate for describing the nonconserved
kinetics of the paramagnetic → ferromagnetic transition. The probability of a jump
depends on the configuration of all other spins and the heat-bath temperature, in
general.
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Next, consider the case where the Ising model describes a lattice gas or a binary
(AB) mixture. The appropriate microscopic kinetics involves the diffusion of atoms,
for example, atomic jumps to vacant sites in the lattice gas, or A ↔ B interchanges in
the binary mixture. Thus, the heat bath causes spin-exchanges rather than spin-flips,
that is, Si jumps from +1 → −1 while a neighbor Sj simultaneously jumps from
−1 → +1. This process mimics phonon-induced atomic jumps. The resultant model
is referred to as the spin-exchange or Kawasaki model [9,10].

It should be emphasized that transition probabilities in both the Glauber and
Kawasaki models must satisfy the detailed-balance condition [11], which will be
discussed shortly. Thus, although the two models describe different time-dependent
behavior, the equilibrium state is unique. As t → ∞, we recover properties calcula-
ble from the equilibrium statistical mechanics of the Ising model in an appropriate
ensemble.

1.3.2 THE SPIN-FLIP GLAUBER MODEL

In the Glauber model, the heat bath induces fluctuations in the system in the form of
single-spin-flip processes [8]. The Glauber model describes nonconserved kinetics
because the spin-flip processes make the total magnetization M =∑N

i=1 Si time-
dependent. Let us examine the evolution of the probability distribution for the spin
configuration {Si} of a system with N spins. In this context, we introduce the condi-
tional probability P({S0

i }, 0|{Si}, t), which is the probability that the ith spin is in state
Si (i = 1 → N) at time t, given that it was in state S0

i (i = 1 → N) at time t = 0. The
evolution of P is described by the master equation [11]:

d

dt
P({Si}, t) = −

N∑
j=1

W(S1, . . . Sj, . . . SN |S1, . . . −Sj, . . . SN )P({Si}, t)

+
N∑

j=1

W(S1, . . . −Sj, . . . SN |S1, . . . Sj, . . . SN )P({S′
i}, t), (1.22)

where we suppress the argument ({S0
i }, 0|, for compactness. The first term on the RHS

of Equation 1.22 corresponds to the loss of probability for the state {Si} due to the
spin-flip Sj → −Sj. The second term on the RHS denotes the gain of probability for
the state {Si} due to a spin-flip S′

j → −S′
j in a state {S′

i} with

S′
i = Si for i �= j,

S′
j = −Sj.

(1.23)

Equation 1.22 assumes that the underlying stochastic process is Markovian.
The essential physical input is provided by the modeling of the transition matrix
W({Si}|{S′

i}) for the change {Si} to {S′
i}). The choice of W must be such that the
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ensemble approaches the equilibrium distribution Peq({Si}) as t → ∞:

Peq({Si}) = 1

Z(T , h, N)
exp[−β(H − hM)]. (1.24)

Here, Z is the partition function, which is defined as

Z(T , h, N) =
∑
{Si}

exp[−β(H − hM)]. (1.25)

To ensure this, the transition probability W({Si}|{S′
i}) should obey the detailed-

balance condition [11]:

W
({Si}|{S′

i}
)
Peq({Si}) = W

({S′
i}|{Si}

)
Peq
({S′

i}
)
. (1.26)

Clearly, in the equilibrium ensemble, this guarantees that the number of systems
making the transition from {Si} → {S′

i} is balanced by the number of systems making
the reverse transition {S′

i} → {Si}. Thus, the probability distribution Peq is indepen-
dent of time, as expected. Further, an arbitrary distribution P({Si}, t) → Peq({Si}) as
t → ∞ under Equation 1.22, provided that W obeys the detailed-balance condition.
For the proof of this, we refer the reader to the book by Van Kampen [11].

It is evident that there are many choices of W that satisfy the condition in
Equation 1.26. We choose the Suzuki–Kubo form [12]:

W
({Si}|{S′

i}
) = λ

2

{
1 − tanh

[
βΔ(H − hM)

2

]}
, (1.27)

where λ−1 sets the timescale of the nonequilibrium process. Here, Δ(H − hM)

denotes the enthalpy difference between the final state {S′
i} and the initial state {Si}.

It is straightforward to confirm that this form of W satisfies the detailed-balance
condition.

For the spin-flip Ising model, the states {S′
i} and {Si} differ only in one spin, that

is, S′
j = −Sj. Then

(H − hM)initial = −JSj

∑
Lj

SLj − hSj + other terms,

(H − hM)final = JSj

∑
Lj

SLj + hSj + other terms,
(1.28)

where Lj denotes the nearest neighbors (nn) of j. Thus

Δ(H − hM) = 2JSj

∑
Lj

SLj + 2hSj, (1.29)
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and

W
({Si}|{S′

i}
) = λ

2

⎡
⎣1 − tanh

⎛
⎝βJSj

∑
Lj

SLj + βhSj

⎞
⎠
⎤
⎦

= λ

2

⎡
⎣1 − Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦ . (1.30)

In Equation 1.30, we can bring Sj outside the argument of the tanh-function because
it only takes the values +1 or −1. We replace the form of W from Equation 1.30 in
Equation 1.22 to obtain the explicit form of the master equation:

d

dt
P({Si} , t) = −λ

2

N∑
j=1

⎡
⎣1 − Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P({Si}, t)

+ λ

2

N∑
j=1

⎡
⎣1 + Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P
({S′

i}, t
)
.

(1.31)

We can use this master equation to obtain the evolution of the magnetization:

〈Sk〉 =
∑
{Si}

SkP({Si}, t). (1.32)

We multiply both sides of Equation 1.31 by Sk and sum over all configurations to
obtain

d

dt
〈Sk〉 = −λ

2

N∑
j=1

∑
{Si}

Sk

⎡
⎣1 − Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P({Si}, t)

+ λ

2

N∑
j=1

∑
{Si}

Sk

⎡
⎣1 + Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P
({S′

i}, t
)

≡ A + B. (1.33)

In the second term on the RHS of Equation 1.33, we redefine Sj = −Sj. Clearly, the
sum

∑
Sj=±1 is equivalent to the sum

∑
Sj=±1. Therefore, the terms in A and B cancel
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with each other, except for the case j = k. This yields the following evolution equation
for the magnetization:

λ−1 d

dt
〈Sk〉 = −

∑
{Si}

Sk

⎡
⎣1 − Sk tanh

⎛
⎝βJ

∑
Lk

SLk + βh

⎞
⎠
⎤
⎦P({Si}, t)

= − 〈Sk〉 +
〈

tanh

⎛
⎝βJ

∑
Lk

SLk + βh

⎞
⎠〉 , (1.34)

where we have used S2
k = 1.

1.3.2.1 Mean-Field Approximation

Unfortunately, the exact time-dependent Equation 1.34 is analytically intractable in
d ≥ 2. (For the d = 1 solution, see the work of Glauber [8].) The main obstacle is that
the second term on the RHS of Equation 1.34 yields a set of higher-order correlation
functions, as can be seen by expanding the tanh-function. These dynamical equations
can be rendered tractable by invoking the MF approximation, which truncates the
hierarchy by neglecting correlations between different sites, that is, the average of the
product of spin operators is replaced by the product of their averages. The result of
such a random-phase decoupling is that the angular brackets denoting the statistical
average can be taken inside the argument of the tanh-function [13,14]. Thus, we obtain

λ−1 d

dt
〈Sk〉 = −〈Sk〉 + tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉 + βh

⎞
⎠. (1.35)

For time-independent effects in equilibrium, the LHS of Equation 1.35 is identically
zero. Thus, we have (as t → ∞)

〈Sk〉eq = tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉eq + βh

⎞
⎠. (1.36)

Notice that Equation 1.35 is nonlinear because of the presence of the tanh-function
and is only tractable numerically. These equations are often referred to as mean-field
dynamical models in the literature [15–19]. A further simplification can be effected
by expanding the tanh-function and retaining only leading terms. For simplicity, we
consider the case of zero magnetic field, that is, h = 0. We can then expand various
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terms on the RHS of Equation 1.35 as follows:

∑
Lk

〈SLk 〉 � qψ(�rk , t) + a2∇2
k ψ(�rk , t) + higher-order terms, (1.37)

where a is the lattice spacing. Further,

tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉
⎞
⎠ � βJ

∑
Lk

〈SLk 〉 − 1

3

⎛
⎝βJ

∑
Lk

〈SLk 〉
⎞
⎠

3

+ higher-order terms

� Tc

T
ψ(�rk , t) − 1

3

(
Tc

T

)3

ψ(�rk , t)3 + Tc

qT
a2∇2

k ψ (�rk , t)

+ other terms, (1.38)

where we have used Equation 1.37 to obtain the second expression. Therefore, the
order-parameter equation for the Glauber–Ising model simplifies as

λ−1 ∂

∂t
ψ(�r, t) =

(
Tc

T
− 1

)
ψ − 1

3

(
Tc

T

)3

ψ3 + Tc

qT
a2∇2ψ + other terms,

(1.39)

where we have dropped the subscript k for the position variable.
At this stage, a few remarks are in order. Firstly, Equation 1.39 is referred to as

the time-dependent Ginzburg–Landau (TDGL) equation. We will discuss the general
formulation of the TDGL equation in Section 1.4.1. Secondly, the approximation of
neglecting the higher-order terms in Equation 1.39 is justifiable only for T � Tc,
where the order parameter is small. However, it is generally believed that the TDGL
equation is valid even for deep quenches (T � Tc), at least in terms of containing the
correct physics.

1.3.3 THE SPIN-EXCHANGE KAWASAKI MODEL

We mentioned earlier that the Glauber model, which assumes single-spin-flip pro-
cesses, is appropriate for nonconserved kinetics. On the other hand, when the Ising
model describes either phase separation (J > 0) or order-disorder (J < 0) transi-
tions in an AB mixture [1,7,20,21], the Glauber model is not applicable. For a
binary mixture, the Ising spin variable models the presence of an A- or B-atom on
a lattice site. Thus, the appropriate microscopic dynamics should involve random
exchanges of A- and B-atoms at neighboring sites, with their individual numbers
being constant. In practice, these jumps are actually mediated by vacancies [22–
25], and the system should be described as a ternary (ABV) mixture [18,19,26,27].
However, when the vacancy concentration is small, it is reasonable to ignore vacancies
and assume that the underlying stochastic process is a spin-exchange. As stated
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earlier, this corresponds to the Kawasaki model, which is based on a stationary Markov
process involving a spin-exchange mechanism [9,10]. The resultant master equation
is as follows:

d

dt
P({Si}, t) = −

N∑
j=1

∑
k∈Lj

W(S1, . . . Sj, Sk , . . . SN |S1, . . . Sk , Sj, . . . SN )P({Si}, t)

+
N∑

j=1

∑
k∈Lj

W(S1, . . . Sk , Sj, . . . SN |S1, . . . Sj, Sk , . . . SN )P({S′
i}, t).

(1.40)

The first term on the RHS is the loss of probability for the state {Si} due to the spin-
exchange Sj ↔ Sk . We consider only nearest-neighbor exchanges, where site k ∈ Lj,
that is, the nearest-neighbors of j. The second term on the RHS corresponds to the
gain of probability for the state {Si} due to an exchange S′

j ↔ S′
k in a state {S′

i}. The
state {S′

i} differs from the state {Si} in only two spins:

S′
i = Si for i �= j, k,

S′
j = Sk ,

S′
k = Sj.

(1.41)

As in the Glauber case, the transition probability W({Si}|{S′
i}) must obey the

detailed-balance condition. As we have seen in Section 1.2.2, the binary mix-
ture is described by an ensemble with fixed (T , M, N), where the “magnetization”
M =∑N

i=1 Si = NA − NB. The corresponding equilibrium distribution is

Peq({Si}) = 1

Z(T , M, N)
exp(−βH)δ∑

i Si ,M , (1.42)

where the Kronecker delta confines the distribution to configurations with∑N
i=1 Si = M. The appropriate partition function is

Z(T , M, N) =
∑
{Si}

exp(−βH)δ∑
i Si ,M . (1.43)

Again, we choose the Suzuki–Kubo form for the transition probability in Equa-
tion 1.40:

W({Si}|{S′
i}) = λ

2

[
1 − tanh

(
βΔH

2

)]
, (1.44)
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where ΔH is the change in energy due to the spin-exchange Sj ↔ Sk . For the Ising
model,

Hinitial = −JSj

∑
Lj �=k

SLj − JSk

∑
Lk �=j

SLk − JSjSk + other terms,

Hfinal = −JSk

∑
Lj �=k

SLj − JSj

∑
Lk �=j

SLk − JSjSk + other terms.

(1.45)

Thus, the energy change resulting from the spin exchange is

ΔH = J(Sj − Sk)
∑
Lj �=k

SLj − J(Sj − Sk)
∑
Lk �=j

SLk , (1.46)

and

W
({Si}|{S′

i}
) = λ

2

⎧⎨
⎩1 − tanh

⎡
⎣βJ

2
(Sj − Sk)

∑
Lj �=k

SLj − βJ

2
(Sj − Sk)

∑
Lk �=j

SLk

⎤
⎦
⎫⎬
⎭

= λ

2

⎧⎨
⎩1 − Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭. (1.47)

In Equation 1.47, we have used the fact that (Sj − Sk)/2 = 0, ±1 to factor it out of
the argument of the tanh-function. Therefore, the master equation has the form

d

dt
P({Si}, t) = −λ

2

N∑
j=1

∑
k∈Lj

⎧⎨
⎩1 − Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

+ λ

2

N∑
j=1

∑
k∈Lj

⎧⎨
⎩1 + Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P

({S′
i}, t
)
.

(1.48)
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We can obtain an evolution equation for the order parameter by multiplying both
sides of Equation 1.48 with Sn and summing over all configurations:

d

dt
〈Sn〉 = −λ

2

∑
{Si}

N∑
j=1

∑
k∈Lj

Sn

⎧⎨
⎩1 − Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

+ λ

2

∑
{Si}

N∑
j=1

∑
k∈Lj

Sn

⎧⎨
⎩1 + Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({S′

i}, t).

(1.49)

In the second term on the RHS of Equation 1.49, we redesignate Sj = Sk and
Sk = Sj. This leads to a large-scale cancellation between the first and second terms.
The only remaining terms are

d

dt
〈Sn〉 = −λ

2

∑
{Si}

∑
k∈Ln

Sn

⎧⎨
⎩1 − Sn − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn −
∑

Lk �=n

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

+ λ

2

∑
{Si}

∑
k∈Ln

Sk

⎧⎨
⎩1 + Sk − Sn

2
tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn −
∑

Lk �=n

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

= −λ

2

〈∑
k∈Ln

(Sn − Sk)

⎧⎨
⎩1− Sn − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn −
∑

Lk �=n

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭
〉

.

(1.50)

Some algebra yields the exact evolution equation

2λ−1 d

dt
〈Sn〉 = −q〈Sn〉 +

∑
Ln

〈
SLn

〉

+
∑
k∈Ln

〈
(1 − SnSk) tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn −
∑
Lk �=n

SLk

⎞
⎠
⎤
⎦〉 .

(1.51)

This equation is analogous to Equation 1.34, obtained in the context of Glauber
kinetics.

Although the Kawasaki model is usually associated with conserved kinetics, we
should make a clarifying remark. In the context of binary mixtures, a ferromagnetic
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interaction (J > 0) results in phase separation, that is, the equilibrium system consists
of domains of A-rich and B-rich phases. The appropriate order parameter is the differ-
ence in densities ofA and B and is locally conserved by Kawasaki kinetics. The length
scale over which the order parameter is conserved increases if we allow long-ranged
exchanges rather than only nearest-neighbor exchanges. In the limit where the spin
exchanges are infinite-ranged, the Kawasaki model has global conservation rather
than local conservation. In this case, the Kawasaki model is essentially equivalent to
the Glauber model [28,29].

It is also of great interest to consider the binary mixture with antiferromagnetic
interactions, J < 0. In this case, there is a phase transition from a high-temperature
disordered phase to a low-temperature ordered phase, where the A- and B-atoms
order on alternate sub lattices. The appropriate order parameter is now the staggered
magnetization, which is the difference between the two sub lattice magnetizations.
This quantity is not conserved by Kawasaki kinetics, though the overall concentration
is conserved. For the AB alloy with equal fractions of A and B, the antiferromagnetic
case with Kawasaki kinetics is equivalent to the ferromagnetic Ising model with
Glauber kinetics [30]. For asymmetric compositions, novel features arise due to the
conserved concentration variable.

1.3.3.1 Mean-Field Approximation

As in the Glauber case, Equation 1.51 is the first of a hierarchy of equations involv-
ing higher-order correlations of the spin variable. This hierarchy can be truncated by
invoking the MF approximation, that is, by replacing the expectation value of a func-
tion of spin variables by the function of the expectation values of the spin variables.
The resultant MF dynamical model is

2λ−1 d

dt
〈Sn〉 = −q〈Sn〉 +

∑
Ln

〈
SLn

〉

+
∑
k∈Ln

(1 − 〈Sn〉 〈Sk〉) tanh

⎡
⎣βJ

⎛
⎝∑

Ln

〈
SLn

〉−∑
Lk

〈
SLk

〉⎞⎠
⎤
⎦ .

(1.52)

Notice that the restrictions on the summations inside the tanh-function have been
dropped in the MF approximation. This is necessary for Equation 1.52 to contain the
correct MF solution in Equation 1.36 [13]. Recall the MF solution for the h = 0 case:

〈Sk〉eq = tanh

⎛
⎝βJ

∑
Lk

〈
SLk

〉eq

⎞
⎠ . (1.53)
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If we replace this in the RHS of Equation 1.52, we obtain

RHS = −q〈Sn〉eq +
∑
Ln

〈SLn〉eq +
∑
k∈Ln

(
1 − 〈Sn〉eq 〈Sk〉eq)

×
[

tanh
(
βJ
∑

Ln

〈
SLn

〉eq)− tanh
(
βJ
∑

Lk

〈
SLk

〉eq )
1 − tanh

(
βJ
∑

Ln

〈
SLn

〉eq) tanh
(
βJ
∑

Lk

〈
SLk

〉eq )
]

= −q 〈Sn〉eq +
∑
Ln

〈
SLn

〉eq +
∑
Ln

(〈Sn〉eq − 〈SLn

〉eq)

= 0, (1.54)

as expected.
Finally, let us derive a partial differential equation for the order parameter. This is

the conserved counterpart of the TDGL equation we derived for the magnetization in
Section 1.3.2. We can simplify the RHS of Equation 1.52 by using the identity

tanh(X − Y) = tanh X − tanh Y

1 − tanh X tanh Y
, where

X = βJ
∑
Ln

〈SLn〉,

Y = βJ
∑
Lk

〈SLk 〉. (1.55)

We are interested in the late-stage dynamics, where the system has equilibrated locally
and Equation 1.53 applies. Then, we make the approximation:

(1 − 〈Sn〉〈Sk〉)
(

tanh X − tanh Y

1 − tanh X tanh Y

)
� tanh X − tanh Y . (1.56)

Therefore, we can rewrite Equation 1.52 as

2λ−1 d

dt
〈Sn〉 �

∑
Ln

(〈SLn〉 − 〈Sn〉
)

+
∑
k∈Ln

⎡
⎣tanh

⎛
⎝βJ

∑
Ln

〈SLn〉
⎞
⎠− tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉
⎞
⎠
⎤
⎦

= ΔD

⎡
⎣〈Sn〉 − tanh

⎛
⎝βJ

∑
Ln

〈SLn〉
⎞
⎠
⎤
⎦ , (1.57)
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where ΔD denotes the discrete Laplacian operator. We can use the Taylor expansion
in Equation 1.38 to obtain the coarse-grained version of Equation 1.57 as

2λ−1 ∂

∂t
ψ(�r, t) = −a2∇2

[(
Tc

T
− 1

)
ψ − 1

3

(
Tc

T

)3

ψ3 + Tc

qT
a2∇2ψ

]

+ other terms, (1.58)

where a is the lattice spacing.
Equation 1.58 is known as the Cahn–Hilliard (CH) equation and is the standard

model for phase separation driven by diffusion. In Section 1.5.1, we will derive the
CH equation using phenomenological arguments.

1.4 DOMAIN GROWTH IN SYSTEMS WITH
NONCONSERVED KINETICS

1.4.1 CASE WITH SCALAR ORDER PARAMETER

In Figure 1.2, we had shown the phase diagram for a ferromagnet. The corresponding
ordering problem considers a paramagnetic system at T > Tc, h = 0 for time t < 0.At
t = 0, the system is rapidly quenched to T < Tc, where the preferred equilibrium state
is spontaneously magnetized. The far-from-equilibrium disordered system evolves
toward its new equilibrium state by separating into domains that are rich in either up
or down spins (see Figure 1.4). These domains coarsen with time and are characterized
by a growing length scale L(t). A finite system becomes ordered in either of the two
equivalent states (up or down) as t → ∞.

At the microscopic level, this evolution can be described by an Ising model with
Glauber spin-flip kinetics, as discussed in Section 1.3.2. At the coarse-grained level,
the appropriate order parameter to describe the system is the local magnetization
ψ(�r, t). In Section 1.3.2, we had used the Glauber–Ising model to derive the TDGL
equation 1.39, which governs the evolution of the order parameter. More generally, the
TDGL equation models the dissipative (over-damped) relaxation of a ferromagnetic
system to its free-energy minimum:

∂

∂t
ψ(�r, t) = −Γ

δG[ψ]
δψ

+ θ(�r, t). (1.59)

In Equation 1.59, Γ denotes the inverse damping coefficient; and δG/δψ is the
functional derivative of the free-energy functional:

G[ψ] =
∫

d�r
[

g(ψ) + 1

2
K( �∇ψ)2

]
. (1.60)

Typical forms of the local free energy g(ψ) are given in Equations 1.8 and 1.9.
The second term on the RHS of Equation 1.60 accounts for surface tension due to
inhomogeneities in the order parameter. The parameter K (>0) measures the strength
of the surface tension.
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t = 10 t = 50

t = 200 t = 500

FIGURE 1.4 Evolution of a disordered ferromagnet, which is quenched to T < Tc at
time t = 0. These pictures were obtained from a Euler-discretized version of the dimen-
sionless TDGL equation 1.66 with h = 0 and no thermal fluctuations (ε = 0). The dis-
cretization mesh sizes were Δt = 0.1 and Δx = 1 in time and space, respectively. The
initial condition ψ(�r, 0) consisted of small-amplitude fluctuations about ψ = 0. The lat-
tice size was 2562, and periodic boundary conditions were applied in both directions.
Regions with up spins (ψ > 0) and down spins (ψ < 0) are marked black and white,
respectively.

The noise term in Equation 1.59 is also space- and time-dependent and satisfies
the fluctuation-dissipation relation:

θ(�r, t) = 0,

θ(�r′, t′)θ(�r′′, t′′) = 2ΓkBTδ(�r′ − �r′′)δ(t′ − t′′), (1.61)

where the bars denote an average over the Gaussian noise ensemble. The presence of
the noise term ensures that the system equilibrates to the correct Boltzmann distri-
bution at temperature T . Equations 1.59 through 1.61 are also referred to as Model
A of order-parameter kinetics, as discussed by Hohenberg and Halperin [31] in the
context of dynamic critical phenomena.
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Recall the TDGL equation 1.39, which was derived in Section 1.3.2. We identify it
as the deterministic version of the general form in Equation 1.59. Further, the damping
coefficient Γ = βλ, where λ is the inverse timescale of Glauber spin-flips. Finally,
the form of the free-energy functional that gives rise to Equation 1.39 is

βG[ψ] =
∫

d�r
[
−1

2

(
Tc

T
− 1

)
ψ2 + 1

12

(
Tc

T

)3

ψ4 + Tc

2qT
a2( �∇ψ

)2] . (1.62)

For our subsequent discussion, it is convenient to use the general form of the
ψ4-free energy:

G[ψ] =
∫

d�r
[
−a(Tc − T)

2
ψ2 + b

4
ψ4 − hψ + K

2

( �∇ψ
)2] , (1.63)

where we have introduced the parameters a, b > 0 and a term proportional to the
magnetic field; and neglected terms of O(ψ6) and higher. The parameters a, b can
be identified by a comparison with the explicit form of the free energy in (say)
Equation 1.62. However, it is more appropriate to think of them as phenomenological
parameters, without any reference to an underlying microscopic model.

For the ψ4-free energy in Equation 1.63, the TDGL equation 1.59 has the form:

∂

∂t
ψ(�r, t) = Γ

[
a(Tc − T)ψ − bψ3 + h + K∇2ψ

]
+ θ(�r, t). (1.64)

The parameters in Equation 1.64 can be absorbed into the definitions of space and
time by introducing the rescaled variables (for T < Tc)

ψ′ = ψ

ψ0
, ψ0 =

√
a(Tc − T)

b
,

t′ = a(Tc − T)Γ t,

�r′ =
√

a(Tc − T)

K
�r, ξb =

√
2K

a(Tc − T)
,

h′ = h

a(Tc − T)ψ0
,

θ′ = θ

a(Tc − T)Γψ0
.

(1.65)

Dropping primes, we obtain the dimensionless TDGL equation:

∂

∂t
ψ(�r, t) = ψ − ψ3 + h + ∇2ψ + θ(�r, t), (1.66)
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where

θ(�r, t) = 0,

θ(�r′, t′)θ(�r′′, t′′) = 2εδ(�r′ − �r′′)δ(t′ − t′′),

ε = kBTb [a(Tc − T)](d−4)/2

Kd/2
. (1.67)

We will focus on the case with h = 0 (shown in Figure 1.4), where the system
evolves into two competing states. There is a domain boundary or interface that
separates regions enriched in the two states. Our analytical understanding of domain
growth problems is based on the dynamics of these interfaces.

1.4.1.1 Static Interfaces or Kinks

Consider the deterministic version of the TDGL equation with h = 0:

∂

∂t
ψ(�r, t) = ψ − ψ3 + ∇2ψ, (1.68)

where we have set ε = 0 in Equation 1.66. The static solution of this equation corre-
sponds to a uniform state with ψ0 = +1 or ψ0 = −1. Another static solution (with
higher energy than that of the uniform state) is the interface or kink, which is obtained
as the solution of

d2ψs

dz2
+ ψs − ψ3

s = 0. (1.69)

The kink solution is

ψs(z) = tanh

[
± (z − z0)√

2

]
, (1.70)

where z0 (the center of the kink) is arbitrary. The solutions with a positive sign (kink)
and negative sign (anti-kink) are shown in Figure 1.5. The kink (anti-kink) goes from
ψ = −1 (ψ = +1) at z = −∞ to ψ = +1 (ψ = −1) at z = ∞. The solution differs
from ψ � ±1 in a small interfacial region only, whose width defines the correlation
length ξb = √

2 (in dimensionless units).
The free energy associated with a configuration ψ(�r) is (in dimensionless units)

G[ψ] =
∫

d�r
[
−ψ2

2
+ ψ4

4
+ 1

2
( �∇ψ)2

]
. (1.71)

Therefore, the free-energy difference between the kink solution and the homogeneous
solution ψ = ψ0 is

ΔG = A
∫ ∞

−∞
dz

[
−1

2

(
ψ2

s − ψ2
0

)
+ 1

4

(
ψ4

s − ψ4
0

)
+ 1

2

(
dψs

dz

)2
]

, (1.72)
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FIGURE 1.5 Variation of the order parameter [ψs(z) versus z] for the (a) static kink profile
and (b) static anti-kink profile.

where A is the area in the directions perpendicular to the z-axis. This integral is
evaluated as follows. Multiply both sides of Equation 1.69 by dψs/dz to obtain

d

dz

[
ψ2

s

2
− ψ4

s

4
+ 1

2

(
dψs

dz

)2
]

= 0. (1.73)
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We integrate this equation to obtain

ψ2
s

2
− ψ4

s

4
+ 1

2

(
dψs

dz

)2

= C (constant)

= ψ2
0

2
− ψ4

0

4
, (1.74)

where we have used

lim
z→∞ ψs = ±ψ0,

lim
z→∞

dψs

dz
= 0.

(1.75)

Replacing Equation 1.74 in Equation 1.72, we obtain the surface tension σ as

σ = ΔG

A
=
∫ ∞

−∞
dz

(
dψs

dz

)2

= 1

2

∫ ∞

−∞
dz sech4

(
z√
2

)

= 2
√

2

3
. (1.76)

The above discussion applies to a flat interface. Clearly, the interfaces in Figure 1.4
are not flat. However, in the late stages of evolution, we expect the local order param-
eter to have equilibrated to a kink profile. We can introduce the local coordinates
n (perpendicular to the interface) and �a (tangential to the interface), as shown in
Figure 1.6. The corresponding increase in free energy is

ΔG =
∫

d�a
∫

dn

(
dψs

dn

)2

= σ

∫
d�a. (1.77)

1.4.1.2 Equation of Motion for Interfaces and Growth Laws

Next, let us derive the Allen–Cahn equation of motion for the interfaces [32]. For
this, we compute various terms in the TDGL equation 1.68 in terms of the interfacial
coordinates (n, �a). We have

�∇ψ = ∂ψ

∂n

∣∣∣∣
t

n̂, (1.78)

where n̂ is the unit vector normal to the interface in the direction of increasing ψ.
Further

∇2ψ = ∂2ψ

∂n2

∣∣∣∣
t

n̂ · n̂ + ∂ψ

∂n

∣∣∣∣
t

�∇ · n̂. (1.79)
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ψ = –1

ψ = +1

n

a→

FIGURE 1.6 Curvilinear coordinates with reference to the interface. The normal coordinate
is denoted as n and points from ψ = −1 to ψ = +1. The tangential coordinate points along
the interface and is denoted as �a.

Finally, we use the identity

∂ψ

∂t

∣∣∣∣
n

∂t

∂n

∣∣∣∣
ψ

∂n

∂ψ

∣∣∣∣
t

= −1 (1.80)

to obtain (from the TDGL equation)

−∂ψ

∂n

∣∣∣∣
t

∂n

∂t

∣∣∣∣
ψ

= ψ − ψ3 + ∂2ψ

∂n2

∣∣∣∣
t

+ ∂ψ

∂n

∣∣∣∣
t

�∇ · n̂

� ∂ψ

∂n

∣∣∣∣
t

�∇ · n̂. (1.81)

In the above simplification, we have used the fact that the interfaces are locally
equilibrated to the static kink profile. We recognize that ∂n/∂t|ψ = v(�a), the normal
interfacial velocity in the n̂-direction. This yields the Allen–Cahn equation:

v(�a) = −�∇ · n̂ = −K(�a), (1.82)

where K denotes the local curvature of the interface.
It is useful to examine the growth of a droplet of (say) ψ = −1 immersed in a

matrix of ψ = +1. We consider the 3-d case of a spherical droplet with radius R. The
normal unit vector at a point (x, y, z) on the surface of the sphere is

n̂ = x

R
î + y

R
ĵ + z

R
k̂, (1.83)

so that

�∇ · n̂ = 1

R
− x2

R3
+ 1

R
− y2

R3
+ 1

R
− z2

R3

= 2

R
. (1.84)
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Further, v(�a) = dR/dt, and Equation 1.82 becomes

dR

dt
= − 2

R
, (1.85)

with the solution

R(0)2 − R(t)2 = 4t. (1.86)

Thus, the droplet collapses on a timescale tc ∼ R(0)2. In arbitrary dimensions d, the
corresponding form of Equation 1.85 is

dR

dt
= −d − 1

R
. (1.87)

More generally, we can use Equation 1.82 to obtain the growth law for the domains
in Figure 1.4. For a domain of characteristic size L, we have v ∼ dL/dt and curva-
ture K ∼ 1/L. This yields the diffusive growth law L(t) ∼ t1/2, which is valid for
nonconserved scalar fields.

Before proceeding, it is important to consider the role of thermal fluctuations in
the dynamics shown in Figure 1.4. It turns out that thermal noise is asymptotically
irrelevant for ordering in systems that are free of disorder. This is because fluctuations
only affect the interfacial profile. However, the fixed length scale of the interface
becomes irrelevant in comparison with the diverging domain scale [33].An equivalent
argument is due to Bray [34,35], who used a renormalization-group (RG) approach
to demonstrate that domain growth is driven by a fixed point at T = 0.

1.4.1.3 Correlation Function and Structure Factor

Now, if the system is characterized by a single length scale, the morphology of the
domains does not change with time, apart from a scale factor. Therefore, the order-
parameter correlation function exhibits a dynamical-scaling property [36]:

C(�r, t) ≡ 1

V

∫
d �R

[
〈ψ(�R, t)ψ(�R + �r, t)〉 − 〈ψ(�R, t)〉〈ψ(�R + �r, t)〉

]

= g
( r

L

)
, (1.88)

where V is the system volume, and the angular brackets denote an averaging over
independent initial conditions and thermal fluctuations. This equal-time correlation
function is a nonequilibrium quantity as domain growth is a nonequilibrium process.
In Equation 1.88, g(x) is a time-independent scaling function.

Actually, most experiments (e.g., neutron or light scattering) probe the time-
dependent structure factor, which is the Fourier transform of the real-space correlation
function:

S(�k, t) =
∫

d�rei�k·�rC(�r, t), (1.89)
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where �k is the wave-vector of the scattered beam. The corresponding dynamical-
scaling form for S(�k, t) is

S(�k, t) = Ldf (kL), (1.90)

where f ( p) is a scaling function obtained as

f ( p) =
∫

d�xei�p·�xg(x). (1.91)

The scaling functions g(x) and f ( p) characterize the morphology of the ordering
system. In experiments or simulations of domain growth, one usually attempts to
obtain the functional forms of g(x) and f ( p). Of course, a complete description of
the morphology would require knowledge of all higher-order structure factors also,
but these have limited experimental relevance.

The case with d = 1 does not obey these general arguments, and we discuss it
separately here. For domain scales L(t) � ξb, there is only an exponentially decaying
interaction of order e−L/ξb between domain walls. This results in a logarithmic growth
law L(t) ∼ ξb ln t. The corresponding scaling functions have been explicitly obtained
by Nagai and Kawasaki [37].

1.4.1.4 Short-Distance Singularities and Porod’s Law

Let us now discuss some general properties of the correlation function and the structure
factor. The presence of sharp interfaces (defects) in the phase-ordering system results
in a short-distance singularity of the correlation function. This can be obtained as
follows. For simplicity, we first consider the 1-d case with a kink defect of size L. We
are interested in short distances x such that L � x � ξb, where ξb is the correlation
length. Therefore, we can approximate the kink defect by the sign-function:

ψ(x) = sgn(x), x ∈
[
−L

2
,

L

2

]
. (1.92)

The corresponding correlation function is obtained from Equation 1.88 as

C(x) = 1

L

∫ L/2

−L/2
dx sgn(x) sgn(x + x)

= 1

L

[∫ L/2

0
dx sgn(x − x) +

∫ L/2

0
dx sgn(x + x)

]

= 1 − 2|x|
L

. (1.93)

Notice that this function is non-analytic at x = 0. This short-distance singularity has
important implications for the behavior of the structure factor at large wave-vectors.
We will discuss this shortly, but let us first generalize the result in Equation 1.93 to
arbitrary d.
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We consider a d-dimensional kink with the interface located at x = 0. The order-
parameter field is perfectly correlated in the (d − 1) dimensions that are perpendicular
to x. Therefore, the correlation function at short distances is merely

C(�r) = 1 − 2|x|
L

, (1.94)

where x now denotes the x-component of �r. In the isotropic case, the interface is
randomly oriented in d-dimensional space. The corresponding correlation function is

C(�r) = 1 − 2 〈|x|〉
L

, (1.95)

where 〈·〉 denotes an average over the (d − 2) polar angles {θ1, θ2, . . . , θd−2} and
one azimuthal angle φ. This average is obtained as (using x = r sin θ1 sin θ2 . . .

sin θd−2 cos φ)

〈|x|〉 =

∫ π

0 dθ1 sind−2 θ1
∫ π

0 dθ2 sind−3 θ2 . . .
∫ π

0 dθd−2 sin θd−2∫ 2π

0 dφ r | sin θ1| . . . | sin θd−2|| cos φ|∫ π

0 dθ1 sind−2 θ1
∫ π

0 dθ2 sind−3 θ2 . . .
∫ π

0 dθd−2 sin θd−2
∫ 2π

0 dφ

= r 2d−2B

(
d

2
,

d

2

)
· 2

π

= r
1√
π

Γ (d/2)

Γ [(d + 1)/2]
. (1.96)

In obtaining the above result, we have used the identities [38]

∫ π/2

0
dθ sinn−1 θ = 2n−2B

(n

2
,

n

2

)

= 1

2
B

(
1

2
,

n

2

)
, (1.97)

where B(x, y) is the beta function

B(x, y) = Γ(x)Γ(y)

Γ(x + y)
. (1.98)

Putting the result for 〈|x|〉 into Equation 1.95, we obtain the short-distance behavior
of the correlation function for interface defects in d dimensions:

C(r) = 1 − 2√
π

Γ (d/2)

Γ [(d + 1)/2]

r

L
,

r

L
→ 0. (1.99)
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The short-distance singularity in C(r) as r/L → 0 gives rise to a power-law decay
of the structure-factor tail. Recall that the structure factor is merely the Fourier
transform of the correlation function. From power-counting of the singular term in
Equation 1.99, the functional form of the structure-factor tail is

S(k) = Ld Ad

(kL)d+1
, kL → ∞. (1.100)

This important result is referred to as the Porod law and was first obtained for
scattering from two-phase systems [39]. Notice that S(k) satisfies the dynamical-
scaling form in Equation 1.90. Here, Ad denotes the amplitude of the Porod tail,
which can be extracted as follows. We have the inverse Fourier transform

C(r) =
∫

d�k
(2π)d

e−i�k·�rS(k)

= 1 −
∫

d�k
(2π)d

(
1 − e−i�k·�r) S(k)

= 1 − I(r), (1.101)

where we have used the fact that C(0) = 1.
We can decompose the above integral as

I(r) =
∫ K

0
dk kd−1

∫
dΩk

(2π)d

(
1 − e−i�k·�r) S(k)

+
∫ ∞

K
dk kd−1

∫
dΩk

(2π)d

(
1 − e−i�k·�r) Ad

Lkd+1

= I1(r) + I2(r), (1.102)

where K is sufficiently large that the Porod tail applies for k > K . Finally, notice that
we can extend the lower limit of I2(r) to k = 0. [This does not give rise to a divergence

as k → 0 because an extra factor of k2 arises from the (1 − e−�k·�r) term.] Then

I(r) =
∫ K

0
dk kd−1

∫
dΩk

(2π)d

(
1 − e−i�k·�r) [S(k) − Ad

Lkd+1

]

+
∫ ∞

0
dk kd−1

∫
dΩk

(2π)d

(
1 − e−i�k·�r) Ad

Lkd+1

= I3(r) + I4(r). (1.103)
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Notice that I3(r) is analytic in r because of the finite upper limit of the k-integral.
Clearly, the singular terms in C(r) arise from I4(r), and we can isolate these as follows:

I4(r) = Ad

L

∫ ∞

0

d�k
(2π)d

(
1 − e−i�k·�r) 1

kd+1

= Ad

L

∫ ∞

0

d�k
(2π)d

(
1 − e−i�k·�r) ∫ ∞

0

du

Γ [(d + 1)/2]
u((d+1)/2)−1e−uk2

= Ad

L

1

Γ [(d + 1)/2]

∫ ∞

0
du u(d−1)/2

∫ ∞

0

d�k
(2π)d

(
1 − e−i�k·�r) e−uk2

= Ad

L

1

(4π)d/2Γ [(d + 1)/2]

∫ ∞

0
du u−1/2

(
1 − e−r 2/(4u)

)
. (1.104)

The final step is to evaluate the integral on the RHS. We make the substitution
z = r2/(4u) to obtain

∫ ∞

0
du u−1/2

(
1 − e−r2/(4u)

)
= r

2

∫ ∞

0
dz z−3/2 (1 − e−z)

= − r

2
Γ

(
−1

2

)

= √
πr. (1.105)

This yields the following expression for the singular part of C(r):

Cs(r) = −Ad

√
π

(4π)d/2Γ [(d + 1)/2]

r

L
. (1.106)

Comparing Equations 1.106 and 1.99, we obtain the exact amplitude of the Porod
tail:

Ad = 2d+1π(d/2)−1Γ

(
d

2

)
. (1.107)

1.4.1.5 Ohta–Jasnow–Kawasaki Theory

Let us next consider the case with multiple defects or interfaces, corresponding to
ordering from a random initial condition (see Figure 1.4). In this context, an approx-
imate theory has been developed by Ohta et al. (OJK) [40]. Recall that the ordering
system is described by an order parameter field ψ(�r, t) that obeys the TDGL equa-
tion 1.68. In the late stages of domain growth, the system consists of large domains
with ψ = +1 or ψ = −1. The order parameter rapidly changes sign at the domain
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boundaries. OJK introduced a nonlinear transformation ψ ≡ ψ(m), where m(�r, t) is
an auxiliary field that varies smoothly through the interface. The simplest choice for
m is the normal distance from the interface, so that m(�r, t) = 0 on the interface. The
corresponding choice for the nonlinear transformation is then ψ = sgn(m). Let us
obtain the equation obeyed by m(�r, t) as follows. Recall the Allen–Cahn equation
v(�a) = −�∇ · n̂, where n̂ is the unit vector normal to the interface. We use the fact that

n̂ = �∇m

| �∇m| (1.108)

to obtain

v = −�∇ · n̂ = − ∇2m

| �∇m| + ninj∇i∇jm

| �∇m| . (1.109)

Further, in a reference frame moving with the interface,

dm

dt
= ∂m

∂t
+ �∇m · �v = 0. (1.110)

We use �∇m · �v = | �∇m|v to obtain

v = − 1

| �∇m|
∂m

∂t
. (1.111)

Comparing Equations 1.109 and 1.111, we obtain the required equation for m(�r, t):

∂

∂t
m(�r, t) = ∇2m − ninj∇i∇jm. (1.112)

Equation 1.112 is nonlinear and analytically intractable, as was the case with the
original TDGL equation. Then, OJK replaced the term ninj by its spherical average as

ninj � δij

d
. (1.113)

Under this approximation, the auxiliary field m(�r, t) obeys the diffusion equation:

∂

∂t
m(�r, t) =

(
d − 1

d

)
∇2m ≡ D∇2m. (1.114)

Now, we are in a position to calculate the correlation function of the ψ-field from
the correlation function of the m-field. We model the random initial condition for the
field m(�r, 0) by a Gaussian distribution with zero mean and correlation

〈
m(�r, 0)m(�r′, 0)

〉 = Aδ(�r − �r′). (1.115)
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The appropriate distribution is

P
[
m(�r, 0)

] = 1√
2πσ(0)2

exp

[
−m(�r, 0)2

2σ(0)2

]
, σ(0)2 =

〈
m(�r, 0)2

〉
. (1.116)

As the evolution of m(�r, t) is governed by the linear equation 1.114, the distribution
of m remains Gaussian for all times:

P
[
m(�r, t)

] = 1√
2πσ(t)2

exp

[
−m(�r, t)2

2σ(t)2

]
, σ(t)2 =

〈
m(�r, t)2

〉
. (1.117)

Let us calculate the general correlation function (at unequal space-time points)

C(�r1, t1; �r2, t2) = 〈ψ(�r1, t1)ψ(�r2, t2)〉
= 〈sgn

[
m(�r1, t1)

]
sgn
[
m(�r2, t2)

]〉
. (1.118)

To obtain this average, we need the normalized bivariate Gaussian distribution for
m(�r1, t1) (= x, say) and m(�r2, t2) (=y):

P(x, y) = 1

2πσ(t1)σ(t2)
√

1 − γ2

× exp

[
− 1

2(1 − γ2)

(
x2

σ(t1)2
+ y2

σ(t2)2
− 2γxy

σ(t1)σ(t2)

)]
, (1.119)

where

σ(t1)
2 = 〈x2〉 = 〈m(�r1, t1)

2〉,
σ(t2)

2 = 〈y2〉 = 〈m(�r2, t2)
2〉,

γ = 〈xy〉√〈
x2
〉 〈

y2
〉 = 〈m(�r1, t1)m(�r2, t2)〉√〈

m(�r1, t1)2
〉 〈

m(�r2, t2)2
〉 . (1.120)

We will calculate the quantities σ(t1), σ(t2) and γ shortly. Let us first obtain the
correlation function

C(�r1, t1; �r2, t2) = 1

2πσ(t1)σ(t2)
√

1 − γ2

∫ ∞

−∞
dx
∫ ∞

−∞
dy

x√
x2

y√
y2

× exp

[
− 1

2(1 − γ2)

(
x2

σ(t1)2
+ y2

σ(t2)2
− 2γxy

σ(t1)σ(t2)

)]
,

(1.121)
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where we have used sgn(z) = z/
√

z2. We rescale as x′ = x/σ(t1) and y′ = y/σ(t2) to
obtain (dropping the primes)

C(�r1, t1; �r2, t2) = 1

2π
√

1 − γ2

∫ ∞

−∞
dx
∫ ∞

−∞
dy

x√
x2

y√
y2

exp
(
−αx2 − αy2 + βxy

)
,

(1.122)
where

α = 1

2(1 − γ2)
,

β = γ

(1 − γ2)
. (1.123)

The integral on the RHS of Equation 1.122 can be simplified by using the identity

1√
z

= 1√
π

∫ ∞

−∞
dθ exp(−zθ2). (1.124)

This yields

C(�r1, t1; �r2, t2) = 1

2π2
√

1 − γ2

∫ ∞

−∞
dθ

∫ ∞

−∞
dφ

∫ ∞

−∞
dx
∫ ∞

−∞
dy xy

× exp
[
−(α + θ2)x2 − (α + φ2)y2 + βxy

]

= 1

2π2
√

1 − γ2

∂

∂β

∫ ∞

−∞
dθ

∫ ∞

−∞
dφ

∫ ∞

−∞
dx
∫ ∞

−∞
dy

× exp
[
−(α + θ2)x2 − (α + φ2)y2 + βxy

]
. (1.125)

The integrals over x and y are performed using the general expression for the Gaussian
integral: ∫ ∞

−∞
dz exp(−p2z2 ± qz) = exp

(
q2

4p2

) √
π

|p| . (1.126)

Then, the integrand becomes

h(θ, φ) =
∫ ∞

−∞
dx exp

[
−(α + θ2)x2

] ∫ ∞

−∞
dy exp

[
−(α + φ2)y2 + βxy

]

=
∫ ∞

−∞
dx exp

[
−(α + θ2)x2

]
exp

[
β2x2

4(α + φ2)

]√
π

α + φ2

=
√

π

α + φ2

∫ ∞

−∞
dx exp

[
−
(

α + θ2 − β2

4(α + φ2)

)
x2

]
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=
√

π

α + φ2

√
π[

α + θ2 − β2

4(α + φ2)

]1/2
. (1.127)

Notice that the x-integral is well defined because

α + θ2 − β2

4(α + φ2)
> α − β2

4α
> 0. (1.128)

Finally, we have

C(�r1, t1; �r2, t2) = β

8π
√

1 − γ2

∫ ∞

−∞
dθ

∫ ∞

−∞
dφ

1[
α+φ2

]3/2

1[
α+θ2− β2

4(α+φ2)

]3/2

= β

4π
√

1 − γ2

∫ ∞

−∞
dφ

1

(α + φ2)3/2

1[
α − β2

4(α + φ2)

]

= β

π
√

1 − γ2

∫ ∞

−∞
dφ

1

(α + φ2)1/2

1(
4αφ2 + 4α2 − β2

) . (1.129)

Some further algebra yields the final result:

C(�r1, t1; �r2, t2) = 2

π
sin−1(γ), (1.130)

where γ was defined in Equation 1.120.
Our only remaining task is to obtain the quantity γ, which is the (normalized)

correlation function of the auxiliary field m(�r, t). It is easy to calculate this quantity
in momentum space as follows. We note that

m(�r, t) = eDt∇2
m(�r, 0),

m(�k, t) = e−Dtk2
m(�k, 0).

(1.131)

Further, we have〈
m(�k, 0)m(�k′, 0)

〉
=
∫

d�rei�k·�r
∫

d�r′ei�k′·�r′ 〈
m(�r, 0)m(�r′, 0)

〉
= A

∫
d�rei(�k+�k′)·�r = Aδ(�k + �k′), (1.132)

where we have used Equation 1.115. Therefore〈
m(�k1, t1)m(�k2, t2)

〉
= e−Dt1k2

1 e−Dt2k2
2

〈
m(�k1, 0)m(�k2, 0)

〉
= Aδ(�k1 + �k2)e

−D(t1k2
1+t2k2

2 ). (1.133)
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Finally, we obtain

〈m(�r1, t1)m(�r2, t2)〉 =
∫

d�k1

(2π)d
e−i�k1·�r1

∫
d�k2

(2π)d
e−i�k2·�r2

〈
m( �k1, t1)m(�k2, t2)

〉

= A
∫

d�k1

(2π)d
e−i�k1·(�r1−�r2)e−D(t1+t2)k2

1

= A

[4πD(t1 + t2)]d/2
exp

[
− r2

4D(t1 + t2)

]
, (1.134)

where �r = �r1 − �r2. Thus

γ = 〈m(�r1, t1)m(�r2, t2)〉√〈
m(�r1, t1)2

〉 〈
m(�r2, t2)2

〉

=
(

2
√

t1t2
t1 + t2

)d/2

exp

[
− r2

4D(t1 + t2)

]
. (1.135)

Equations 1.130 and 1.135 constitute the OJK result for the correlation function (at
unequal space-time points) for the nonconserved ordering problem.

1.4.1.6 Implications of the OJK Function

We are usually interested in the equal-time correlation function (�r = �r1 − �r2)

C(�r, t) ≡ C(�r1, t; �r2, t)

= 2

π
sin−1

[
exp

(
− r2

8Dt

)]
. (1.136)

Notice that the OJK result has the scaling form in Equation 1.88 with the domain scale
L(t) ∼ (8Dt)1/2. This confirms the result we had obtained from dimensional analysis
of the Allen–Cahn equation. Further, the OJK function is in excellent agreement with
results obtained from experiments and numerical simulations. In Figure 1.7a, we show
numerical results for the correlation function of the ordering ferromagnet in Figure 1.4.
We plot C(r, t) versus r/L at different times—the resultant data collapse confirms
the scaling form in Equation 1.88. The OJK function is also plotted in Figure 1.7a.
In Figure 1.7b, we show numerical data for the scaled structure factor, L−dS(k, t)
versus kL, at different times. Again, the data collapses onto a scaling function, in
accordance with the scaling form in Equation 1.90. The tail of the structure factor
decays as a power law, S(k, t) ∼ k−(d+1), which is the Porod tail in Equation 1.100.
In Figure 1.7b, we also plot the Fourier transform of the OJK function. As expected,
this also shows a Porod tail. Our next task is to demonstrate this explicitly. Before
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FIGURE 1.7 (a) Scaled correlation function [C(r, t) versus r/L] for the evolution depicted in
Figure 1.4. The numerical data is obtained as an average over 5 independent runs for systems of
size 10242. The length scale L(t) is defined as the distance over which the correlation function
falls to half its maximum value. We show data for times 100, 200, 500, 1000—denoted by the
specified symbols. The solid line denotes the OJK function in Equations 1.130 and 1.135,
scaled in the same manner as the numerical data. (b) Scaled structure factor [L−dS(k, t) versus
kL], corresponding to the data in (a). In this case, we plot the data on a log-log scale. The solid
line denotes the Fourier transform of the OJK function. The line with slope −3 corresponds to
the Porod tail.

doing that, we present data for the domain growth law [L(t) versus t] in Figure 1.8.
We see that the domain-growth process obeys the Allen–Cahn law, L(t) ∼ t1/2.

In our earlier discussion, we had stressed that the short-distance singularities of the
correlation function lead to a power-law decay of the structure factor. In this context,
it is useful to undertake a short-distance expansion of the OJK function. We identify
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FIGURE 1.8 Domain growth law for the evolution depicted in Figure 1.4. The numerical
details are the same as in Figure 1.7. We plot the data on a log-log scale. The dashed line
denotes the Allen–Cahn growth law, L(t) ∼ t1/2.

the scaled variable x = r/L, and consider the function

g(x) = 2

π
sin−1

(
e−x2

)
. (1.137)

In the limit x → 0, we have γ = e−x2 → 1. For a small-x expansion of g(x), it is
convenient to use the identity [38]

sin−1 γ = γF

(
1

2
,

1

2
;

3

2
; γ2
)

, (1.138)

where we have introduced the hypergeometric function

F(a, b; c; z) =
∞∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n) n!
Γ(c)

Γ(a)Γ(b)
zn. (1.139)

The hypergeometric function satisfies the relation [38]:

F(a, b; c; z) = Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
F(a, b; a + b − c + 1; 1 − z) + (1 − z)c−a−b

× Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
F(c − a, c − b; c − a − b + 1; 1 − z). (1.140)
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Using this relation, we have

sin−1 γ = π

2
γF

(
1

2
,

1

2
;

1

2
; 1 − γ2

)
− γ(1 − γ2)1/2F

(
1, 1;

3

2
; 1 − γ2

)
(1.141)

and

g(x) = e−x2
F

(
1

2
,

1

2
;

1

2
; 1 − e−2x2

)
− 2

π
e−x2

(
1 − e−2x2

)1/2
F

(
1, 1;

3

2
; 1 − e−2x2

)

≡ A(x) + B(x). (1.142)

The singular terms for x → 0 arise only from the second term (B) on the RHS of
Equation 1.142. The first few of these are obtained as

B(x) = −2
√

2

π
x +

√
2

3π
x3 + O(x5). (1.143)

The first term (A) yields only analytic terms for x → 0. Some calculation shows that
the O(x2) term is missing in the expansion of A, and

A(x) = 1 − O(x4). (1.144)

Thus, the overall result for g(x) is

g(x) = 1 − 2
√

2

π
x +

√
2

3π
x3 + O(x4). (1.145)

As before, the linear term in x gives rise to the Porod tail

S(k) = Ld AOJK

(kL)d+1
, kL → ∞. (1.146)

From Equations 1.106 and 1.143, we observe that

AOJK

√
π

(4π)d/2Γ

(
d + 1

2

) = 2
√

2

π
, (1.147)

so that

AOJK = 2d+3/2π(d−3)/2Γ

(
d + 1

2

)
. (1.148)

The absence of the x2-term in the expansion of g(x) also has an important
consequence for the structure factor. In the limit x → 0, we have

lim
x→0

∇2g(x) = lim
x→0

(
d2g

dx2
+ d − 1

x

dg

dx

)

= lim
x→0

−2
√

2(d − 1)

πx
. (1.149)
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We can rewrite ∇2g as

∇2g(x) = ∇2
∫

d�p
(2π)d

e−i�p·�xf ( p) = −
∫

d�p
(2π)d

e−i�p·�xp2f ( p), (1.150)

where �p = �kL and f ( p) is the scaling function for the structure factor—see
Equation 1.90.

Further, we have the identity

1

x
=
∫

d�p
(2π)d

e−i�p·�x 2d−1π(d−1)/2Γ [(d − 1)/2]

pd−1
. (1.151)

Therefore, Equation 1.150 can be rewritten as

∫
d�p

(2π)d

[
p2f ( p) − 2d−1π(d−1)/2Γ [(d − 1)/2] 2

√
2(d − 1)

πpd−1

]
= 0, (1.152)

or ∫ ∞

0
dp

[
pd+1f ( p) − 2d+3/2π(d−3)/2Γ

(
d + 1

2

)]
= 0. (1.153)

This reconfirms the result in Equations 1.146 and 1.148, viz.,

f (p) = 2d+3/2π(d−3)/2Γ [(d + 1)/2]

pd+1
, p → ∞. (1.154)

Further, Equation 1.153 constitutes a sum rule that must be obeyed by the scaling
function. This is referred to as Tomita’s sum rule [41,42].

An important extension of the OJK result is due to Oono and Puri (OP) [43],
who incorporated the effects of non-zero interfacial thickness into the analytical form
for the correlation function. This extension was of considerable experimental and
numerical relevance because the non-zero interfacial thickness has a severe impact
on the tail of the structure factor. In particular, the power-law decay is replaced by a
Gaussian decay for finite times, and the Porod tail is only recovered for t → ∞.

1.4.1.7 Kawasaki–Yalabik–Gunton Theory

An alternative approach to the nonconserved ordering problem is due to Kawasaki
et al. (KYG) [44]. The KYG theory yields the same result for the correlation function
as does OJK theory. As before, we require an approximate solution to the TDGL
Equation 1.68, which we reproduce here for convenience:

∂

∂t
ψ(�r, t) = ψ − ψ3 + ∇2ψ.
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Let us consider the Fourier transform of the TDGL equation:

∂

∂t
ψ(�k, t) = (1 − k2)ψ(�k, t) −

∫
d�k1

(2π)d

∫
d�k2

(2π)d

∫
d�k3

(2π)d
δ(�k − �k1 − �k2 − �k3)

× ψ(�k1, t)ψ(�k2, t)ψ(�k3, t). (1.155)

The linear part of Equation 1.155 is

∂

∂t
m(�k, t) = (1 − k2)m(�k, t), (1.156)

with the solution:

m(�k, t) = eγ(�k)tm(�k, 0), γ(�k) = 1 − k2. (1.157)

The formal solution of the nonlinear equation 1.155 is

ψ(�k, t) = m(�k, t) −
∫ t

0
dt′eγ(�k)(t−t′)

∫
d�k1

(2π)d

∫
d�k2

(2π)d

∫
d�k3

(2π)d

× δ(�k − �k1 − �k2 − �k3)ψ(�k1, t′)ψ(�k2, t′)ψ(�k3, t′). (1.158)

KYG solved this integral equation iteratively, using the linear solution m(�k, t) to
obtain an expansion in integrals of products of m(�k, t). Notice that m(�k, t) diverges
with time, so each term of this expansion also diverges in time. KYG used a technique
developed by Suzuki [45,46] to perform a partial resummation of the terms in this
expansion to obtain a well-controlled result:

ψ(�r, t) � m(�r, t)√
1 + m(�r, t)2

. (1.159)

In the large-t limit, m(�r, t) is very large and

ψ(�r, t) � sgn
[
m(�r, t)

]
. (1.160)

Notice that this is identical to the nonlinear transformation in OJK theory. In this case
also, the auxiliary field m(�r, t) obeys the diffusion equation (D = 1 here), with the
only difference being that there is an additional factor of et :

m(�r, t) = et(1+∇2)m(�r, 0). (1.161)

We assume that m(�r, 0) has a Gaussian distribution (cf. Equation 1.116), so that m(�r, t)
is also described by a Gaussian distribution. The calculation of the correlation function
for the field ψ(�r, t) is identical to that described for OJK theory. The final result is
again the OJK function in Equations 1.130 and 1.135 with D = 1.
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Finally, it is useful to examine the KYG theory from an alternative perspective.
Let us consider the nonlinear transformation

ψ(�r, t) = m(�r, t)√
1 + m(�r, t)2

(1.162)

and determine the equation that is satisfied by m(�r, t). Some simple algebra yields
the relevant equation, which is

∂

∂t
m(�r, t) = m + ∇2m − 3m| �∇m|2

1 + m2
. (1.163)

Thus, the KYG approximation is equivalent to discarding the nonlinear term on the
RHS of Equation 1.163. There is no justification for such an approximation, so the
KYG theory only constitutes an approximate solution to the ordering problem. This
can be explicitly demonstrated by comparing the evolution profiles obtained from
Equation 1.159 with those obtained numerically from the original TDGL equation. In
a sense, it is fortunate that the nonlinear transformation in Equation 1.159 faithfully
mimics the actual defect statistics, thereby yielding excellent results for statistical
quantities like the correlation function and the structure factor.

In the next subsection, we will see that the KYG “solution” in Equation 1.159
readily generalizes to the problem of domain growth in a system described by a
vector order parameter.

1.4.2 CASE WITH VECTOR ORDER PARAMETER

The vector version of the TDGL equation, where ψ is replaced by an n-component
vector �ψ = (ψ1, ψ2, . . . ψn), is also of great experimental relevance. In dimensionless
units, this has the following form for T < Tc and �h = 0:

∂

∂t
�ψ(�r, t) = �ψ − | �ψ|2 �ψ + ∇2 �ψ + �θ(�r, t), (1.164)

where the vector noise �θ(�r, t) satisfies

�θ(�r, t) = 0,

θi(�r′, t′)θj(�r′′, t′′) = 2εδijδ(�r′ − �r′′)δ(t′ − t′′).
(1.165)

For example, the n = 2 case (XY model) is relevant in the ordering of superconductors,
superfluids, and liquid crystals. Figure 1.9 shows the evolution of the vector field
(ψ1, ψ2) for the d = 2 XY model from a disordered initial condition. In this case, the
topological defects are vortices and anti-vortices, and domain growth is driven by the
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t = 10 t = 50

t = 200 t = 500

FIGURE 1.9 (See color insert following page xxx.) Evolution of the dimensionless XY
model from a disordered initial condition. The pictures were obtained from a Euler-discretized
version of Equation 1.164 with n = 2 and ε = 0. The numerical details are the same as for
Figure 1.4. The snapshots show regions of constant phase θψ = tan−1(ψ2/ψ1), measured
in radians, with the following color coding: θψ ∈ [1.85, 2.15] (black); θψ ∈ [3.85, 4.15] (red);
θψ ∈ [5.85, 6.15] (green). Typically, a meeting point of the three colors denotes a vortex defect.

annihilation of these defects. The n = 3 case (Heisenberg model) is also of relevance
in the ordering of liquid crystals and in the evolution dynamics of the early universe.

1.4.2.1 Generalized Porod’s Law

As before, the nature of defects in the ordering system determines general properties
of the correlation function and the structure factor. The presence of n-component
defects (e.g., vortices for n = 2, d = 2; vortex lines for n = 2, d = 3; monopoles for
n = 3, d = 3; etc.) again yields a power-law or generalized Porod tail for the scaled
structure factor [47,48], that is,

f ( p) ∼ p−(d+n), p → ∞. (1.166)
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The corresponding exact result for the singular behavior of the scaled correlation
function of a single defect at short distances is as follows [49]:

g(x) = 1 + π(n−2)/2 Γ (d/2) Γ [(n + 1)/2]2 Γ (−n/2)

Γ [(d + n)/2)] Γ (n/2)
xn + higher-order terms.

(1.167)
This result is obtained by a generalization (to the n-component case) of the arguments
that resulted in Equation 1.99. That result was obtained for interface defects and
corresponds to the n = 1 case of Equation 1.167. The singular behavior for even
values of n has to be carefully extracted from the above expression and involves
logarithmic corrections as 1 − g(x) ∼ xn ln x. Furthermore, there is no analog of the
Tomita sum rule for the vector-ordering problem.

1.4.2.2 Bray–Puri–Toyoki Theory

Bray and Puri (BP) [47] and (independently) Toyoki (T) [48] used a defect-dynamics
approach to obtain an approximate solution for the correlation function of the n-
component TDGL equation in d-dimensional space. The BPT result is valid for n ≤ d,
corresponding to the case where topological defects are present. The starting point
of the BP calculation is a generalization of the KYG solution for the scalar TDGL
equation in Equation 1.159 [50]:

�ψ(�r, t) � �m(�r, t)√
1 +∑n

i=1 mi(�r, t)2
. (1.168)

Here, �m(�r, t) is the solution of the linear equation (cf. Equation 1.156)

∂

∂t
�m(�r, t) = �m + ∇2 �m, (1.169)

so that

�m(�r, t) = et(1+∇2) �m(�r, 0). (1.170)

In the large-t limit, �m(�r, t) is very large and

�ψ(�r, t) � �m(�r, t)

| �m(r, t)| . (1.171)

The subsequent calculation is analogous to that described in Equation 1.116
onwards. BP obtained an explicit scaling form for the correlation function:

C(�r, t) = 〈�ψ(�r1, t) · �ψ(�r2, t)〉

= nγ

2π

[
B

(
n + 1

2
,

1

2

)]2

F

(
1

2
,

1

2
;

n + 2

2
; γ2
)

, (1.172)
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where γ = exp(−r2/L2), L being the average defect length-scale. BP demonstrated
that the length scale obeys the Allen–Cahn growth law, L(t) ∼ t1/2. (A more careful
calculation demonstrates that there are logarithmic corrections when n = d = 2, and
L(t) ∼ (t/ ln t)1/2 [51].) As in the case of the OJK function, Equation 1.172 is valid
when the defect core size is identically zero. The nonzero core size in experiments or
simulations introduces OP-like corrections in the correlation function and structure
factor.

The case with n > d is unusual in that there are no topological defects, and it
is not possible to describe the evolution of the system in terms of the annealing of
defects. As a matter of fact, systems with n > d need not exhibit dynamical scaling.
Some specific results are available for n = d + 1, where the system is characterized
by the presence of textures [52,53]. In general, systems with textures do not show
single-length scaling. Dynamical scaling is restored in the n → ∞ limit, where the
correlation function exhibits a Gaussian decay [3]:

C(�r, t) = exp

(
− r2

L2

)
, (1.173)

where L(t) ∼ t1/2. There are no general analytical results available for the correlation
function of the n-component TDGL equation with n > d.

The results of OJK-OP and BPT have been understood to constitute a complete
solution of the nonconserved ordering problem. However, the work of Blundell
et al. [54] suggests that this is not the case. Generally, one tests for dynamical scal-
ing by plotting C(�r, t) versus r/L or S(�k, t)L−d versus kL at different times (see
Figure 1.7) [55]. One also compares the analytical results with experimental or numer-
ical results using similar plots. However, there is an arbitrariness in the definition of the
characteristic length scale, which is defined as (say) the reciprocal of the first moment
of the structure factor, or the distance over which the correlation function falls to half
its maximum value. The problem with these definitions, while comparing different
results, is that they already build in a high level of agreement on a scaling plot. Blun-
dell et al. [54] have proposed a universal test of dynamical scaling, which does not
use an internally defined length scale, but rather uses higher-order structure factors.
On such a plot, there is a considerable difference between the OJK/BPT results and
the corresponding numerical results. This suggests that our analytical understanding
of nonconserved phase ordering may not be so good after all. Subsequently, Mazenko
[57–59] showed that the OJK result is exact in the limit d → ∞. There have been
attempts to improve on the OJK result for the case of finite d, and these are discussed
by Mazenko [60,61].

1.5 DOMAIN GROWTH IN SYSTEMS WITH
CONSERVED KINETICS

Let us next consider systems with a conserved order parameter, for example, kinetics
of phase separation of a binary (AB) mixture. A typical phase diagram for an AB
mixture was shown in Figure 1.3. Though the Hamiltonian of the binary mixture is
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the same as that for the ferromagnet, recall that the phase diagrams in Figures 1.2 and
1.3 are obtained in different ensembles.

In Figure 1.10, we show the evolution of a binary mixture after a quench from
above the coexistence curve (homogeneous phase) to below the coexistence curve
(segregated phase). The initially homogeneous system separates into A-rich and B-
rich domains, denoted as black and white regions in Figure 1.10. In contrast with the
nonconserved case, the evolution in this case must satisfy the constraint that numbers
of A and B are constant, that is, the order parameter is conserved. In the corresponding
kinetic Ising model in Section 1.3.3, recall that the conservation law was implemented
via Kawasaki spin-exchange kinetics.

Experimentalists distinguish between shallow quenches ( just below the co-
existence curve) and deep quenches (far below the coexistence curve). For shallow
quenches, in the region between the coexistence line and the spinodal lines in

t = 100 t = 500

t = 2000 t = 5000

FIGURE 1.10 Evolution of a homogeneous binary (AB) mixture, which is quenched below
the coexistence curve at time t = 0. These pictures were obtained from a numerical solution of
the CHC equation 1.182 with ε = 0. The discretization mesh sizes were Δt = 0.01 and Δx =
1, and the lattice size was 2562. The random initial condition consisted of small-amplitude
fluctuations about ψ = 0, corresponding with a mixture with equal amounts ofA and B (critical
composition). Regions with ψ > 0 (A-rich) and ψ < 0 (B-rich) are marked in black and white,
respectively.
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Figure 1.3, the homogeneous system is metastable and decomposes by the nucle-
ation and growth of droplets. For deep quenches, into the region below the spinodal
lines, the homogeneous system spontaneously decomposes into A-rich and B-rich
regions, a process referred to as spinodal decomposition. However, there is no sharp
physical distinction between the nucleation and growth and spinodal decomposition
regions of the phase diagram [4]. This will be discussed at length in Chapter 2.

1.5.1 SEGREGATION IN BINARY ALLOYS

First, we focus on the kinetics of phase separation in a binary mixture where
hydrodynamic effects are not relevant, for example, binary alloys. In this case, the
primary mechanism for phase separation is diffusion and aggregation. As in the
nonconserved case, we introduce a space-time–dependent order parameter ψ(�r, t) =
nA(�r, t) − nB(�r, t), where nα(�r, t) is the local density of species α. The evolution of
ψ is described by the continuity equation:

∂

∂t
ψ(�r, t) = −�∇ · �J(�r, t), (1.174)

where �J(�r, t) denotes the current. Further, because the current is driven by concentra-
tion fluctuations, we expect

�J(�r, t) = −D �∇μ(�r, t), (1.175)

where D is the diffusion coefficient and μ(�r, t) is the chemical potential. Finally, the
chemical potential is determined as

μ(�r, t) = δF [ψ]

δψ
, (1.176)

where F refers to the Helmholtz potential, which is the appropriate thermodynamic
potential for the binary mixture. This is obtained from Equation 1.60 with g(ψ)

replaced by f (ψ).
Combining Equations 1.174 through 1.176, we obtain the CH equation [62,63] for

the phase separation of a binary mixture:

∂

∂t
ψ(�r, t) = D∇2

(
δF[ψ]

δψ

)
. (1.177)

In Section 1.3.3, we had derived this equation from the spin-exchange kinetic Ising
model (cf. Equation 1.58). Notice that Equation 1.177 corresponds to the case of
a constant diffusion coefficient. There have also been studies of systems where the
diffusion coefficient depends on the local order parameter [64].

The effects of thermal fluctuations can be incorporated in the CH equation by
including a noise term in the definition of the current in Equation 1.175 [65]. The
resultant model is the Cahn–Hilliard–Cook (CHC) equation:

∂

∂t
ψ(�r, t) = �∇ ·

{
D �∇

(
δF[ψ]

δψ

)
+ �θ(�r, t)

}
. (1.178)
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The vector noise satisfies the usual fluctuation–dissipation relation:

�θ(�r, t) = 0,

θi(�r′, t′)θj(�r′′, t′′) = 2DkBTδijδ(�r′ − �r′′)δ(t′ − t′′).
(1.179)

Equations 1.178 and 1.179 are also referred to as Model B in the classification scheme
of Hohenberg and Halperin [31].

For the ψ4-form of the free-energy functional (Equation 1.63 without the magnetic
field term), the CHC equation has the following form:

∂

∂t
ψ(�r, t) = �∇ ·

{
D �∇

[
−a(Tc − T)ψ + bψ3 − K∇2ψ

]
+ �θ(�r, t)

}
. (1.180)

In analogy with the TDGL equation (cf. Equation 1.64), we rescale variables as
follows (for T < Tc):

ψ′ = ψ

ψ0
, ψ0 =

√
a(Tc − T)

b
,

t′ = Da2(Tc − T)2

K
t,

�r′ =
√

a(Tc − T)

K
�r, ξb =

√
2K

a(Tc − T)
,

�θ′ =
√

bK

Da2(Tc − T)2
�θ.

(1.181)

We then drop primes to obtain the dimensionless CHC equation:

∂

∂t
ψ(�r, t) = �∇ ·

[ �∇
(
−ψ + ψ3 − ∇2ψ

)
+ �θ(�r, t)

]
, (1.182)

where

�θ(�r, t) = 0,

θi(�r′, t′)θj(�r′′, t′′) = 2εδijδ(�r′ − �r′′)δ(t′ − t′′),

ε = kBTb [a(Tc − T)](d−4)/2

Kd/2
.

(1.183)

The evolution depicted in Figure 1.10 is obtained from a numerical solution of
the dimensionless CHC equation with a random initial condition, which mimics the
disordered state prior to the quench. Regions that are A-rich (ψ = +1) are marked
black, and regions that are B-rich (ψ = −1) are not marked. The mixture has a critical
composition with 50%A–50% B, that is, the average value of the order parameter
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ψ0 = V−1
∫

d�r ψ(�r, 0) = 0. This composition is maintained during the evolution
due to the conservation constraint. As in the case of the TDGL equation, thermal
noise is asymptotically irrelevant for the CHC equation—the evolution shown in
Figure 1.10 corresponds to the deterministic case with ε = 0. In Figure 1.11, we
show the evolution for an off-critical composition with 30% A and 70% B, that is,
ψ0 = −0.4. This composition still lies inside the spinodal curve in Figure 1.3, so
the evolution corresponds to spinodal decomposition. However, the morphology is
characterized by the growth of A-rich (minority phase) droplets in a B-rich (majority
phase) background.

Before we proceed, it is relevant to discuss the applicability of the CHC model to
real binary alloys. Typically, lattice parameter mismatches in alloys can set up large
strain fields in the intermediate and late stages of phase separation [66–69] These
strain fields drastically modify the results we quote below and must be accounted
for in any realistic description of phase separation in alloys. Chapter 8 of this book
addresses this problem in considerable detail.

In the absence of strain effects, the phase-separating system is characterized by a
unique length scale, L(t) ∼ t1/3 in d ≥ 2. This power-law behavior was first derived

t = 100 t = 500

t = 2000 t = 5000

FIGURE 1.11 Analogous to Figure 1.10, but for the case of an off-critical binary mixture.
The initial condition consisted of small-amplitude fluctuations about ψ = −0.4, corresponding
to a mixture with 30% A and 70% B.
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by Lifshitz and Slyozov (LS) [70] for extremely off-critical systems, where one of
the components is present in a vanishing fraction, and the evolution proceeds via the
nucleation and growth of minority droplets. Huse [71] demonstrated that the same law
is applicable to spinodal decomposition, where there are approximately equal fractions
of the two components, and the coarsening structure is bi-continuous. Typically, the
chemical potential on the surface of a domain of size L is μ ∼ σ/L, where σ is the
surface tension. The concentration current is obtained as D| �∇μ| ∼ Dσ/L2, where D
is the diffusion constant. Therefore, the domain size grows as dL/dt ∼ Dσ/L2, or
L(t) ∼ (Dσt)1/3. In Figure 1.12, we show the domain growth law for the case with
ψ0 = 0 (shown in Figure 1.10)—the asymptotic growth law is seen to be consistent
with the LS law.

As in the nonconserved case, the quantities that characterize the evolution
morphology in Figures 1.10 and 1.11 are the correlation function and the structure
factor. The existence of a characteristic length scale results in the dynamical scaling
of these quantities. For the critical quench shown in Figure 1.10, we demonstrate the
dynamical scaling of the correlation function and structure factor in Figure 1.13. The
presence of interfacial defects results in a Porod tail for the scaled structure factor,
f (p) ∼ p−(d+1) as p → ∞; and a singular short-distance behavior of the correlation
function as in Equation 1.99. The structure factor also obeys the Tomita sum rule [41].

The above properties are common to the nonconserved and conserved cases.
There are some additional features due to the conservation law. For example, the

102 103 104
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FIGURE 1.12 Domain growth law for the evolution depicted in Figure 1.10. The numerical
data was obtained as an average over 10 independent runs for systems of size 5122. The
data is plotted on a log-log scale. The dashed line denotes the Lifshitz–Slyozov growth law,
L(t) ∼ t1/3.
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FIGURE 1.13 Analogous to Figure 1.7, but for the evolution depicted in Figure 1.10. The
numerical data was obtained as an average over 10 independent runs for systems of size 5122.

conservation constraint dictates the sum rule:

∫
d�r C(�r, t) = 0, or S(0, t) = 0. (1.184)
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Furthermore, the conservation law also fixes the p → 0 behavior of the scaled structure
factor as f (p) ∼ p4 [72,73].

Clearly, we have a good understanding of various general features of the morphol-
ogy. There have also been extensive simulations of phase-separation kinetics, which
have provided detailed results for the late-time behavior. These studies are based
on cell dynamical system (CDS) models [49,50]; discrete simulations of the CHC
equation [74]; and Monte Carlo (MC) simulations of the spin-exchange kinetic Ising
model [75,76].A detailed description of MC simulation techniques for domain growth
problems is provided in Chapter 3. However, in spite of many attempts [77–79], there
is still no comprehensive theory for the scaling form of the correlation function. A
major analytical obstacle in this regard is the strongly correlated motion of interfaces,
resulting from the conservation law. In particular, the Gaussian closure techniques
introduced in Section 1.4.1, which involve linearization of the dynamical equations
via a nonlinear transformation, have not worked well in the conserved case [82].

There have also been some studies of the case with conserved vector order parame-
ter, that is, the conserved counterpart of Equation 1.164. In the case where topological
defects are present (n ≤ d), Puri et al. [83,84] demonstrated that Gaussian closure
techniques work better than in the case with scalar order parameter. They used this
approach to obtain approximate analytical results for the correlation functions of the
conserved XY and Heisenberg models. The corresponding growth law is L(t) ∼ t1/4,
which is slower than the LS-growth for the scalar case. In the limit n → ∞, an impor-
tant result is due to Coniglio and Zannetti [85], who showed that the structure factor
exhibits multiple-length scaling rather than single-length scaling. However, Bray and
Humayun [86] have demonstrated that multi-scaling is a singular property of the
n = ∞ case.

1.5.2 SEGREGATION IN BINARY FLUID MIXTURES

1.5.2.1 Dimensional Form of Model H

Let us next consider the phase-separation kinetics of immiscible binary fluids [3–6].
In this case, the flow field enables advective transport of the segregating components.
The appropriate equation for the order-parameter evolution is [31]

Dψ

Dt
= ∂ψ

∂t
+ �v · �∇ψ = �∇ ·

(
D �∇μ + �θ

)
, (1.185)

where �v(�r, t) denotes the fluid velocity field. We assume that the fluid is incom-
pressible (with constant density ρ). Recall that the density obeys the continuity
equation:

∂ρ

∂t
+ �∇ · (ρ�v) = 0. (1.186)

The requirement that ρ is constant imposes a constraint on the velocity field as
�∇ · �v = 0.
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The corresponding equation for the velocity field is the Navier–Stokes equation:

ρ
D�v
Dt

= ρ

[
∂ �v
∂t

+ (�v · �∇)�v
]

= η∇2�v − �∇p − ψ �∇μ + �ζ, (1.187)

where η is the viscosity, and p is the pressure. The additional term on the RHS, −ψ �∇μ,
describes the force exerted on the fluid by the segregating mixture.

The Gaussian white noise �θ in Equation 1.185 satisfies the fluctuation-dissipation
relation (see Equation 1.179):

�θ(�r, t) = 0,

θi(�r′, t′)θj(�r′′, t′′) = 2DkBTδijδ(�r′ − �r′′)δ(t′ − t′′).
(1.188)

Equation 1.187 consists of three equations (for vx , vy, vz) with noises ζx , ζy, ζz. Each
of these independent noises is obtained as

ζi = �∇ · �σ, (1.189)

where �σ obeys the fluctuation-dissipation relation:

�σ(�r, t) = 0,

σi(�r′, t′)σj(�r′′, t′′) = 2ηkBTδijδ(�r′ − �r′′)δ(t′ − t′′).
(1.190)

Our first task is to eliminate the pressure term in Equation 1.187 by using the
incompressibility condition �∇ · �v = 0. We apply the operator �∇· to both sides of
Equation 1.187 to obtain

∇2p = �∇ · �F = �∇ ·
[
−ψ �∇μ − ρ(�v · �∇)�v + �ζ

]
. (1.191)

In Fourier space, this equation has the solution

p(�k, t) = i
�k · �F(�k, t)

k2
. (1.192)

We can replace p(�r, t) [the inverse Fourier transform of p(�k, t)] in Equation 1.187 to
obtain

ρ
∂

∂t
�v(�r, t) = η∇2�v +

[
−ψ �∇μ − ρ(�v · �∇)�v + �ζ

]
⊥ . (1.193)

In Equation 1.193, we have introduced the following notation: [�F(�r, t)]⊥ denotes the
transverse part of the vector �F(�r, t). In momentum space, this is computed as

[�F(�k, t)]⊥ = �F(�k, t) − �k · �F(�k, t)

k2
�k = �F(�k, t) −

[
k̂ · �F(�k, t)

]
k̂. (1.194)
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Equations 1.185 and 1.193 are referred to as Model H in the classification scheme
of Hohenberg and Halperin [31]. In analogy with Models A and B, we can rescale
variables in Model H to obtain a dimensionless version. However, to clarify the
domain growth laws in this model, it is convenient to work with the dimensional
form.

1.5.2.2 Domain Growth Laws in Binary Fluids

To understand the domain growth laws, we consider the deterministic case with T = 0.
In the initial stages, the dynamics of the velocity field is much faster than that of the
order-parameter field, and we ignore the inertial terms in Equation 1.193. The resultant
equation is solved for �v (in Fourier space) as

vi(�k, t) = Tij(�k)Xj(�k, t)

= 1

ηk2

(
δij − kikj

k2

)
Xj(�k, t),

�X(�k, t) =
∫

d�rei�k·�r (−ψ �∇μ
)

. (1.195)

In Equation 1.195, repeated indices are summed over, and Tij(�k) denotes the Oseen
tensor in momentum space. In d = 3, the real-space Oseen tensor is

Tij(�r) = 1

8πηr

(
δij + rirj

r2

)
. (1.196)

As �∇ · �v = 0, we can rewrite Equation 1.185 as

∂

∂t
ψ(�r, t) = �∇ ·

(
D �∇μ − ψ�v

)
, (1.197)

where we have set �θ = 0. Replacing the expression for the velocity from Equa-
tion 1.195 in Equation 1.197, we obtain the evolution equation

∂

∂t
ψ(�r, t) = D∇2μ + ∇i

[
ψ(�r, t)

∫
d�r′Tij(�r − �r′)ψ(�r′, t)∇′

jμ(�r′, t)

]
. (1.198)

By partial integration, we can transform Equation 1.198 into a more symmetric form:

∂

∂t
ψ(�r, t) = D∇2μ − [∇iψ(�r, t)

] ∫
d�r′Tij(�r − �r′)

[
∇′

jψ(�r′, t)
]
μ(�r′, t) (1.199)

where we have used the property

∇iTij(�r − �r′) = ∇′
j Tij(�r − �r′) = 0. (1.200)

Equation 1.198 or 1.199 can be used to understand domain growth laws for
coarsening in binary fluids. At early times, growth is driven by diffusion, as in the
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case of binary alloys. However, there is a crossover to a hydrodynamic growth regime,
where material is rapidly transported along domain boundaries by advection [87,88].
Let us estimate the various terms in Equation 1.199. The term on the left-hand side
(LHS) is estimated as

∂ψ

∂t
∼ 1

L

dL

dt
, (1.201)

where L(t) is the domain length scale. Next, consider the terms on the RHS. The
diffusive term is of order Dσ/L3, where σ is the surface tension. (Recall that μ = σ/L
on the surface of a domain with size L.) The advective term is of order σ/(ηL), where
we have estimated the Oseen tensor as T ∼ 1/(ηL) in d = 3. Thus, the diffusive term
is dominant when

Dσ

L3
� σ

ηL
, (1.202)

or L � (Dη)1/2. The growth law in the diffusive regime is the usual LS law, L(t) ∼
(Dσt)1/3.At later times, the advective term is dominant, yielding the following growth
law for the so-called viscous hydrodynamic regime:

L(t) ∼ σt

η
. (1.203)

At even later times, the approximation of neglecting the inertial terms in Equa-
tion 1.193 is no longer valid [88]. To understand this, let us estimate the terms in
Equation 1.193, which we repeat here for ease of reference:

ρ
∂ �v
∂t

+ [ρ(�v · �∇)�v]⊥ = η∇2�v −
[
ψ �∇μ

]
⊥ , (1.204)

where we have set �ζ = 0. The fluid velocity scale is estimated as L/t. Then, the first
term on the LHS is of order ρL/t2, and the second (nonlinear) term is also of the same
order. The viscous term on the RHS is of order η/(Lt), and the force term is of order
σ/L2. The terms on the LHS become comparable with those on the RHS at length
scales of order η2/(ρσ). The asymptotic growth law in the inertial hydrodynamic
regime is then obtained from

ρL

t2
∼ σ

L2
, (1.205)

as

L(t) ∼
(

σt2

ρ

)1/3

. (1.206)
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The growth laws for the different regimes are summarized as follows:

L(t) ∼ (Dσt)1/3, L � (Dη)1/2, (diffusive regime)

∼ σt

η
, (Dη)1/2 � L � η2

ρσ
, (viscous hydrodynamic regime) (1.207)

∼
(

σt2

ρ

)1/3

,
η2

ρσ
� L, (inertial hydrodynamic regime)

Grant and Elder [89] have argued that scaling requires that the asymptotic growth
exponent φ ≤ 1/2. Otherwise, the system enters a turbulent regime in which it under-
goes remixing. Alternatively, they suggest that a faster growth law than L(t) ∼ t1/2

can be sustained if the system does not exhibit dynamical scaling. However, the Grant–
Elder arguments have been criticized by Kendon et al. [90], whose lattice-Boltzmann
simulations support the inertial hydrodynamic growth law, L(t) ∼ t2/3. (A detailed
description of the lattice-Boltzmann approach to study the phase separation of fluids
is provided in Chapter 4.)

We should also stress that domain connectivity plays a crucial role in enabling
hydrodynamic transport. In highly off-critical quenches, the morphology consists of
droplets of the minority phase in a matrix of the majority phase (see Figure 1.11).
Then, the hydrodynamic mechanism is disabled and domain growth is analogous
to that for binary alloys. Furthermore, thermal fluctuations can drive the Brownian
motion and coalescence of droplets. This also gives rise to a LS-like growth law,
L(t) ∼ (kBTt/η)1/3 [87], though the physical mechanism is quite different.

Finally, we should remark on the morphology, as characterized by the correlation
function or the structure factor. These quantities and the domain growth laws have
been investigated in many numerical studies, for example, CDS simulations [91–94];
molecular dynamics (MD) studies [95,96]; lattice-Boltzmann simulations [90,97,98],
etc. As regards analytical results, the general morphological features (Porod’s law,
Tomita sum rule, etc.) discussed in Section 1.4.1 arise in the current context also.
However, as in the case of binary alloys, there is no satisfactory theory for the scaling
form of the correlation function. This remains one of the major unsolved problems in
the field of phase-ordering kinetics.

1.6 SUMMARY AND DISCUSSION

Let us conclude this chapter with a summary and discussion. We have presented
a broad overview of the kinetics of phase transitions. There are two prototypical
problems in this area: (a) the ordering of a ferromagnet, which is an example of the case
with nonconserved order parameter; and (b) the phase separation of a binary mixture,
which is an example of the case with conserved order parameter. One is interested in
the evolution of a thermodynamically unstable disordered or homogeneous state. This
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evolution is characterized by the emergence and growth of domains that are enriched
in different components of the mixture.

We have a good understanding of the morphologies and growth laws that charac-
terize domain-growth kinetics. The domain size L(t) usually grows as a power-law
in time, L(t) ∼ tφ, where the exponent φ depends on (a) the nature of conservation
laws, (b) the defects that drive the ordering process, and (c) the relevance of flow
fields. The morphology is quantitatively characterized by the correlation function or
its Fourier transform, the structure factor. There is a good theoretical understanding
of the correlation function for nonconserved dynamics with both scalar and vector
order parameters. Unfortunately, our understanding of the conserved problem is not
so good. Thus, we know the various limiting behaviors of the correlation function or
structure factor. However, the overall functional form is not well understood, and this
remains one of the outstanding problems in this area.

We should stress that the concepts and paradigms discussed here have been applied
in a broad variety of physical problems.The examples used in this chapter are primarily
drawn from metallurgy and materials science. However, the phenomena of phase
separation, clustering, and aggregation are ubiquitous in nature.

The subsequent chapters of this book will discuss different aspects of the kinetics
of phase transitions. All the chapters are written in a pedagogical manner and will be
accessible to an advanced undergraduate student. At this stage, it is useful to provide
a brief overview of these chapters. We have mentioned earlier that the distinction
between spinodal decomposition and nucleation and growth is not as sharp as the
phase diagram in Figure 1.3 would suggest. This issue is discussed in detail by Binder
in Chapter 2. Chapters 3 and 4 are dedicated to a discussion of simulation techniques in
this area. In Chapter 3, Barkema describes Monte Carlo simulations of the kinetic Ising
models introduced in Section 1.3. In Chapter 4, Gonnella andYeomans discuss lattice
Boltzmann simulations, which have proved very useful in understanding the late stages
of phase separation in fluid mixtures (cf. Section 1.5.2). Numerical simulations have
played a crucial role in developing our understanding of domain growth problems.
The methodology described in Chapters 3 and 4 will prove very useful for a researcher
entering this area.

In Chapter 5, Zannetti discusses slow relaxation and aging in phase-ordering sys-
tems. These phenomena are well known in the context of structural glasses and spin
glasses. Recent studies indicate that these concepts are also highly relevant in domain
growth problems—Zannetti provides an overview of these studies.

Recent interest in this area has focused on incorporating various experimentally
relevant features in studies of phase-ordering systems. In this context, Chapter 6
(by Khanna, Agnihotri, and Sharma) discusses the kinetics of dewetting of liquid
films on surfaces. In Chapter 7, Ohta reviews studies of phase separation in diblock
copolymers. In these systems, the polymers A and B (which repel each other) are
jointed, so that the system can only undergo segregation on microscales. Finally, in
Chapter 8 (written by Onuki, Minami, and Furukawa), there is a detailed discussion
of phase separation in solids. In Section 1.5.1, we had emphasized that strain fields
play an important role in the segregation kinetics of alloys. Onuki et al. discuss
how elastic fields can be incorporated into the Ginzburg–Landau description of solid
mixtures.
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